mem: Add explicit Cache subclass and make BaseCache abstract
[gem5.git] / src / mem / cache / cache.cc
1 /*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49 /**
50 * @file
51 * Cache definitions.
52 */
53
54 #include "mem/cache/cache.hh"
55
56 #include "base/misc.hh"
57 #include "base/types.hh"
58 #include "debug/Cache.hh"
59 #include "debug/CachePort.hh"
60 #include "debug/CacheTags.hh"
61 #include "mem/cache/blk.hh"
62 #include "mem/cache/mshr.hh"
63 #include "mem/cache/prefetch/base.hh"
64 #include "sim/sim_exit.hh"
65
66 Cache::Cache(const CacheParams *p)
67 : BaseCache(p, p->system->cacheLineSize()),
68 tags(p->tags),
69 prefetcher(p->prefetcher),
70 doFastWrites(true),
71 prefetchOnAccess(p->prefetch_on_access)
72 {
73 tempBlock = new CacheBlk();
74 tempBlock->data = new uint8_t[blkSize];
75
76 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
77 "CpuSidePort");
78 memSidePort = new MemSidePort(p->name + ".mem_side", this,
79 "MemSidePort");
80
81 tags->setCache(this);
82 if (prefetcher)
83 prefetcher->setCache(this);
84 }
85
86 Cache::~Cache()
87 {
88 delete [] tempBlock->data;
89 delete tempBlock;
90
91 delete cpuSidePort;
92 delete memSidePort;
93 }
94
95 void
96 Cache::regStats()
97 {
98 BaseCache::regStats();
99 }
100
101 void
102 Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
103 {
104 assert(pkt->isRequest());
105
106 uint64_t overwrite_val;
107 bool overwrite_mem;
108 uint64_t condition_val64;
109 uint32_t condition_val32;
110
111 int offset = tags->extractBlkOffset(pkt->getAddr());
112 uint8_t *blk_data = blk->data + offset;
113
114 assert(sizeof(uint64_t) >= pkt->getSize());
115
116 overwrite_mem = true;
117 // keep a copy of our possible write value, and copy what is at the
118 // memory address into the packet
119 pkt->writeData((uint8_t *)&overwrite_val);
120 pkt->setData(blk_data);
121
122 if (pkt->req->isCondSwap()) {
123 if (pkt->getSize() == sizeof(uint64_t)) {
124 condition_val64 = pkt->req->getExtraData();
125 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
126 sizeof(uint64_t));
127 } else if (pkt->getSize() == sizeof(uint32_t)) {
128 condition_val32 = (uint32_t)pkt->req->getExtraData();
129 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
130 sizeof(uint32_t));
131 } else
132 panic("Invalid size for conditional read/write\n");
133 }
134
135 if (overwrite_mem) {
136 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
137 blk->status |= BlkDirty;
138 }
139 }
140
141
142 void
143 Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
144 bool deferred_response, bool pending_downgrade)
145 {
146 assert(pkt->isRequest());
147
148 assert(blk && blk->isValid());
149 // Occasionally this is not true... if we are a lower-level cache
150 // satisfying a string of Read and ReadEx requests from
151 // upper-level caches, a Read will mark the block as shared but we
152 // can satisfy a following ReadEx anyway since we can rely on the
153 // Read requester(s) to have buffered the ReadEx snoop and to
154 // invalidate their blocks after receiving them.
155 // assert(!pkt->needsExclusive() || blk->isWritable());
156 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
157
158 // Check RMW operations first since both isRead() and
159 // isWrite() will be true for them
160 if (pkt->cmd == MemCmd::SwapReq) {
161 cmpAndSwap(blk, pkt);
162 } else if (pkt->isWrite()) {
163 assert(blk->isWritable());
164 // Write or WriteLine at the first cache with block in Exclusive
165 if (blk->checkWrite(pkt)) {
166 pkt->writeDataToBlock(blk->data, blkSize);
167 }
168 // Always mark the line as dirty even if we are a failed
169 // StoreCond so we supply data to any snoops that have
170 // appended themselves to this cache before knowing the store
171 // will fail.
172 blk->status |= BlkDirty;
173 DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
174 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
175 } else if (pkt->isRead()) {
176 if (pkt->isLLSC()) {
177 blk->trackLoadLocked(pkt);
178 }
179 pkt->setDataFromBlock(blk->data, blkSize);
180 // determine if this read is from a (coherent) cache, or not
181 // by looking at the command type; we could potentially add a
182 // packet attribute such as 'FromCache' to make this check a
183 // bit cleaner
184 if (pkt->cmd == MemCmd::ReadExReq ||
185 pkt->cmd == MemCmd::ReadSharedReq ||
186 pkt->cmd == MemCmd::ReadCleanReq ||
187 pkt->cmd == MemCmd::SCUpgradeFailReq) {
188 assert(pkt->getSize() == blkSize);
189 // special handling for coherent block requests from
190 // upper-level caches
191 if (pkt->needsExclusive()) {
192 // sanity check
193 assert(pkt->cmd == MemCmd::ReadExReq ||
194 pkt->cmd == MemCmd::SCUpgradeFailReq);
195
196 // if we have a dirty copy, make sure the recipient
197 // keeps it marked dirty
198 if (blk->isDirty()) {
199 pkt->assertMemInhibit();
200 }
201 // on ReadExReq we give up our copy unconditionally
202 if (blk != tempBlock)
203 tags->invalidate(blk);
204 blk->invalidate();
205 } else if (blk->isWritable() && !pending_downgrade &&
206 !pkt->sharedAsserted() &&
207 pkt->cmd != MemCmd::ReadCleanReq) {
208 // we can give the requester an exclusive copy (by not
209 // asserting shared line) on a read request if:
210 // - we have an exclusive copy at this level (& below)
211 // - we don't have a pending snoop from below
212 // signaling another read request
213 // - no other cache above has a copy (otherwise it
214 // would have asseretd shared line on request)
215 // - we are not satisfying an instruction fetch (this
216 // prevents dirty data in the i-cache)
217
218 if (blk->isDirty()) {
219 // special considerations if we're owner:
220 if (!deferred_response) {
221 // if we are responding immediately and can
222 // signal that we're transferring ownership
223 // along with exclusivity, do so
224 pkt->assertMemInhibit();
225 blk->status &= ~BlkDirty;
226 } else {
227 // if we're responding after our own miss,
228 // there's a window where the recipient didn't
229 // know it was getting ownership and may not
230 // have responded to snoops correctly, so we
231 // can't pass off ownership *or* exclusivity
232 pkt->assertShared();
233 }
234 }
235 } else {
236 // otherwise only respond with a shared copy
237 pkt->assertShared();
238 }
239 }
240 } else {
241 // Upgrade or Invalidate, since we have it Exclusively (E or
242 // M), we ack then invalidate.
243 assert(pkt->isUpgrade() || pkt->isInvalidate());
244 assert(blk != tempBlock);
245 tags->invalidate(blk);
246 blk->invalidate();
247 DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
248 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
249 }
250 }
251
252
253 /////////////////////////////////////////////////////
254 //
255 // MSHR helper functions
256 //
257 /////////////////////////////////////////////////////
258
259
260 void
261 Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
262 {
263 markInServiceInternal(mshr, pending_dirty_resp);
264 }
265
266
267 void
268 Cache::squash(int threadNum)
269 {
270 bool unblock = false;
271 BlockedCause cause = NUM_BLOCKED_CAUSES;
272
273 if (noTargetMSHR && noTargetMSHR->threadNum == threadNum) {
274 noTargetMSHR = NULL;
275 unblock = true;
276 cause = Blocked_NoTargets;
277 }
278 if (mshrQueue.isFull()) {
279 unblock = true;
280 cause = Blocked_NoMSHRs;
281 }
282 mshrQueue.squash(threadNum);
283 if (unblock && !mshrQueue.isFull()) {
284 clearBlocked(cause);
285 }
286 }
287
288 /////////////////////////////////////////////////////
289 //
290 // Access path: requests coming in from the CPU side
291 //
292 /////////////////////////////////////////////////////
293
294 bool
295 Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
296 PacketList &writebacks)
297 {
298 // sanity check
299 assert(pkt->isRequest());
300
301 chatty_assert(!(isReadOnly && pkt->isWrite()),
302 "Should never see a write in a read-only cache %s\n",
303 name());
304
305 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
306 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
307
308 if (pkt->req->isUncacheable()) {
309 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
310 pkt->req->isInstFetch() ? " (ifetch)" : "",
311 pkt->getAddr());
312
313 if (pkt->req->isClearLL())
314 tags->clearLocks();
315
316 // flush and invalidate any existing block
317 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
318 if (old_blk && old_blk->isValid()) {
319 if (old_blk->isDirty())
320 writebacks.push_back(writebackBlk(old_blk));
321 else
322 writebacks.push_back(cleanEvictBlk(old_blk));
323 tags->invalidate(old_blk);
324 old_blk->invalidate();
325 }
326
327 blk = NULL;
328 // lookupLatency is the latency in case the request is uncacheable.
329 lat = lookupLatency;
330 return false;
331 }
332
333 ContextID id = pkt->req->hasContextId() ?
334 pkt->req->contextId() : InvalidContextID;
335 // Here lat is the value passed as parameter to accessBlock() function
336 // that can modify its value.
337 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
338
339 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
340 pkt->req->isInstFetch() ? " (ifetch)" : "",
341 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
342 blk ? "hit " + blk->print() : "miss");
343
344
345 if (pkt->evictingBlock()) {
346 // We check for presence of block in above caches before issuing
347 // Writeback or CleanEvict to write buffer. Therefore the only
348 // possible cases can be of a CleanEvict packet coming from above
349 // encountering a Writeback generated in this cache peer cache and
350 // waiting in the write buffer. Cases of upper level peer caches
351 // generating CleanEvict and Writeback or simply CleanEvict and
352 // CleanEvict almost simultaneously will be caught by snoops sent out
353 // by crossbar.
354 std::vector<MSHR *> outgoing;
355 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
356 outgoing)) {
357 assert(outgoing.size() == 1);
358 PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
359 assert(pkt->cmd == MemCmd::CleanEvict &&
360 wbPkt->cmd == MemCmd::Writeback);
361 // As the CleanEvict is coming from above, it would have snooped
362 // into other peer caches of the same level while traversing the
363 // crossbar. If a copy of the block had been found, the CleanEvict
364 // would have been deleted in the crossbar. Now that the
365 // CleanEvict is here we can be sure none of the other upper level
366 // caches connected to this cache have the block, so we can clear
367 // the BLOCK_CACHED flag in the Writeback if set and discard the
368 // CleanEvict by returning true.
369 wbPkt->clearBlockCached();
370 return true;
371 }
372 }
373
374 // Writeback handling is special case. We can write the block into
375 // the cache without having a writeable copy (or any copy at all).
376 if (pkt->cmd == MemCmd::Writeback) {
377 assert(blkSize == pkt->getSize());
378 if (blk == NULL) {
379 // need to do a replacement
380 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
381 if (blk == NULL) {
382 // no replaceable block available: give up, fwd to next level.
383 incMissCount(pkt);
384 return false;
385 }
386 tags->insertBlock(pkt, blk);
387
388 blk->status = (BlkValid | BlkReadable);
389 if (pkt->isSecure()) {
390 blk->status |= BlkSecure;
391 }
392 }
393 blk->status |= BlkDirty;
394 // if shared is not asserted we got the writeback in modified
395 // state, if it is asserted we are in the owned state
396 if (!pkt->sharedAsserted()) {
397 blk->status |= BlkWritable;
398 }
399 // nothing else to do; writeback doesn't expect response
400 assert(!pkt->needsResponse());
401 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
402 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
403 incHitCount(pkt);
404 return true;
405 } else if (pkt->cmd == MemCmd::CleanEvict) {
406 if (blk != NULL) {
407 // Found the block in the tags, need to stop CleanEvict from
408 // propagating further down the hierarchy. Returning true will
409 // treat the CleanEvict like a satisfied write request and delete
410 // it.
411 return true;
412 }
413 // We didn't find the block here, propagate the CleanEvict further
414 // down the memory hierarchy. Returning false will treat the CleanEvict
415 // like a Writeback which could not find a replaceable block so has to
416 // go to next level.
417 return false;
418 } else if ((blk != NULL) &&
419 (pkt->needsExclusive() ? blk->isWritable()
420 : blk->isReadable())) {
421 // OK to satisfy access
422 incHitCount(pkt);
423 satisfyCpuSideRequest(pkt, blk);
424 return true;
425 }
426
427 // Can't satisfy access normally... either no block (blk == NULL)
428 // or have block but need exclusive & only have shared.
429
430 incMissCount(pkt);
431
432 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
433 // complete miss on store conditional... just give up now
434 pkt->req->setExtraData(0);
435 return true;
436 }
437
438 return false;
439 }
440
441
442 class ForwardResponseRecord : public Packet::SenderState
443 {
444 public:
445
446 ForwardResponseRecord() {}
447 };
448
449 void
450 Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
451 {
452 while (!writebacks.empty()) {
453 PacketPtr wbPkt = writebacks.front();
454 // We use forwardLatency here because we are copying writebacks to
455 // write buffer. Call isCachedAbove for both Writebacks and
456 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
457 // in Writebacks and discard CleanEvicts.
458 if (isCachedAbove(wbPkt)) {
459 if (wbPkt->cmd == MemCmd::CleanEvict) {
460 // Delete CleanEvict because cached copies exist above. The
461 // packet destructor will delete the request object because
462 // this is a non-snoop request packet which does not require a
463 // response.
464 delete wbPkt;
465 } else {
466 // Set BLOCK_CACHED flag in Writeback and send below, so that
467 // the Writeback does not reset the bit corresponding to this
468 // address in the snoop filter below.
469 wbPkt->setBlockCached();
470 allocateWriteBuffer(wbPkt, forward_time);
471 }
472 } else {
473 // If the block is not cached above, send packet below. Both
474 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
475 // reset the bit corresponding to this address in the snoop filter
476 // below.
477 allocateWriteBuffer(wbPkt, forward_time);
478 }
479 writebacks.pop_front();
480 }
481 }
482
483
484 void
485 Cache::recvTimingSnoopResp(PacketPtr pkt)
486 {
487 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
488 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
489
490 assert(pkt->isResponse());
491
492 // must be cache-to-cache response from upper to lower level
493 ForwardResponseRecord *rec =
494 dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
495 assert(!system->bypassCaches());
496
497 if (rec == NULL) {
498 // @todo What guarantee do we have that this HardPFResp is
499 // actually for this cache, and not a cache closer to the
500 // memory?
501 assert(pkt->cmd == MemCmd::HardPFResp);
502 // Check if it's a prefetch response and handle it. We shouldn't
503 // get any other kinds of responses without FRRs.
504 DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
505 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
506 recvTimingResp(pkt);
507 return;
508 }
509
510 pkt->popSenderState();
511 delete rec;
512 // forwardLatency is set here because there is a response from an
513 // upper level cache.
514 // To pay the delay that occurs if the packet comes from the bus,
515 // we charge also headerDelay.
516 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
517 // Reset the timing of the packet.
518 pkt->headerDelay = pkt->payloadDelay = 0;
519 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
520 }
521
522 void
523 Cache::promoteWholeLineWrites(PacketPtr pkt)
524 {
525 // Cache line clearing instructions
526 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
527 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
528 pkt->cmd = MemCmd::WriteLineReq;
529 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
530 }
531 }
532
533 bool
534 Cache::recvTimingReq(PacketPtr pkt)
535 {
536 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
537 //@todo Add back in MemDebug Calls
538 // MemDebug::cacheAccess(pkt);
539
540
541 /// @todo temporary hack to deal with memory corruption issue until
542 /// 4-phase transactions are complete
543 for (int x = 0; x < pendingDelete.size(); x++)
544 delete pendingDelete[x];
545 pendingDelete.clear();
546
547 assert(pkt->isRequest());
548
549 // Just forward the packet if caches are disabled.
550 if (system->bypassCaches()) {
551 // @todo This should really enqueue the packet rather
552 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
553 assert(success);
554 return true;
555 }
556
557 promoteWholeLineWrites(pkt);
558
559 if (pkt->memInhibitAsserted()) {
560 // a cache above us (but not where the packet came from) is
561 // responding to the request
562 DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
563 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
564
565 // if the packet needs exclusive, and the cache that has
566 // promised to respond (setting the inhibit flag) is not
567 // providing exclusive (it is in O vs M state), we know that
568 // there may be other shared copies in the system; go out and
569 // invalidate them all
570 if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
571 // create a downstream express snoop with cleared packet
572 // flags, there is no need to allocate any data as the
573 // packet is merely used to co-ordinate state transitions
574 Packet *snoop_pkt = new Packet(pkt, true, false);
575
576 // also reset the bus time that the original packet has
577 // not yet paid for
578 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
579
580 // make this an instantaneous express snoop, and let the
581 // other caches in the system know that the packet is
582 // inhibited, because we have found the authorative copy
583 // (O) that will supply the right data
584 snoop_pkt->setExpressSnoop();
585 snoop_pkt->assertMemInhibit();
586
587 // this express snoop travels towards the memory, and at
588 // every crossbar it is snooped upwards thus reaching
589 // every cache in the system
590 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
591 // express snoops always succeed
592 assert(success);
593
594 // main memory will delete the packet
595 }
596
597 /// @todo nominally we should just delete the packet here,
598 /// however, until 4-phase stuff we can't because sending
599 /// cache is still relying on it.
600 pendingDelete.push_back(pkt);
601
602 // no need to take any action in this particular cache as the
603 // caches along the path to memory are allowed to keep lines
604 // in a shared state, and a cache above us already committed
605 // to responding
606 return true;
607 }
608
609 // anything that is merely forwarded pays for the forward latency and
610 // the delay provided by the crossbar
611 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
612
613 // We use lookupLatency here because it is used to specify the latency
614 // to access.
615 Cycles lat = lookupLatency;
616 CacheBlk *blk = NULL;
617 bool satisfied = false;
618 {
619 PacketList writebacks;
620 // Note that lat is passed by reference here. The function
621 // access() calls accessBlock() which can modify lat value.
622 satisfied = access(pkt, blk, lat, writebacks);
623
624 // copy writebacks to write buffer here to ensure they logically
625 // proceed anything happening below
626 doWritebacks(writebacks, forward_time);
627 }
628
629 // Here we charge the headerDelay that takes into account the latencies
630 // of the bus, if the packet comes from it.
631 // The latency charged it is just lat that is the value of lookupLatency
632 // modified by access() function, or if not just lookupLatency.
633 // In case of a hit we are neglecting response latency.
634 // In case of a miss we are neglecting forward latency.
635 Tick request_time = clockEdge(lat) + pkt->headerDelay;
636 // Here we reset the timing of the packet.
637 pkt->headerDelay = pkt->payloadDelay = 0;
638
639 // track time of availability of next prefetch, if any
640 Tick next_pf_time = MaxTick;
641
642 bool needsResponse = pkt->needsResponse();
643
644 if (satisfied) {
645 // should never be satisfying an uncacheable access as we
646 // flush and invalidate any existing block as part of the
647 // lookup
648 assert(!pkt->req->isUncacheable());
649
650 // hit (for all other request types)
651
652 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
653 if (blk)
654 blk->status &= ~BlkHWPrefetched;
655
656 // Don't notify on SWPrefetch
657 if (!pkt->cmd.isSWPrefetch())
658 next_pf_time = prefetcher->notify(pkt);
659 }
660
661 if (needsResponse) {
662 pkt->makeTimingResponse();
663 // @todo: Make someone pay for this
664 pkt->headerDelay = pkt->payloadDelay = 0;
665
666 // In this case we are considering request_time that takes
667 // into account the delay of the xbar, if any, and just
668 // lat, neglecting responseLatency, modelling hit latency
669 // just as lookupLatency or or the value of lat overriden
670 // by access(), that calls accessBlock() function.
671 cpuSidePort->schedTimingResp(pkt, request_time);
672 } else {
673 /// @todo nominally we should just delete the packet here,
674 /// however, until 4-phase stuff we can't because sending cache is
675 /// still relying on it. If the block is found in access(),
676 /// CleanEvict and Writeback messages will be deleted here as
677 /// well.
678 pendingDelete.push_back(pkt);
679 }
680 } else {
681 // miss
682
683 Addr blk_addr = blockAlign(pkt->getAddr());
684
685 // ignore any existing MSHR if we are dealing with an
686 // uncacheable request
687 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
688 mshrQueue.findMatch(blk_addr, pkt->isSecure());
689
690 // Software prefetch handling:
691 // To keep the core from waiting on data it won't look at
692 // anyway, send back a response with dummy data. Miss handling
693 // will continue asynchronously. Unfortunately, the core will
694 // insist upon freeing original Packet/Request, so we have to
695 // create a new pair with a different lifecycle. Note that this
696 // processing happens before any MSHR munging on the behalf of
697 // this request because this new Request will be the one stored
698 // into the MSHRs, not the original.
699 if (pkt->cmd.isSWPrefetch()) {
700 assert(needsResponse);
701 assert(pkt->req->hasPaddr());
702 assert(!pkt->req->isUncacheable());
703
704 // There's no reason to add a prefetch as an additional target
705 // to an existing MSHR. If an outstanding request is already
706 // in progress, there is nothing for the prefetch to do.
707 // If this is the case, we don't even create a request at all.
708 PacketPtr pf = nullptr;
709
710 if (!mshr) {
711 // copy the request and create a new SoftPFReq packet
712 RequestPtr req = new Request(pkt->req->getPaddr(),
713 pkt->req->getSize(),
714 pkt->req->getFlags(),
715 pkt->req->masterId());
716 pf = new Packet(req, pkt->cmd);
717 pf->allocate();
718 assert(pf->getAddr() == pkt->getAddr());
719 assert(pf->getSize() == pkt->getSize());
720 }
721
722 pkt->makeTimingResponse();
723 // for debugging, set all the bits in the response data
724 // (also keeps valgrind from complaining when debugging settings
725 // print out instruction results)
726 std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
727 // request_time is used here, taking into account lat and the delay
728 // charged if the packet comes from the xbar.
729 cpuSidePort->schedTimingResp(pkt, request_time);
730
731 // If an outstanding request is in progress (we found an
732 // MSHR) this is set to null
733 pkt = pf;
734 }
735
736 if (mshr) {
737 /// MSHR hit
738 /// @note writebacks will be checked in getNextMSHR()
739 /// for any conflicting requests to the same block
740
741 //@todo remove hw_pf here
742
743 // Coalesce unless it was a software prefetch (see above).
744 if (pkt) {
745 assert(pkt->cmd != MemCmd::Writeback);
746 // CleanEvicts corresponding to blocks which have outstanding
747 // requests in MSHRs can be deleted here.
748 if (pkt->cmd == MemCmd::CleanEvict) {
749 pendingDelete.push_back(pkt);
750 } else {
751 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
752 __func__, pkt->cmdString(), pkt->getAddr(),
753 pkt->getSize());
754
755 assert(pkt->req->masterId() < system->maxMasters());
756 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
757 if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
758 mshr->threadNum = -1;
759 }
760 // We use forward_time here because it is the same
761 // considering new targets. We have multiple
762 // requests for the same address here. It
763 // specifies the latency to allocate an internal
764 // buffer and to schedule an event to the queued
765 // port and also takes into account the additional
766 // delay of the xbar.
767 mshr->allocateTarget(pkt, forward_time, order++);
768 if (mshr->getNumTargets() == numTarget) {
769 noTargetMSHR = mshr;
770 setBlocked(Blocked_NoTargets);
771 // need to be careful with this... if this mshr isn't
772 // ready yet (i.e. time > curTick()), we don't want to
773 // move it ahead of mshrs that are ready
774 // mshrQueue.moveToFront(mshr);
775 }
776 }
777 // We should call the prefetcher reguardless if the request is
778 // satisfied or not, reguardless if the request is in the MSHR or
779 // not. The request could be a ReadReq hit, but still not
780 // satisfied (potentially because of a prior write to the same
781 // cache line. So, even when not satisfied, tehre is an MSHR
782 // already allocated for this, we need to let the prefetcher know
783 // about the request
784 if (prefetcher) {
785 // Don't notify on SWPrefetch
786 if (!pkt->cmd.isSWPrefetch())
787 next_pf_time = prefetcher->notify(pkt);
788 }
789 }
790 } else {
791 // no MSHR
792 assert(pkt->req->masterId() < system->maxMasters());
793 if (pkt->req->isUncacheable()) {
794 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
795 } else {
796 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
797 }
798
799 if (pkt->evictingBlock() ||
800 (pkt->req->isUncacheable() && pkt->isWrite())) {
801 // We use forward_time here because there is an
802 // uncached memory write, forwarded to WriteBuffer.
803 allocateWriteBuffer(pkt, forward_time);
804 } else {
805 if (blk && blk->isValid()) {
806 // should have flushed and have no valid block
807 assert(!pkt->req->isUncacheable());
808
809 // If we have a write miss to a valid block, we
810 // need to mark the block non-readable. Otherwise
811 // if we allow reads while there's an outstanding
812 // write miss, the read could return stale data
813 // out of the cache block... a more aggressive
814 // system could detect the overlap (if any) and
815 // forward data out of the MSHRs, but we don't do
816 // that yet. Note that we do need to leave the
817 // block valid so that it stays in the cache, in
818 // case we get an upgrade response (and hence no
819 // new data) when the write miss completes.
820 // As long as CPUs do proper store/load forwarding
821 // internally, and have a sufficiently weak memory
822 // model, this is probably unnecessary, but at some
823 // point it must have seemed like we needed it...
824 assert(pkt->needsExclusive());
825 assert(!blk->isWritable());
826 blk->status &= ~BlkReadable;
827 }
828 // Here we are using forward_time, modelling the latency of
829 // a miss (outbound) just as forwardLatency, neglecting the
830 // lookupLatency component.
831 allocateMissBuffer(pkt, forward_time);
832 }
833
834 if (prefetcher) {
835 // Don't notify on SWPrefetch
836 if (!pkt->cmd.isSWPrefetch())
837 next_pf_time = prefetcher->notify(pkt);
838 }
839 }
840 }
841
842 if (next_pf_time != MaxTick)
843 schedMemSideSendEvent(next_pf_time);
844
845 return true;
846 }
847
848
849 // See comment in cache.hh.
850 PacketPtr
851 Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
852 bool needsExclusive) const
853 {
854 bool blkValid = blk && blk->isValid();
855
856 if (cpu_pkt->req->isUncacheable()) {
857 // note that at the point we see the uncacheable request we
858 // flush any block, but there could be an outstanding MSHR,
859 // and the cache could have filled again before we actually
860 // send out the forwarded uncacheable request (blk could thus
861 // be non-null)
862 return NULL;
863 }
864
865 if (!blkValid &&
866 (cpu_pkt->isUpgrade() ||
867 cpu_pkt->evictingBlock())) {
868 // Writebacks that weren't allocated in access() and upgrades
869 // from upper-level caches that missed completely just go
870 // through.
871 return NULL;
872 }
873
874 assert(cpu_pkt->needsResponse());
875
876 MemCmd cmd;
877 // @TODO make useUpgrades a parameter.
878 // Note that ownership protocols require upgrade, otherwise a
879 // write miss on a shared owned block will generate a ReadExcl,
880 // which will clobber the owned copy.
881 const bool useUpgrades = true;
882 if (blkValid && useUpgrades) {
883 // only reason to be here is that blk is shared
884 // (read-only) and we need exclusive
885 assert(needsExclusive);
886 assert(!blk->isWritable());
887 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
888 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
889 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
890 // Even though this SC will fail, we still need to send out the
891 // request and get the data to supply it to other snoopers in the case
892 // where the determination the StoreCond fails is delayed due to
893 // all caches not being on the same local bus.
894 cmd = MemCmd::SCUpgradeFailReq;
895 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
896 // forward as invalidate to all other caches, this gives us
897 // the line in exclusive state, and invalidates all other
898 // copies
899 cmd = MemCmd::InvalidateReq;
900 } else {
901 // block is invalid
902 cmd = needsExclusive ? MemCmd::ReadExReq :
903 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
904 }
905 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
906
907 // if there are sharers in the upper levels, pass that info downstream
908 if (cpu_pkt->sharedAsserted()) {
909 // note that cpu_pkt may have spent a considerable time in the
910 // MSHR queue and that the information could possibly be out
911 // of date, however, there is no harm in conservatively
912 // assuming the block is shared
913 pkt->assertShared();
914 DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
915 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
916 pkt->getAddr(), pkt->getSize());
917 }
918
919 // the packet should be block aligned
920 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
921
922 pkt->allocate();
923 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
924 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
925 pkt->getSize());
926 return pkt;
927 }
928
929
930 Tick
931 Cache::recvAtomic(PacketPtr pkt)
932 {
933 // We are in atomic mode so we pay just for lookupLatency here.
934 Cycles lat = lookupLatency;
935 // @TODO: make this a parameter
936 bool last_level_cache = false;
937
938 // Forward the request if the system is in cache bypass mode.
939 if (system->bypassCaches())
940 return ticksToCycles(memSidePort->sendAtomic(pkt));
941
942 promoteWholeLineWrites(pkt);
943
944 if (pkt->memInhibitAsserted()) {
945 // have to invalidate ourselves and any lower caches even if
946 // upper cache will be responding
947 if (pkt->isInvalidate()) {
948 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
949 if (blk && blk->isValid()) {
950 tags->invalidate(blk);
951 blk->invalidate();
952 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
953 " invalidating\n",
954 pkt->cmdString(), pkt->getAddr(),
955 pkt->isSecure() ? "s" : "ns");
956 }
957 if (!last_level_cache) {
958 DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
959 pkt->cmdString(), pkt->getAddr(),
960 pkt->isSecure() ? "s" : "ns");
961 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
962 }
963 } else {
964 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
965 pkt->cmdString(), pkt->getAddr());
966 }
967
968 return lat * clockPeriod();
969 }
970
971 // should assert here that there are no outstanding MSHRs or
972 // writebacks... that would mean that someone used an atomic
973 // access in timing mode
974
975 CacheBlk *blk = NULL;
976 PacketList writebacks;
977 bool satisfied = access(pkt, blk, lat, writebacks);
978
979 // handle writebacks resulting from the access here to ensure they
980 // logically proceed anything happening below
981 while (!writebacks.empty()){
982 PacketPtr wbPkt = writebacks.front();
983 memSidePort->sendAtomic(wbPkt);
984 writebacks.pop_front();
985 delete wbPkt;
986 }
987
988 if (!satisfied) {
989 // MISS
990
991 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
992
993 bool is_forward = (bus_pkt == NULL);
994
995 if (is_forward) {
996 // just forwarding the same request to the next level
997 // no local cache operation involved
998 bus_pkt = pkt;
999 }
1000
1001 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1002 bus_pkt->cmdString(), bus_pkt->getAddr(),
1003 bus_pkt->isSecure() ? "s" : "ns");
1004
1005 #if TRACING_ON
1006 CacheBlk::State old_state = blk ? blk->status : 0;
1007 #endif
1008
1009 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1010
1011 // We are now dealing with the response handling
1012 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1013 bus_pkt->cmdString(), bus_pkt->getAddr(),
1014 bus_pkt->isSecure() ? "s" : "ns",
1015 old_state);
1016
1017 // If packet was a forward, the response (if any) is already
1018 // in place in the bus_pkt == pkt structure, so we don't need
1019 // to do anything. Otherwise, use the separate bus_pkt to
1020 // generate response to pkt and then delete it.
1021 if (!is_forward) {
1022 if (pkt->needsResponse()) {
1023 assert(bus_pkt->isResponse());
1024 if (bus_pkt->isError()) {
1025 pkt->makeAtomicResponse();
1026 pkt->copyError(bus_pkt);
1027 } else if (pkt->cmd == MemCmd::InvalidateReq) {
1028 if (blk) {
1029 // invalidate response to a cache that received
1030 // an invalidate request
1031 satisfyCpuSideRequest(pkt, blk);
1032 }
1033 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1034 // note the use of pkt, not bus_pkt here.
1035
1036 // write-line request to the cache that promoted
1037 // the write to a whole line
1038 blk = handleFill(pkt, blk, writebacks);
1039 satisfyCpuSideRequest(pkt, blk);
1040 } else if (bus_pkt->isRead() ||
1041 bus_pkt->cmd == MemCmd::UpgradeResp) {
1042 // we're updating cache state to allow us to
1043 // satisfy the upstream request from the cache
1044 blk = handleFill(bus_pkt, blk, writebacks);
1045 satisfyCpuSideRequest(pkt, blk);
1046 } else {
1047 // we're satisfying the upstream request without
1048 // modifying cache state, e.g., a write-through
1049 pkt->makeAtomicResponse();
1050 }
1051 }
1052 delete bus_pkt;
1053 }
1054 }
1055
1056 // Note that we don't invoke the prefetcher at all in atomic mode.
1057 // It's not clear how to do it properly, particularly for
1058 // prefetchers that aggressively generate prefetch candidates and
1059 // rely on bandwidth contention to throttle them; these will tend
1060 // to pollute the cache in atomic mode since there is no bandwidth
1061 // contention. If we ever do want to enable prefetching in atomic
1062 // mode, though, this is the place to do it... see timingAccess()
1063 // for an example (though we'd want to issue the prefetch(es)
1064 // immediately rather than calling requestMemSideBus() as we do
1065 // there).
1066
1067 // Handle writebacks (from the response handling) if needed
1068 while (!writebacks.empty()){
1069 PacketPtr wbPkt = writebacks.front();
1070 memSidePort->sendAtomic(wbPkt);
1071 writebacks.pop_front();
1072 delete wbPkt;
1073 }
1074
1075 if (pkt->needsResponse()) {
1076 pkt->makeAtomicResponse();
1077 }
1078
1079 return lat * clockPeriod();
1080 }
1081
1082
1083 void
1084 Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1085 {
1086 if (system->bypassCaches()) {
1087 // Packets from the memory side are snoop request and
1088 // shouldn't happen in bypass mode.
1089 assert(fromCpuSide);
1090
1091 // The cache should be flushed if we are in cache bypass mode,
1092 // so we don't need to check if we need to update anything.
1093 memSidePort->sendFunctional(pkt);
1094 return;
1095 }
1096
1097 Addr blk_addr = blockAlign(pkt->getAddr());
1098 bool is_secure = pkt->isSecure();
1099 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1100 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1101
1102 pkt->pushLabel(name());
1103
1104 CacheBlkPrintWrapper cbpw(blk);
1105
1106 // Note that just because an L2/L3 has valid data doesn't mean an
1107 // L1 doesn't have a more up-to-date modified copy that still
1108 // needs to be found. As a result we always update the request if
1109 // we have it, but only declare it satisfied if we are the owner.
1110
1111 // see if we have data at all (owned or otherwise)
1112 bool have_data = blk && blk->isValid()
1113 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1114 blk->data);
1115
1116 // data we have is dirty if marked as such or if valid & ownership
1117 // pending due to outstanding UpgradeReq
1118 bool have_dirty =
1119 have_data && (blk->isDirty() ||
1120 (mshr && mshr->inService && mshr->isPendingDirty()));
1121
1122 bool done = have_dirty
1123 || cpuSidePort->checkFunctional(pkt)
1124 || mshrQueue.checkFunctional(pkt, blk_addr)
1125 || writeBuffer.checkFunctional(pkt, blk_addr)
1126 || memSidePort->checkFunctional(pkt);
1127
1128 DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1129 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1130 (blk && blk->isValid()) ? "valid " : "",
1131 have_data ? "data " : "", done ? "done " : "");
1132
1133 // We're leaving the cache, so pop cache->name() label
1134 pkt->popLabel();
1135
1136 if (done) {
1137 pkt->makeResponse();
1138 } else {
1139 // if it came as a request from the CPU side then make sure it
1140 // continues towards the memory side
1141 if (fromCpuSide) {
1142 memSidePort->sendFunctional(pkt);
1143 } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1144 // if it came from the memory side, it must be a snoop request
1145 // and we should only forward it if we are forwarding snoops
1146 cpuSidePort->sendFunctionalSnoop(pkt);
1147 }
1148 }
1149 }
1150
1151
1152 /////////////////////////////////////////////////////
1153 //
1154 // Response handling: responses from the memory side
1155 //
1156 /////////////////////////////////////////////////////
1157
1158
1159 void
1160 Cache::recvTimingResp(PacketPtr pkt)
1161 {
1162 assert(pkt->isResponse());
1163
1164 // all header delay should be paid for by the crossbar, unless
1165 // this is a prefetch response from above
1166 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1167 "%s saw a non-zero packet delay\n", name());
1168
1169 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1170 bool is_error = pkt->isError();
1171
1172 assert(mshr);
1173
1174 if (is_error) {
1175 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1176 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1177 pkt->cmdString());
1178 }
1179
1180 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1181 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1182 pkt->isSecure() ? "s" : "ns");
1183
1184 MSHRQueue *mq = mshr->queue;
1185 bool wasFull = mq->isFull();
1186
1187 if (mshr == noTargetMSHR) {
1188 // we always clear at least one target
1189 clearBlocked(Blocked_NoTargets);
1190 noTargetMSHR = NULL;
1191 }
1192
1193 // Initial target is used just for stats
1194 MSHR::Target *initial_tgt = mshr->getTarget();
1195 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1196 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1197 Tick miss_latency = curTick() - initial_tgt->recvTime;
1198 PacketList writebacks;
1199 // We need forward_time here because we have a call of
1200 // allocateWriteBuffer() that need this parameter to specify the
1201 // time to request the bus. In this case we use forward latency
1202 // because there is a writeback. We pay also here for headerDelay
1203 // that is charged of bus latencies if the packet comes from the
1204 // bus.
1205 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1206
1207 if (pkt->req->isUncacheable()) {
1208 assert(pkt->req->masterId() < system->maxMasters());
1209 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1210 miss_latency;
1211 } else {
1212 assert(pkt->req->masterId() < system->maxMasters());
1213 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1214 miss_latency;
1215 }
1216
1217 bool is_fill = !mshr->isForward &&
1218 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1219
1220 if (is_fill && !is_error) {
1221 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1222 pkt->getAddr());
1223
1224 // give mshr a chance to do some dirty work
1225 mshr->handleFill(pkt, blk);
1226
1227 blk = handleFill(pkt, blk, writebacks);
1228 assert(blk != NULL);
1229 }
1230
1231 // allow invalidation responses originating from write-line
1232 // requests to be discarded
1233 bool discard_invalidate = false;
1234
1235 // First offset for critical word first calculations
1236 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1237
1238 while (mshr->hasTargets()) {
1239 MSHR::Target *target = mshr->getTarget();
1240 Packet *tgt_pkt = target->pkt;
1241
1242 switch (target->source) {
1243 case MSHR::Target::FromCPU:
1244 Tick completion_time;
1245 // Here we charge on completion_time the delay of the xbar if the
1246 // packet comes from it, charged on headerDelay.
1247 completion_time = pkt->headerDelay;
1248
1249 // Software prefetch handling for cache closest to core
1250 if (tgt_pkt->cmd.isSWPrefetch()) {
1251 // a software prefetch would have already been ack'd immediately
1252 // with dummy data so the core would be able to retire it.
1253 // this request completes right here, so we deallocate it.
1254 delete tgt_pkt->req;
1255 delete tgt_pkt;
1256 break; // skip response
1257 }
1258
1259 // unlike the other packet flows, where data is found in other
1260 // caches or memory and brought back, write-line requests always
1261 // have the data right away, so the above check for "is fill?"
1262 // cannot actually be determined until examining the stored MSHR
1263 // state. We "catch up" with that logic here, which is duplicated
1264 // from above.
1265 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1266 assert(!is_error);
1267
1268 // NB: we use the original packet here and not the response!
1269 mshr->handleFill(tgt_pkt, blk);
1270 blk = handleFill(tgt_pkt, blk, writebacks);
1271 assert(blk != NULL);
1272
1273 // treat as a fill, and discard the invalidation
1274 // response
1275 is_fill = true;
1276 discard_invalidate = true;
1277 }
1278
1279 if (is_fill) {
1280 satisfyCpuSideRequest(tgt_pkt, blk,
1281 true, mshr->hasPostDowngrade());
1282
1283 // How many bytes past the first request is this one
1284 int transfer_offset =
1285 tgt_pkt->getOffset(blkSize) - initial_offset;
1286 if (transfer_offset < 0) {
1287 transfer_offset += blkSize;
1288 }
1289
1290 // If not critical word (offset) return payloadDelay.
1291 // responseLatency is the latency of the return path
1292 // from lower level caches/memory to an upper level cache or
1293 // the core.
1294 completion_time += clockEdge(responseLatency) +
1295 (transfer_offset ? pkt->payloadDelay : 0);
1296
1297 assert(!tgt_pkt->req->isUncacheable());
1298
1299 assert(tgt_pkt->req->masterId() < system->maxMasters());
1300 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1301 completion_time - target->recvTime;
1302 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1303 // failed StoreCond upgrade
1304 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1305 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1306 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1307 // responseLatency is the latency of the return path
1308 // from lower level caches/memory to an upper level cache or
1309 // the core.
1310 completion_time += clockEdge(responseLatency) +
1311 pkt->payloadDelay;
1312 tgt_pkt->req->setExtraData(0);
1313 } else {
1314 // not a cache fill, just forwarding response
1315 // responseLatency is the latency of the return path
1316 // from lower level cahces/memory to the core.
1317 completion_time += clockEdge(responseLatency) +
1318 pkt->payloadDelay;
1319 if (pkt->isRead() && !is_error) {
1320 // sanity check
1321 assert(pkt->getAddr() == tgt_pkt->getAddr());
1322 assert(pkt->getSize() >= tgt_pkt->getSize());
1323
1324 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1325 }
1326 }
1327 tgt_pkt->makeTimingResponse();
1328 // if this packet is an error copy that to the new packet
1329 if (is_error)
1330 tgt_pkt->copyError(pkt);
1331 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1332 (pkt->isInvalidate() || mshr->hasPostInvalidate())) {
1333 // If intermediate cache got ReadRespWithInvalidate,
1334 // propagate that. Response should not have
1335 // isInvalidate() set otherwise.
1336 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1337 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1338 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1339 }
1340 // Reset the bus additional time as it is now accounted for
1341 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1342 cpuSidePort->schedTimingResp(tgt_pkt, completion_time);
1343 break;
1344
1345 case MSHR::Target::FromPrefetcher:
1346 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1347 if (blk)
1348 blk->status |= BlkHWPrefetched;
1349 delete tgt_pkt->req;
1350 delete tgt_pkt;
1351 break;
1352
1353 case MSHR::Target::FromSnoop:
1354 // I don't believe that a snoop can be in an error state
1355 assert(!is_error);
1356 // response to snoop request
1357 DPRINTF(Cache, "processing deferred snoop...\n");
1358 assert(!(pkt->isInvalidate() && !mshr->hasPostInvalidate()));
1359 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1360 break;
1361
1362 default:
1363 panic("Illegal target->source enum %d\n", target->source);
1364 }
1365
1366 mshr->popTarget();
1367 }
1368
1369 if (blk && blk->isValid()) {
1370 // an invalidate response stemming from a write line request
1371 // should not invalidate the block, so check if the
1372 // invalidation should be discarded
1373 if ((pkt->isInvalidate() || mshr->hasPostInvalidate()) &&
1374 !discard_invalidate) {
1375 assert(blk != tempBlock);
1376 tags->invalidate(blk);
1377 blk->invalidate();
1378 } else if (mshr->hasPostDowngrade()) {
1379 blk->status &= ~BlkWritable;
1380 }
1381 }
1382
1383 if (mshr->promoteDeferredTargets()) {
1384 // avoid later read getting stale data while write miss is
1385 // outstanding.. see comment in timingAccess()
1386 if (blk) {
1387 blk->status &= ~BlkReadable;
1388 }
1389 mq = mshr->queue;
1390 mq->markPending(mshr);
1391 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1392 } else {
1393 mq->deallocate(mshr);
1394 if (wasFull && !mq->isFull()) {
1395 clearBlocked((BlockedCause)mq->index);
1396 }
1397
1398 // Request the bus for a prefetch if this deallocation freed enough
1399 // MSHRs for a prefetch to take place
1400 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1401 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1402 clockEdge());
1403 if (next_pf_time != MaxTick)
1404 schedMemSideSendEvent(next_pf_time);
1405 }
1406 }
1407 // reset the xbar additional timinig as it is now accounted for
1408 pkt->headerDelay = pkt->payloadDelay = 0;
1409
1410 // copy writebacks to write buffer
1411 doWritebacks(writebacks, forward_time);
1412
1413 // if we used temp block, check to see if its valid and then clear it out
1414 if (blk == tempBlock && tempBlock->isValid()) {
1415 // We use forwardLatency here because we are copying
1416 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1417 // allocate an internal buffer and to schedule an event to the
1418 // queued port.
1419 if (blk->isDirty()) {
1420 PacketPtr wbPkt = writebackBlk(blk);
1421 allocateWriteBuffer(wbPkt, forward_time);
1422 // Set BLOCK_CACHED flag if cached above.
1423 if (isCachedAbove(wbPkt))
1424 wbPkt->setBlockCached();
1425 } else {
1426 PacketPtr wcPkt = cleanEvictBlk(blk);
1427 // Check to see if block is cached above. If not allocate
1428 // write buffer
1429 if (isCachedAbove(wcPkt))
1430 delete wcPkt;
1431 else
1432 allocateWriteBuffer(wcPkt, forward_time);
1433 }
1434 blk->invalidate();
1435 }
1436
1437 DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1438 pkt->cmdString(), pkt->getAddr());
1439 delete pkt;
1440 }
1441
1442 PacketPtr
1443 Cache::writebackBlk(CacheBlk *blk)
1444 {
1445 chatty_assert(!isReadOnly, "Writeback from read-only cache");
1446 assert(blk && blk->isValid() && blk->isDirty());
1447
1448 writebacks[Request::wbMasterId]++;
1449
1450 Request *writebackReq =
1451 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1452 Request::wbMasterId);
1453 if (blk->isSecure())
1454 writebackReq->setFlags(Request::SECURE);
1455
1456 writebackReq->taskId(blk->task_id);
1457 blk->task_id= ContextSwitchTaskId::Unknown;
1458 blk->tickInserted = curTick();
1459
1460 PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
1461 if (blk->isWritable()) {
1462 // not asserting shared means we pass the block in modified
1463 // state, mark our own block non-writeable
1464 blk->status &= ~BlkWritable;
1465 } else {
1466 // we are in the owned state, tell the receiver
1467 writeback->assertShared();
1468 }
1469
1470 writeback->allocate();
1471 std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
1472
1473 blk->status &= ~BlkDirty;
1474 return writeback;
1475 }
1476
1477 PacketPtr
1478 Cache::cleanEvictBlk(CacheBlk *blk)
1479 {
1480 assert(blk && blk->isValid() && !blk->isDirty());
1481 // Creating a zero sized write, a message to the snoop filter
1482 Request *req =
1483 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1484 Request::wbMasterId);
1485 if (blk->isSecure())
1486 req->setFlags(Request::SECURE);
1487
1488 req->taskId(blk->task_id);
1489 blk->task_id = ContextSwitchTaskId::Unknown;
1490 blk->tickInserted = curTick();
1491
1492 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1493 pkt->allocate();
1494 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1495 pkt->req->isInstFetch() ? " (ifetch)" : "",
1496 pkt->getAddr());
1497
1498 return pkt;
1499 }
1500
1501 void
1502 Cache::memWriteback()
1503 {
1504 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1505 tags->forEachBlk(visitor);
1506 }
1507
1508 void
1509 Cache::memInvalidate()
1510 {
1511 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1512 tags->forEachBlk(visitor);
1513 }
1514
1515 bool
1516 Cache::isDirty() const
1517 {
1518 CacheBlkIsDirtyVisitor visitor;
1519 tags->forEachBlk(visitor);
1520
1521 return visitor.isDirty();
1522 }
1523
1524 bool
1525 Cache::writebackVisitor(CacheBlk &blk)
1526 {
1527 if (blk.isDirty()) {
1528 assert(blk.isValid());
1529
1530 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1531 blkSize, 0, Request::funcMasterId);
1532 request.taskId(blk.task_id);
1533
1534 Packet packet(&request, MemCmd::WriteReq);
1535 packet.dataStatic(blk.data);
1536
1537 memSidePort->sendFunctional(&packet);
1538
1539 blk.status &= ~BlkDirty;
1540 }
1541
1542 return true;
1543 }
1544
1545 bool
1546 Cache::invalidateVisitor(CacheBlk &blk)
1547 {
1548
1549 if (blk.isDirty())
1550 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1551
1552 if (blk.isValid()) {
1553 assert(!blk.isDirty());
1554 tags->invalidate(&blk);
1555 blk.invalidate();
1556 }
1557
1558 return true;
1559 }
1560
1561 CacheBlk*
1562 Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1563 {
1564 CacheBlk *blk = tags->findVictim(addr);
1565
1566 // It is valid to return NULL if there is no victim
1567 if (!blk)
1568 return nullptr;
1569
1570 if (blk->isValid()) {
1571 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1572 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1573 if (repl_mshr) {
1574 // must be an outstanding upgrade request
1575 // on a block we're about to replace...
1576 assert(!blk->isWritable() || blk->isDirty());
1577 assert(repl_mshr->needsExclusive());
1578 // too hard to replace block with transient state
1579 // allocation failed, block not inserted
1580 return NULL;
1581 } else {
1582 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1583 repl_addr, blk->isSecure() ? "s" : "ns",
1584 addr, is_secure ? "s" : "ns",
1585 blk->isDirty() ? "writeback" : "clean");
1586
1587 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1588 // when pushing this writeback list into the write buffer.
1589 if (blk->isDirty()) {
1590 // Save writeback packet for handling by caller
1591 writebacks.push_back(writebackBlk(blk));
1592 } else {
1593 writebacks.push_back(cleanEvictBlk(blk));
1594 }
1595 }
1596 }
1597
1598 return blk;
1599 }
1600
1601
1602 // Note that the reason we return a list of writebacks rather than
1603 // inserting them directly in the write buffer is that this function
1604 // is called by both atomic and timing-mode accesses, and in atomic
1605 // mode we don't mess with the write buffer (we just perform the
1606 // writebacks atomically once the original request is complete).
1607 CacheBlk*
1608 Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks)
1609 {
1610 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1611 Addr addr = pkt->getAddr();
1612 bool is_secure = pkt->isSecure();
1613 #if TRACING_ON
1614 CacheBlk::State old_state = blk ? blk->status : 0;
1615 #endif
1616
1617 // When handling a fill, discard any CleanEvicts for the
1618 // same address in write buffer.
1619 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1620 std::vector<MSHR *> M5_VAR_USED wbs;
1621 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1622
1623 if (blk == NULL) {
1624 // better have read new data...
1625 assert(pkt->hasData());
1626
1627 // only read responses and write-line requests have data;
1628 // note that we don't write the data here for write-line - that
1629 // happens in the subsequent satisfyCpuSideRequest.
1630 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1631
1632 // need to do a replacement
1633 blk = allocateBlock(addr, is_secure, writebacks);
1634 if (blk == NULL) {
1635 // No replaceable block... just use temporary storage to
1636 // complete the current request and then get rid of it
1637 assert(!tempBlock->isValid());
1638 blk = tempBlock;
1639 tempBlock->set = tags->extractSet(addr);
1640 tempBlock->tag = tags->extractTag(addr);
1641 // @todo: set security state as well...
1642 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1643 is_secure ? "s" : "ns");
1644 } else {
1645 tags->insertBlock(pkt, blk);
1646 }
1647
1648 // we should never be overwriting a valid block
1649 assert(!blk->isValid());
1650 } else {
1651 // existing block... probably an upgrade
1652 assert(blk->tag == tags->extractTag(addr));
1653 // either we're getting new data or the block should already be valid
1654 assert(pkt->hasData() || blk->isValid());
1655 // don't clear block status... if block is already dirty we
1656 // don't want to lose that
1657 }
1658
1659 if (is_secure)
1660 blk->status |= BlkSecure;
1661 blk->status |= BlkValid | BlkReadable;
1662
1663 if (!pkt->sharedAsserted()) {
1664 // we could get non-shared responses from memory (rather than
1665 // a cache) even in a read-only cache, note that we set this
1666 // bit even for a read-only cache as we use it to represent
1667 // the exclusive state
1668 blk->status |= BlkWritable;
1669
1670 // If we got this via cache-to-cache transfer (i.e., from a
1671 // cache that was an owner) and took away that owner's copy,
1672 // then we need to write it back. Normally this happens
1673 // anyway as a side effect of getting a copy to write it, but
1674 // there are cases (such as failed store conditionals or
1675 // compare-and-swaps) where we'll demand an exclusive copy but
1676 // end up not writing it.
1677 if (pkt->memInhibitAsserted()) {
1678 blk->status |= BlkDirty;
1679
1680 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1681 "in read-only cache %s\n", name());
1682 }
1683 }
1684
1685 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1686 addr, is_secure ? "s" : "ns", old_state, blk->print());
1687
1688 // if we got new data, copy it in (checking for a read response
1689 // and a response that has data is the same in the end)
1690 if (pkt->isRead()) {
1691 // sanity checks
1692 assert(pkt->hasData());
1693 assert(pkt->getSize() == blkSize);
1694
1695 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1696 }
1697 // We pay for fillLatency here.
1698 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1699 pkt->payloadDelay;
1700
1701 return blk;
1702 }
1703
1704
1705 /////////////////////////////////////////////////////
1706 //
1707 // Snoop path: requests coming in from the memory side
1708 //
1709 /////////////////////////////////////////////////////
1710
1711 void
1712 Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1713 bool already_copied, bool pending_inval)
1714 {
1715 // sanity check
1716 assert(req_pkt->isRequest());
1717 assert(req_pkt->needsResponse());
1718
1719 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1720 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1721 // timing-mode snoop responses require a new packet, unless we
1722 // already made a copy...
1723 PacketPtr pkt = req_pkt;
1724 if (!already_copied)
1725 // do not clear flags, and allocate space for data if the
1726 // packet needs it (the only packets that carry data are read
1727 // responses)
1728 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1729
1730 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1731 pkt->sharedAsserted());
1732 pkt->makeTimingResponse();
1733 if (pkt->isRead()) {
1734 pkt->setDataFromBlock(blk_data, blkSize);
1735 }
1736 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1737 // Assume we defer a response to a read from a far-away cache
1738 // A, then later defer a ReadExcl from a cache B on the same
1739 // bus as us. We'll assert MemInhibit in both cases, but in
1740 // the latter case MemInhibit will keep the invalidation from
1741 // reaching cache A. This special response tells cache A that
1742 // it gets the block to satisfy its read, but must immediately
1743 // invalidate it.
1744 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1745 }
1746 // Here we consider forward_time, paying for just forward latency and
1747 // also charging the delay provided by the xbar.
1748 // forward_time is used as send_time in next allocateWriteBuffer().
1749 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1750 // Here we reset the timing of the packet.
1751 pkt->headerDelay = pkt->payloadDelay = 0;
1752 DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1753 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1754 forward_time);
1755 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1756 }
1757
1758 void
1759 Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1760 bool is_deferred, bool pending_inval)
1761 {
1762 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1763 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1764 // deferred snoops can only happen in timing mode
1765 assert(!(is_deferred && !is_timing));
1766 // pending_inval only makes sense on deferred snoops
1767 assert(!(pending_inval && !is_deferred));
1768 assert(pkt->isRequest());
1769
1770 // the packet may get modified if we or a forwarded snooper
1771 // responds in atomic mode, so remember a few things about the
1772 // original packet up front
1773 bool invalidate = pkt->isInvalidate();
1774 bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
1775
1776 if (forwardSnoops) {
1777 // first propagate snoop upward to see if anyone above us wants to
1778 // handle it. save & restore packet src since it will get
1779 // rewritten to be relative to cpu-side bus (if any)
1780 bool alreadyResponded = pkt->memInhibitAsserted();
1781 if (is_timing) {
1782 // copy the packet so that we can clear any flags before
1783 // forwarding it upwards, we also allocate data (passing
1784 // the pointer along in case of static data), in case
1785 // there is a snoop hit in upper levels
1786 Packet snoopPkt(pkt, true, true);
1787 snoopPkt.setExpressSnoop();
1788 snoopPkt.pushSenderState(new ForwardResponseRecord());
1789 // the snoop packet does not need to wait any additional
1790 // time
1791 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1792 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1793 if (snoopPkt.memInhibitAsserted()) {
1794 // cache-to-cache response from some upper cache
1795 assert(!alreadyResponded);
1796 pkt->assertMemInhibit();
1797 } else {
1798 // no cache (or anyone else for that matter) will
1799 // respond, so delete the ForwardResponseRecord here
1800 delete snoopPkt.popSenderState();
1801 }
1802 if (snoopPkt.sharedAsserted()) {
1803 pkt->assertShared();
1804 }
1805 // If this request is a prefetch or clean evict and an upper level
1806 // signals block present, make sure to propagate the block
1807 // presence to the requester.
1808 if (snoopPkt.isBlockCached()) {
1809 pkt->setBlockCached();
1810 }
1811 } else {
1812 cpuSidePort->sendAtomicSnoop(pkt);
1813 if (!alreadyResponded && pkt->memInhibitAsserted()) {
1814 // cache-to-cache response from some upper cache:
1815 // forward response to original requester
1816 assert(pkt->isResponse());
1817 }
1818 }
1819 }
1820
1821 if (!blk || !blk->isValid()) {
1822 DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1823 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1824 return;
1825 } else {
1826 DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1827 "old state is %s\n", __func__, pkt->cmdString(),
1828 pkt->getAddr(), pkt->getSize(), blk->print());
1829 }
1830
1831 chatty_assert(!(isReadOnly && blk->isDirty()),
1832 "Should never have a dirty block in a read-only cache %s\n",
1833 name());
1834
1835 // We may end up modifying both the block state and the packet (if
1836 // we respond in atomic mode), so just figure out what to do now
1837 // and then do it later. If we find dirty data while snooping for
1838 // an invalidate, we don't need to send a response. The
1839 // invalidation itself is taken care of below.
1840 bool respond = blk->isDirty() && pkt->needsResponse() &&
1841 pkt->cmd != MemCmd::InvalidateReq;
1842 bool have_exclusive = blk->isWritable();
1843
1844 // Invalidate any prefetch's from below that would strip write permissions
1845 // MemCmd::HardPFReq is only observed by upstream caches. After missing
1846 // above and in it's own cache, a new MemCmd::ReadReq is created that
1847 // downstream caches observe.
1848 if (pkt->mustCheckAbove()) {
1849 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1850 " lower cache\n", pkt->getAddr(), pkt->cmdString());
1851 pkt->setBlockCached();
1852 return;
1853 }
1854
1855 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1856 assert(!needs_exclusive);
1857 pkt->assertShared();
1858 int bits_to_clear = BlkWritable;
1859 const bool haveOwnershipState = true; // for now
1860 if (!haveOwnershipState) {
1861 // if we don't support pure ownership (dirty && !writable),
1862 // have to clear dirty bit here, assume memory snarfs data
1863 // on cache-to-cache xfer
1864 bits_to_clear |= BlkDirty;
1865 }
1866 blk->status &= ~bits_to_clear;
1867 }
1868
1869 if (respond) {
1870 // prevent anyone else from responding, cache as well as
1871 // memory, and also prevent any memory from even seeing the
1872 // request (with current inhibited semantics), note that this
1873 // applies both to reads and writes and that for writes it
1874 // works thanks to the fact that we still have dirty data and
1875 // will write it back at a later point
1876 pkt->assertMemInhibit();
1877 if (have_exclusive) {
1878 // in the case of an uncacheable request there is no need
1879 // to set the exclusive flag, but since the recipient does
1880 // not care there is no harm in doing so
1881 pkt->setSupplyExclusive();
1882 }
1883 if (is_timing) {
1884 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1885 } else {
1886 pkt->makeAtomicResponse();
1887 pkt->setDataFromBlock(blk->data, blkSize);
1888 }
1889 }
1890
1891 if (!respond && is_timing && is_deferred) {
1892 // if it's a deferred timing snoop then we've made a copy of
1893 // both the request and the packet, and so if we're not using
1894 // those copies to respond and delete them here
1895 DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
1896 pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
1897
1898 // the packets needs a response (just not from us), so we also
1899 // need to delete the request and not rely on the packet
1900 // destructor
1901 assert(pkt->needsResponse());
1902 delete pkt->req;
1903 delete pkt;
1904 }
1905
1906 // Do this last in case it deallocates block data or something
1907 // like that
1908 if (invalidate) {
1909 if (blk != tempBlock)
1910 tags->invalidate(blk);
1911 blk->invalidate();
1912 }
1913
1914 DPRINTF(Cache, "new state is %s\n", blk->print());
1915 }
1916
1917
1918 void
1919 Cache::recvTimingSnoopReq(PacketPtr pkt)
1920 {
1921 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1922 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1923
1924 // Snoops shouldn't happen when bypassing caches
1925 assert(!system->bypassCaches());
1926
1927 // no need to snoop writebacks or requests that are not in range
1928 if (!inRange(pkt->getAddr())) {
1929 return;
1930 }
1931
1932 bool is_secure = pkt->isSecure();
1933 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1934
1935 Addr blk_addr = blockAlign(pkt->getAddr());
1936 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1937
1938 // Inform request(Prefetch, CleanEvict or Writeback) from below of
1939 // MSHR hit, set setBlockCached.
1940 if (mshr && pkt->mustCheckAbove()) {
1941 DPRINTF(Cache, "Setting block cached for %s from"
1942 "lower cache on mshr hit %#x\n",
1943 pkt->cmdString(), pkt->getAddr());
1944 pkt->setBlockCached();
1945 return;
1946 }
1947
1948 // Let the MSHR itself track the snoop and decide whether we want
1949 // to go ahead and do the regular cache snoop
1950 if (mshr && mshr->handleSnoop(pkt, order++)) {
1951 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
1952 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
1953 mshr->print());
1954
1955 if (mshr->getNumTargets() > numTarget)
1956 warn("allocating bonus target for snoop"); //handle later
1957 return;
1958 }
1959
1960 //We also need to check the writeback buffers and handle those
1961 std::vector<MSHR *> writebacks;
1962 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
1963 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
1964 pkt->getAddr(), is_secure ? "s" : "ns");
1965
1966 // Look through writebacks for any cachable writes.
1967 // We should only ever find a single match
1968 assert(writebacks.size() == 1);
1969 MSHR *wb_entry = writebacks[0];
1970 // Expect to see only Writebacks and/or CleanEvicts here, both of
1971 // which should not be generated for uncacheable data.
1972 assert(!wb_entry->isUncacheable());
1973 // There should only be a single request responsible for generating
1974 // Writebacks/CleanEvicts.
1975 assert(wb_entry->getNumTargets() == 1);
1976 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
1977 assert(wb_pkt->evictingBlock());
1978
1979 if (pkt->evictingBlock()) {
1980 // if the block is found in the write queue, set the BLOCK_CACHED
1981 // flag for Writeback/CleanEvict snoop. On return the snoop will
1982 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
1983 // any CleanEvicts from travelling down the memory hierarchy.
1984 pkt->setBlockCached();
1985 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
1986 " %#x\n", pkt->cmdString(), pkt->getAddr());
1987 return;
1988 }
1989
1990 if (wb_pkt->cmd == MemCmd::Writeback) {
1991 assert(!pkt->memInhibitAsserted());
1992 pkt->assertMemInhibit();
1993 if (!pkt->needsExclusive()) {
1994 pkt->assertShared();
1995 // the writeback is no longer passing exclusivity (the
1996 // receiving cache should consider the block owned
1997 // rather than modified)
1998 wb_pkt->assertShared();
1999 } else {
2000 // if we're not asserting the shared line, we need to
2001 // invalidate our copy. we'll do that below as long as
2002 // the packet's invalidate flag is set...
2003 assert(pkt->isInvalidate());
2004 }
2005 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2006 false, false);
2007 } else {
2008 assert(wb_pkt->cmd == MemCmd::CleanEvict);
2009 // The cache technically holds the block until the
2010 // corresponding CleanEvict message reaches the crossbar
2011 // below. Therefore when a snoop encounters a CleanEvict
2012 // message we must set assertShared (just like when it
2013 // encounters a Writeback) to avoid the snoop filter
2014 // prematurely clearing the holder bit in the crossbar
2015 // below
2016 if (!pkt->needsExclusive())
2017 pkt->assertShared();
2018 else
2019 assert(pkt->isInvalidate());
2020 }
2021
2022 if (pkt->isInvalidate()) {
2023 // Invalidation trumps our writeback... discard here
2024 // Note: markInService will remove entry from writeback buffer.
2025 markInService(wb_entry, false);
2026 delete wb_pkt;
2027 }
2028 }
2029
2030 // If this was a shared writeback, there may still be
2031 // other shared copies above that require invalidation.
2032 // We could be more selective and return here if the
2033 // request is non-exclusive or if the writeback is
2034 // exclusive.
2035 handleSnoop(pkt, blk, true, false, false);
2036 }
2037
2038 bool
2039 Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2040 {
2041 // Express snoop responses from master to slave, e.g., from L1 to L2
2042 cache->recvTimingSnoopResp(pkt);
2043 return true;
2044 }
2045
2046 Tick
2047 Cache::recvAtomicSnoop(PacketPtr pkt)
2048 {
2049 // Snoops shouldn't happen when bypassing caches
2050 assert(!system->bypassCaches());
2051
2052 // no need to snoop writebacks or requests that are not in range. In
2053 // atomic we have no Writebacks/CleanEvicts queued and no prefetches,
2054 // hence there is no need to snoop upwards and determine if they are
2055 // present above.
2056 if (pkt->evictingBlock() || !inRange(pkt->getAddr())) {
2057 return 0;
2058 }
2059
2060 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2061 handleSnoop(pkt, blk, false, false, false);
2062 // We consider forwardLatency here because a snoop occurs in atomic mode
2063 return forwardLatency * clockPeriod();
2064 }
2065
2066
2067 MSHR *
2068 Cache::getNextMSHR()
2069 {
2070 // Check both MSHR queue and write buffer for potential requests,
2071 // note that null does not mean there is no request, it could
2072 // simply be that it is not ready
2073 MSHR *miss_mshr = mshrQueue.getNextMSHR();
2074 MSHR *write_mshr = writeBuffer.getNextMSHR();
2075
2076 // If we got a write buffer request ready, first priority is a
2077 // full write buffer, otherwhise we favour the miss requests
2078 if (write_mshr &&
2079 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2080 !miss_mshr)) {
2081 // need to search MSHR queue for conflicting earlier miss.
2082 MSHR *conflict_mshr =
2083 mshrQueue.findPending(write_mshr->blkAddr,
2084 write_mshr->isSecure);
2085
2086 if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2087 // Service misses in order until conflict is cleared.
2088 return conflict_mshr;
2089
2090 // @todo Note that we ignore the ready time of the conflict here
2091 }
2092
2093 // No conflicts; issue write
2094 return write_mshr;
2095 } else if (miss_mshr) {
2096 // need to check for conflicting earlier writeback
2097 MSHR *conflict_mshr =
2098 writeBuffer.findPending(miss_mshr->blkAddr,
2099 miss_mshr->isSecure);
2100 if (conflict_mshr) {
2101 // not sure why we don't check order here... it was in the
2102 // original code but commented out.
2103
2104 // The only way this happens is if we are
2105 // doing a write and we didn't have permissions
2106 // then subsequently saw a writeback (owned got evicted)
2107 // We need to make sure to perform the writeback first
2108 // To preserve the dirty data, then we can issue the write
2109
2110 // should we return write_mshr here instead? I.e. do we
2111 // have to flush writes in order? I don't think so... not
2112 // for Alpha anyway. Maybe for x86?
2113 return conflict_mshr;
2114
2115 // @todo Note that we ignore the ready time of the conflict here
2116 }
2117
2118 // No conflicts; issue read
2119 return miss_mshr;
2120 }
2121
2122 // fall through... no pending requests. Try a prefetch.
2123 assert(!miss_mshr && !write_mshr);
2124 if (prefetcher && mshrQueue.canPrefetch()) {
2125 // If we have a miss queue slot, we can try a prefetch
2126 PacketPtr pkt = prefetcher->getPacket();
2127 if (pkt) {
2128 Addr pf_addr = blockAlign(pkt->getAddr());
2129 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2130 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2131 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2132 // Update statistic on number of prefetches issued
2133 // (hwpf_mshr_misses)
2134 assert(pkt->req->masterId() < system->maxMasters());
2135 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2136
2137 // allocate an MSHR and return it, note
2138 // that we send the packet straight away, so do not
2139 // schedule the send
2140 return allocateMissBuffer(pkt, curTick(), false);
2141 } else {
2142 // free the request and packet
2143 delete pkt->req;
2144 delete pkt;
2145 }
2146 }
2147 }
2148
2149 return NULL;
2150 }
2151
2152 bool
2153 Cache::isCachedAbove(const PacketPtr pkt) const
2154 {
2155 if (!forwardSnoops)
2156 return false;
2157 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2158 // Writeback snoops into upper level caches to check for copies of the
2159 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2160 // packet, the cache can inform the crossbar below of presence or absence
2161 // of the block.
2162
2163 Packet snoop_pkt(pkt, true, false);
2164 snoop_pkt.setExpressSnoop();
2165 // Assert that packet is either Writeback or CleanEvict and not a prefetch
2166 // request because prefetch requests need an MSHR and may generate a snoop
2167 // response.
2168 assert(pkt->evictingBlock());
2169 snoop_pkt.senderState = NULL;
2170 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2171 // Writeback/CleanEvict snoops do not generate a separate snoop response.
2172 assert(!(snoop_pkt.memInhibitAsserted()));
2173 return snoop_pkt.isBlockCached();
2174 }
2175
2176 PacketPtr
2177 Cache::getTimingPacket()
2178 {
2179 MSHR *mshr = getNextMSHR();
2180
2181 if (mshr == NULL) {
2182 return NULL;
2183 }
2184
2185 // use request from 1st target
2186 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2187 PacketPtr pkt = NULL;
2188
2189 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2190 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2191
2192 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2193
2194 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2195 // We need to check the caches above us to verify that
2196 // they don't have a copy of this block in the dirty state
2197 // at the moment. Without this check we could get a stale
2198 // copy from memory that might get used in place of the
2199 // dirty one.
2200 Packet snoop_pkt(tgt_pkt, true, false);
2201 snoop_pkt.setExpressSnoop();
2202 snoop_pkt.senderState = mshr;
2203 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2204
2205 // Check to see if the prefetch was squashed by an upper cache (to
2206 // prevent us from grabbing the line) or if a Check to see if a
2207 // writeback arrived between the time the prefetch was placed in
2208 // the MSHRs and when it was selected to be sent or if the
2209 // prefetch was squashed by an upper cache.
2210
2211 // It is important to check memInhibitAsserted before
2212 // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
2213 // will be sending a response which will arrive at the MSHR
2214 // allocated ofr this request. Checking the prefetchSquash first
2215 // may result in the MSHR being prematurely deallocated.
2216
2217 if (snoop_pkt.memInhibitAsserted()) {
2218 // If we are getting a non-shared response it is dirty
2219 bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
2220 markInService(mshr, pending_dirty_resp);
2221 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2222 " %#x (%s) hit\n",
2223 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2224 return NULL;
2225 }
2226
2227 if (snoop_pkt.isBlockCached() || blk != NULL) {
2228 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2229 "Deallocating mshr target %#x.\n",
2230 mshr->blkAddr);
2231
2232 // Deallocate the mshr target
2233 if (tgt_pkt->cmd != MemCmd::Writeback) {
2234 if (mshr->queue->forceDeallocateTarget(mshr)) {
2235 // Clear block if this deallocation resulted freed an
2236 // mshr when all had previously been utilized
2237 clearBlocked((BlockedCause)(mshr->queue->index));
2238 }
2239 return NULL;
2240 } else {
2241 // If this is a Writeback, and the snoops indicate that the blk
2242 // is cached above, set the BLOCK_CACHED flag in the Writeback
2243 // packet, so that it does not reset the bits corresponding to
2244 // this block in the snoop filter below.
2245 tgt_pkt->setBlockCached();
2246 }
2247 }
2248 }
2249
2250 if (mshr->isForwardNoResponse()) {
2251 // no response expected, just forward packet as it is
2252 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2253 pkt = tgt_pkt;
2254 } else {
2255 pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
2256
2257 mshr->isForward = (pkt == NULL);
2258
2259 if (mshr->isForward) {
2260 // not a cache block request, but a response is expected
2261 // make copy of current packet to forward, keep current
2262 // copy for response handling
2263 pkt = new Packet(tgt_pkt, false, true);
2264 if (pkt->isWrite()) {
2265 pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2266 }
2267 }
2268 }
2269
2270 assert(pkt != NULL);
2271 pkt->senderState = mshr;
2272 return pkt;
2273 }
2274
2275
2276 Tick
2277 Cache::nextMSHRReadyTime() const
2278 {
2279 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2280 writeBuffer.nextMSHRReadyTime());
2281
2282 // Don't signal prefetch ready time if no MSHRs available
2283 // Will signal once enoguh MSHRs are deallocated
2284 if (prefetcher && mshrQueue.canPrefetch()) {
2285 nextReady = std::min(nextReady,
2286 prefetcher->nextPrefetchReadyTime());
2287 }
2288
2289 return nextReady;
2290 }
2291
2292 void
2293 Cache::serialize(CheckpointOut &cp) const
2294 {
2295 bool dirty(isDirty());
2296
2297 if (dirty) {
2298 warn("*** The cache still contains dirty data. ***\n");
2299 warn(" Make sure to drain the system using the correct flags.\n");
2300 warn(" This checkpoint will not restore correctly and dirty data in "
2301 "the cache will be lost!\n");
2302 }
2303
2304 // Since we don't checkpoint the data in the cache, any dirty data
2305 // will be lost when restoring from a checkpoint of a system that
2306 // wasn't drained properly. Flag the checkpoint as invalid if the
2307 // cache contains dirty data.
2308 bool bad_checkpoint(dirty);
2309 SERIALIZE_SCALAR(bad_checkpoint);
2310 }
2311
2312 void
2313 Cache::unserialize(CheckpointIn &cp)
2314 {
2315 bool bad_checkpoint;
2316 UNSERIALIZE_SCALAR(bad_checkpoint);
2317 if (bad_checkpoint) {
2318 fatal("Restoring from checkpoints with dirty caches is not supported "
2319 "in the classic memory system. Please remove any caches or "
2320 " drain them properly before taking checkpoints.\n");
2321 }
2322 }
2323
2324 ///////////////
2325 //
2326 // CpuSidePort
2327 //
2328 ///////////////
2329
2330 AddrRangeList
2331 Cache::CpuSidePort::getAddrRanges() const
2332 {
2333 return cache->getAddrRanges();
2334 }
2335
2336 bool
2337 Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2338 {
2339 assert(!cache->system->bypassCaches());
2340
2341 bool success = false;
2342
2343 // always let inhibited requests through, even if blocked,
2344 // ultimately we should check if this is an express snoop, but at
2345 // the moment that flag is only set in the cache itself
2346 if (pkt->memInhibitAsserted()) {
2347 // do not change the current retry state
2348 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2349 assert(bypass_success);
2350 return true;
2351 } else if (blocked || mustSendRetry) {
2352 // either already committed to send a retry, or blocked
2353 success = false;
2354 } else {
2355 // pass it on to the cache, and let the cache decide if we
2356 // have to retry or not
2357 success = cache->recvTimingReq(pkt);
2358 }
2359
2360 // remember if we have to retry
2361 mustSendRetry = !success;
2362 return success;
2363 }
2364
2365 Tick
2366 Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2367 {
2368 return cache->recvAtomic(pkt);
2369 }
2370
2371 void
2372 Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2373 {
2374 // functional request
2375 cache->functionalAccess(pkt, true);
2376 }
2377
2378 Cache::
2379 CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2380 const std::string &_label)
2381 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2382 {
2383 }
2384
2385 Cache*
2386 CacheParams::create()
2387 {
2388 assert(tags);
2389
2390 return new Cache(this);
2391 }
2392 ///////////////
2393 //
2394 // MemSidePort
2395 //
2396 ///////////////
2397
2398 bool
2399 Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2400 {
2401 cache->recvTimingResp(pkt);
2402 return true;
2403 }
2404
2405 // Express snooping requests to memside port
2406 void
2407 Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2408 {
2409 // handle snooping requests
2410 cache->recvTimingSnoopReq(pkt);
2411 }
2412
2413 Tick
2414 Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2415 {
2416 return cache->recvAtomicSnoop(pkt);
2417 }
2418
2419 void
2420 Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2421 {
2422 // functional snoop (note that in contrast to atomic we don't have
2423 // a specific functionalSnoop method, as they have the same
2424 // behaviour regardless)
2425 cache->functionalAccess(pkt, false);
2426 }
2427
2428 void
2429 Cache::CacheReqPacketQueue::sendDeferredPacket()
2430 {
2431 // sanity check
2432 assert(!waitingOnRetry);
2433
2434 // there should never be any deferred request packets in the
2435 // queue, instead we resly on the cache to provide the packets
2436 // from the MSHR queue or write queue
2437 assert(deferredPacketReadyTime() == MaxTick);
2438
2439 // check for request packets (requests & writebacks)
2440 PacketPtr pkt = cache.getTimingPacket();
2441 if (pkt == NULL) {
2442 // can happen if e.g. we attempt a writeback and fail, but
2443 // before the retry, the writeback is eliminated because
2444 // we snoop another cache's ReadEx.
2445 } else {
2446 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2447 // in most cases getTimingPacket allocates a new packet, and
2448 // we must delete it unless it is successfully sent
2449 bool delete_pkt = !mshr->isForwardNoResponse();
2450
2451 // let our snoop responses go first if there are responses to
2452 // the same addresses we are about to writeback, note that
2453 // this creates a dependency between requests and snoop
2454 // responses, but that should not be a problem since there is
2455 // a chain already and the key is that the snoop responses can
2456 // sink unconditionally
2457 if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2458 DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2459 Tick when = snoopRespQueue.deferredPacketReadyTime();
2460 schedSendEvent(when);
2461
2462 if (delete_pkt)
2463 delete pkt;
2464
2465 return;
2466 }
2467
2468
2469 waitingOnRetry = !masterPort.sendTimingReq(pkt);
2470
2471 if (waitingOnRetry) {
2472 DPRINTF(CachePort, "now waiting on a retry\n");
2473 if (delete_pkt) {
2474 // we are awaiting a retry, but we
2475 // delete the packet and will be creating a new packet
2476 // when we get the opportunity
2477 delete pkt;
2478 }
2479 // note that we have now masked any requestBus and
2480 // schedSendEvent (we will wait for a retry before
2481 // doing anything), and this is so even if we do not
2482 // care about this packet and might override it before
2483 // it gets retried
2484 } else {
2485 // As part of the call to sendTimingReq the packet is
2486 // forwarded to all neighbouring caches (and any
2487 // caches above them) as a snoop. The packet is also
2488 // sent to any potential cache below as the
2489 // interconnect is not allowed to buffer the
2490 // packet. Thus at this point we know if any of the
2491 // neighbouring, or the downstream cache is
2492 // responding, and if so, if it is with a dirty line
2493 // or not.
2494 bool pending_dirty_resp = !pkt->sharedAsserted() &&
2495 pkt->memInhibitAsserted();
2496
2497 cache.markInService(mshr, pending_dirty_resp);
2498 }
2499 }
2500
2501 // if we succeeded and are not waiting for a retry, schedule the
2502 // next send considering when the next MSHR is ready, note that
2503 // snoop responses have their own packet queue and thus schedule
2504 // their own events
2505 if (!waitingOnRetry) {
2506 schedSendEvent(cache.nextMSHRReadyTime());
2507 }
2508 }
2509
2510 Cache::
2511 MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2512 const std::string &_label)
2513 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2514 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2515 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2516 {
2517 }