mem-cache: Add a repeated value pattern to compressors
[gem5.git] / src / mem / cache / mshr.cc
1 /*
2 * Copyright (c) 2012-2013, 2015-2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nikos Nikoleris
44 */
45
46 /**
47 * @file
48 * Miss Status and Handling Register (MSHR) definitions.
49 */
50
51 #include "mem/cache/mshr.hh"
52
53 #include <cassert>
54 #include <string>
55
56 #include "base/logging.hh"
57 #include "base/trace.hh"
58 #include "base/types.hh"
59 #include "debug/Cache.hh"
60 #include "mem/cache/base.hh"
61 #include "mem/request.hh"
62 #include "sim/core.hh"
63
64 MSHR::MSHR() : downstreamPending(false),
65 pendingModified(false),
66 postInvalidate(false), postDowngrade(false),
67 wasWholeLineWrite(false), isForward(false)
68 {
69 }
70
71 MSHR::TargetList::TargetList()
72 : needsWritable(false), hasUpgrade(false), allocOnFill(false),
73 hasFromCache(false)
74 {}
75
76
77 void
78 MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source,
79 bool alloc_on_fill)
80 {
81 if (source != Target::FromSnoop) {
82 if (pkt->needsWritable()) {
83 needsWritable = true;
84 }
85
86 // StoreCondReq is effectively an upgrade if it's in an MSHR
87 // since it would have been failed already if we didn't have a
88 // read-only copy
89 if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) {
90 hasUpgrade = true;
91 }
92
93 // potentially re-evaluate whether we should allocate on a fill or
94 // not
95 allocOnFill = allocOnFill || alloc_on_fill;
96
97 if (source != Target::FromPrefetcher) {
98 hasFromCache = hasFromCache || pkt->fromCache();
99
100 updateWriteFlags(pkt);
101 }
102 }
103 }
104
105 void
106 MSHR::TargetList::populateFlags()
107 {
108 resetFlags();
109 for (auto& t: *this) {
110 updateFlags(t.pkt, t.source, t.allocOnFill);
111 }
112 }
113
114 inline void
115 MSHR::TargetList::add(PacketPtr pkt, Tick readyTime,
116 Counter order, Target::Source source, bool markPending,
117 bool alloc_on_fill)
118 {
119 updateFlags(pkt, source, alloc_on_fill);
120 if (markPending) {
121 // Iterate over the SenderState stack and see if we find
122 // an MSHR entry. If we do, set the downstreamPending
123 // flag. Otherwise, do nothing.
124 MSHR *mshr = pkt->findNextSenderState<MSHR>();
125 if (mshr != nullptr) {
126 assert(!mshr->downstreamPending);
127 mshr->downstreamPending = true;
128 } else {
129 // No need to clear downstreamPending later
130 markPending = false;
131 }
132 }
133
134 emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill);
135 }
136
137
138 static void
139 replaceUpgrade(PacketPtr pkt)
140 {
141 // remember if the current packet has data allocated
142 bool has_data = pkt->hasData() || pkt->hasRespData();
143
144 if (pkt->cmd == MemCmd::UpgradeReq) {
145 pkt->cmd = MemCmd::ReadExReq;
146 DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n");
147 } else if (pkt->cmd == MemCmd::SCUpgradeReq) {
148 pkt->cmd = MemCmd::SCUpgradeFailReq;
149 DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n");
150 } else if (pkt->cmd == MemCmd::StoreCondReq) {
151 pkt->cmd = MemCmd::StoreCondFailReq;
152 DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n");
153 }
154
155 if (!has_data) {
156 // there is no sensible way of setting the data field if the
157 // new command actually would carry data
158 assert(!pkt->hasData());
159
160 if (pkt->hasRespData()) {
161 // we went from a packet that had no data (neither request,
162 // nor response), to one that does, and therefore we need to
163 // actually allocate space for the data payload
164 pkt->allocate();
165 }
166 }
167 }
168
169
170 void
171 MSHR::TargetList::replaceUpgrades()
172 {
173 if (!hasUpgrade)
174 return;
175
176 for (auto& t : *this) {
177 replaceUpgrade(t.pkt);
178 }
179
180 hasUpgrade = false;
181 }
182
183
184 void
185 MSHR::TargetList::clearDownstreamPending(MSHR::TargetList::iterator begin,
186 MSHR::TargetList::iterator end)
187 {
188 for (auto t = begin; t != end; t++) {
189 if (t->markedPending) {
190 // Iterate over the SenderState stack and see if we find
191 // an MSHR entry. If we find one, clear the
192 // downstreamPending flag by calling
193 // clearDownstreamPending(). This recursively clears the
194 // downstreamPending flag in all caches this packet has
195 // passed through.
196 MSHR *mshr = t->pkt->findNextSenderState<MSHR>();
197 if (mshr != nullptr) {
198 mshr->clearDownstreamPending();
199 }
200 t->markedPending = false;
201 }
202 }
203 }
204
205 void
206 MSHR::TargetList::clearDownstreamPending()
207 {
208 clearDownstreamPending(begin(), end());
209 }
210
211
212 bool
213 MSHR::TargetList::trySatisfyFunctional(PacketPtr pkt)
214 {
215 for (auto& t : *this) {
216 if (pkt->trySatisfyFunctional(t.pkt)) {
217 return true;
218 }
219 }
220
221 return false;
222 }
223
224
225 void
226 MSHR::TargetList::print(std::ostream &os, int verbosity,
227 const std::string &prefix) const
228 {
229 for (auto& t : *this) {
230 const char *s;
231 switch (t.source) {
232 case Target::FromCPU:
233 s = "FromCPU";
234 break;
235 case Target::FromSnoop:
236 s = "FromSnoop";
237 break;
238 case Target::FromPrefetcher:
239 s = "FromPrefetcher";
240 break;
241 default:
242 s = "";
243 break;
244 }
245 ccprintf(os, "%s%s: ", prefix, s);
246 t.pkt->print(os, verbosity, "");
247 ccprintf(os, "\n");
248 }
249 }
250
251
252 void
253 MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target,
254 Tick when_ready, Counter _order, bool alloc_on_fill)
255 {
256 blkAddr = blk_addr;
257 blkSize = blk_size;
258 isSecure = target->isSecure();
259 readyTime = when_ready;
260 order = _order;
261 assert(target);
262 isForward = false;
263 wasWholeLineWrite = false;
264 _isUncacheable = target->req->isUncacheable();
265 inService = false;
266 downstreamPending = false;
267
268 targets.init(blkAddr, blkSize);
269 deferredTargets.init(blkAddr, blkSize);
270
271 // Don't know of a case where we would allocate a new MSHR for a
272 // snoop (mem-side request), so set source according to request here
273 Target::Source source = (target->cmd == MemCmd::HardPFReq) ?
274 Target::FromPrefetcher : Target::FromCPU;
275 targets.add(target, when_ready, _order, source, true, alloc_on_fill);
276
277 // All targets must refer to the same block
278 assert(target->matchBlockAddr(targets.front().pkt, blkSize));
279 }
280
281
282 void
283 MSHR::clearDownstreamPending()
284 {
285 assert(downstreamPending);
286 downstreamPending = false;
287 // recursively clear flag on any MSHRs we will be forwarding
288 // responses to
289 targets.clearDownstreamPending();
290 }
291
292 void
293 MSHR::markInService(bool pending_modified_resp)
294 {
295 assert(!inService);
296
297 inService = true;
298 pendingModified = targets.needsWritable || pending_modified_resp;
299 postInvalidate = postDowngrade = false;
300
301 if (!downstreamPending) {
302 // let upstream caches know that the request has made it to a
303 // level where it's going to get a response
304 targets.clearDownstreamPending();
305 }
306 // if the line is not considered a whole-line write when sent
307 // downstream, make sure it is also not considered a whole-line
308 // write when receiving the response, and vice versa
309 wasWholeLineWrite = isWholeLineWrite();
310 }
311
312
313 void
314 MSHR::deallocate()
315 {
316 assert(targets.empty());
317 targets.resetFlags();
318 assert(deferredTargets.isReset());
319 inService = false;
320 }
321
322 /*
323 * Adds a target to an MSHR
324 */
325 void
326 MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order,
327 bool alloc_on_fill)
328 {
329 // assume we'd never issue a prefetch when we've got an
330 // outstanding miss
331 assert(pkt->cmd != MemCmd::HardPFReq);
332
333 // if there's a request already in service for this MSHR, we will
334 // have to defer the new target until after the response if any of
335 // the following are true:
336 // - there are other targets already deferred
337 // - there's a pending invalidate to be applied after the response
338 // comes back (but before this target is processed)
339 // - the MSHR's first (and only) non-deferred target is a cache
340 // maintenance packet
341 // - the new target is a cache maintenance packet (this is probably
342 // overly conservative but certainly safe)
343 // - this target requires a writable block and either we're not
344 // getting a writable block back or we have already snooped
345 // another read request that will downgrade our writable block
346 // to non-writable (Shared or Owned)
347 PacketPtr tgt_pkt = targets.front().pkt;
348 if (pkt->req->isCacheMaintenance() ||
349 tgt_pkt->req->isCacheMaintenance() ||
350 !deferredTargets.empty() ||
351 (inService &&
352 (hasPostInvalidate() ||
353 (pkt->needsWritable() &&
354 (!isPendingModified() || hasPostDowngrade() || isForward))))) {
355 // need to put on deferred list
356 if (inService && hasPostInvalidate())
357 replaceUpgrade(pkt);
358 deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true,
359 alloc_on_fill);
360 } else {
361 // No request outstanding, or still OK to append to
362 // outstanding request: append to regular target list. Only
363 // mark pending if current request hasn't been issued yet
364 // (isn't in service).
365 targets.add(pkt, whenReady, _order, Target::FromCPU, !inService,
366 alloc_on_fill);
367 }
368 }
369
370 bool
371 MSHR::handleSnoop(PacketPtr pkt, Counter _order)
372 {
373 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
374
375 // when we snoop packets the needsWritable and isInvalidate flags
376 // should always be the same, however, this assumes that we never
377 // snoop writes as they are currently not marked as invalidations
378 panic_if((pkt->needsWritable() != pkt->isInvalidate()) &&
379 !pkt->req->isCacheMaintenance(),
380 "%s got snoop %s where needsWritable, "
381 "does not match isInvalidate", name(), pkt->print());
382
383 if (!inService || (pkt->isExpressSnoop() && downstreamPending)) {
384 // Request has not been issued yet, or it's been issued
385 // locally but is buffered unissued at some downstream cache
386 // which is forwarding us this snoop. Either way, the packet
387 // we're snooping logically precedes this MSHR's request, so
388 // the snoop has no impact on the MSHR, but must be processed
389 // in the standard way by the cache. The only exception is
390 // that if we're an L2+ cache buffering an UpgradeReq from a
391 // higher-level cache, and the snoop is invalidating, then our
392 // buffered upgrades must be converted to read exclusives,
393 // since the upper-level cache no longer has a valid copy.
394 // That is, even though the upper-level cache got out on its
395 // local bus first, some other invalidating transaction
396 // reached the global bus before the upgrade did.
397 if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
398 targets.replaceUpgrades();
399 deferredTargets.replaceUpgrades();
400 }
401
402 return false;
403 }
404
405 // From here on down, the request issued by this MSHR logically
406 // precedes the request we're snooping.
407 if (pkt->needsWritable() || pkt->req->isCacheInvalidate()) {
408 // snooped request still precedes the re-request we'll have to
409 // issue for deferred targets, if any...
410 deferredTargets.replaceUpgrades();
411 }
412
413 PacketPtr tgt_pkt = targets.front().pkt;
414 if (hasPostInvalidate() || tgt_pkt->req->isCacheInvalidate()) {
415 // a prior snoop has already appended an invalidation or a
416 // cache invalidation operation is in progress, so logically
417 // we don't have the block anymore; no need for further
418 // snooping.
419 return true;
420 }
421
422 if (isPendingModified() || pkt->isInvalidate()) {
423 // We need to save and replay the packet in two cases:
424 // 1. We're awaiting a writable copy (Modified or Exclusive),
425 // so this MSHR is the orgering point, and we need to respond
426 // after we receive data.
427 // 2. It's an invalidation (e.g., UpgradeReq), and we need
428 // to forward the snoop up the hierarchy after the current
429 // transaction completes.
430
431 // Start by determining if we will eventually respond or not,
432 // matching the conditions checked in Cache::handleSnoop
433 bool will_respond = isPendingModified() && pkt->needsResponse() &&
434 !pkt->isClean();
435
436 // The packet we are snooping may be deleted by the time we
437 // actually process the target, and we consequently need to
438 // save a copy here. Clear flags and also allocate new data as
439 // the original packet data storage may have been deleted by
440 // the time we get to process this packet. In the cases where
441 // we are not responding after handling the snoop we also need
442 // to create a copy of the request to be on the safe side. In
443 // the latter case the cache is responsible for deleting both
444 // the packet and the request as part of handling the deferred
445 // snoop.
446 PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) :
447 new Packet(std::make_shared<Request>(*pkt->req), pkt->cmd,
448 blkSize, pkt->id);
449
450 if (will_respond) {
451 // we are the ordering point, and will consequently
452 // respond, and depending on whether the packet
453 // needsWritable or not we either pass a Shared line or a
454 // Modified line
455 pkt->setCacheResponding();
456
457 // inform the cache hierarchy that this cache had the line
458 // in the Modified state, even if the response is passed
459 // as Shared (and thus non-writable)
460 pkt->setResponderHadWritable();
461
462 // in the case of an uncacheable request there is no need
463 // to set the responderHadWritable flag, but since the
464 // recipient does not care there is no harm in doing so
465 } else if (isPendingModified() && pkt->isClean()) {
466 // this cache doesn't respond to the clean request, a
467 // destination xbar will respond to this request, but to
468 // do so it needs to know if it should wait for the
469 // WriteCleanReq
470 pkt->setSatisfied();
471 }
472
473 targets.add(cp_pkt, curTick(), _order, Target::FromSnoop,
474 downstreamPending && targets.needsWritable, false);
475
476 if (pkt->needsWritable() || pkt->isInvalidate()) {
477 // This transaction will take away our pending copy
478 postInvalidate = true;
479 }
480 }
481
482 if (!pkt->needsWritable() && !pkt->req->isUncacheable()) {
483 // This transaction will get a read-shared copy, downgrading
484 // our copy if we had a writable one
485 postDowngrade = true;
486 // make sure that any downstream cache does not respond with a
487 // writable (and dirty) copy even if it has one, unless it was
488 // explicitly asked for one
489 pkt->setHasSharers();
490 }
491
492 return true;
493 }
494
495 MSHR::TargetList
496 MSHR::extractServiceableTargets(PacketPtr pkt)
497 {
498 TargetList ready_targets;
499 ready_targets.init(blkAddr, blkSize);
500 // If the downstream MSHR got an invalidation request then we only
501 // service the first of the FromCPU targets and any other
502 // non-FromCPU target. This way the remaining FromCPU targets
503 // issue a new request and get a fresh copy of the block and we
504 // avoid memory consistency violations.
505 if (pkt->cmd == MemCmd::ReadRespWithInvalidate) {
506 auto it = targets.begin();
507 assert((it->source == Target::FromCPU) ||
508 (it->source == Target::FromPrefetcher));
509 ready_targets.push_back(*it);
510 it = targets.erase(it);
511 while (it != targets.end()) {
512 if (it->source == Target::FromCPU) {
513 it++;
514 } else {
515 assert(it->source == Target::FromSnoop);
516 ready_targets.push_back(*it);
517 it = targets.erase(it);
518 }
519 }
520 ready_targets.populateFlags();
521 } else {
522 std::swap(ready_targets, targets);
523 }
524 targets.populateFlags();
525
526 return ready_targets;
527 }
528
529 bool
530 MSHR::promoteDeferredTargets()
531 {
532 if (targets.empty() && deferredTargets.empty()) {
533 // nothing to promote
534 return false;
535 }
536
537 // the deferred targets can be generally promoted unless they
538 // contain a cache maintenance request
539
540 // find the first target that is a cache maintenance request
541 auto it = std::find_if(deferredTargets.begin(), deferredTargets.end(),
542 [](MSHR::Target &t) {
543 return t.pkt->req->isCacheMaintenance();
544 });
545 if (it == deferredTargets.begin()) {
546 // if the first deferred target is a cache maintenance packet
547 // then we can promote provided the targets list is empty and
548 // we can service it on its own
549 if (targets.empty()) {
550 targets.splice(targets.end(), deferredTargets, it);
551 }
552 } else {
553 // if a cache maintenance operation exists, we promote all the
554 // deferred targets that precede it, or all deferred targets
555 // otherwise
556 targets.splice(targets.end(), deferredTargets,
557 deferredTargets.begin(), it);
558 }
559
560 deferredTargets.populateFlags();
561 targets.populateFlags();
562 order = targets.front().order;
563 readyTime = std::max(curTick(), targets.front().readyTime);
564
565 return true;
566 }
567
568 void
569 MSHR::promoteIf(const std::function<bool (Target &)>& pred)
570 {
571 // if any of the deferred targets were upper-level cache
572 // requests marked downstreamPending, need to clear that
573 assert(!downstreamPending); // not pending here anymore
574
575 // find the first target does not satisfy the condition
576 auto last_it = std::find_if_not(deferredTargets.begin(),
577 deferredTargets.end(),
578 pred);
579
580 // for the prefix of the deferredTargets [begin(), last_it) clear
581 // the downstreamPending flag and move them to the target list
582 deferredTargets.clearDownstreamPending(deferredTargets.begin(),
583 last_it);
584 targets.splice(targets.end(), deferredTargets,
585 deferredTargets.begin(), last_it);
586 // We need to update the flags for the target lists after the
587 // modifications
588 deferredTargets.populateFlags();
589 }
590
591 void
592 MSHR::promoteReadable()
593 {
594 if (!deferredTargets.empty() && !hasPostInvalidate()) {
595 // We got a non invalidating response, and we have the block
596 // but we have deferred targets which are waiting and they do
597 // not need writable. This can happen if the original request
598 // was for a cache clean operation and we had a copy of the
599 // block. Since we serviced the cache clean operation and we
600 // have the block, there's no need to defer the targets, so
601 // move them up to the regular target list.
602
603 auto pred = [](Target &t) {
604 assert(t.source == Target::FromCPU);
605 return !t.pkt->req->isCacheInvalidate() &&
606 !t.pkt->needsWritable();
607 };
608 promoteIf(pred);
609 }
610 }
611
612 void
613 MSHR::promoteWritable()
614 {
615 PacketPtr def_tgt_pkt = deferredTargets.front().pkt;
616 if (deferredTargets.needsWritable &&
617 !(hasPostInvalidate() || hasPostDowngrade()) &&
618 !def_tgt_pkt->req->isCacheInvalidate()) {
619 // We got a writable response, but we have deferred targets
620 // which are waiting to request a writable copy (not because
621 // of a pending invalidate). This can happen if the original
622 // request was for a read-only block, but we got a writable
623 // response anyway. Since we got the writable copy there's no
624 // need to defer the targets, so move them up to the regular
625 // target list.
626 assert(!targets.needsWritable);
627 targets.needsWritable = true;
628
629 auto pred = [](Target &t) {
630 assert(t.source == Target::FromCPU);
631 return !t.pkt->req->isCacheInvalidate();
632 };
633
634 promoteIf(pred);
635 }
636 }
637
638
639 bool
640 MSHR::trySatisfyFunctional(PacketPtr pkt)
641 {
642 // For printing, we treat the MSHR as a whole as single entity.
643 // For other requests, we iterate over the individual targets
644 // since that's where the actual data lies.
645 if (pkt->isPrint()) {
646 pkt->trySatisfyFunctional(this, blkAddr, isSecure, blkSize, nullptr);
647 return false;
648 } else {
649 return (targets.trySatisfyFunctional(pkt) ||
650 deferredTargets.trySatisfyFunctional(pkt));
651 }
652 }
653
654 bool
655 MSHR::sendPacket(BaseCache &cache)
656 {
657 return cache.sendMSHRQueuePacket(this);
658 }
659
660 void
661 MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const
662 {
663 ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s %s\n",
664 prefix, blkAddr, blkAddr + blkSize - 1,
665 isSecure ? "s" : "ns",
666 isForward ? "Forward" : "",
667 allocOnFill() ? "AllocOnFill" : "",
668 needsWritable() ? "Wrtbl" : "",
669 _isUncacheable ? "Unc" : "",
670 inService ? "InSvc" : "",
671 downstreamPending ? "DwnPend" : "",
672 postInvalidate ? "PostInv" : "",
673 postDowngrade ? "PostDowngr" : "",
674 hasFromCache() ? "HasFromCache" : "");
675
676 if (!targets.empty()) {
677 ccprintf(os, "%s Targets:\n", prefix);
678 targets.print(os, verbosity, prefix + " ");
679 }
680 if (!deferredTargets.empty()) {
681 ccprintf(os, "%s Deferred Targets:\n", prefix);
682 deferredTargets.print(os, verbosity, prefix + " ");
683 }
684 }
685
686 std::string
687 MSHR::print() const
688 {
689 std::ostringstream str;
690 print(str);
691 return str.str();
692 }
693
694 bool
695 MSHR::matchBlockAddr(const Addr addr, const bool is_secure) const
696 {
697 assert(hasTargets());
698 return (blkAddr == addr) && (isSecure == is_secure);
699 }
700
701 bool
702 MSHR::matchBlockAddr(const PacketPtr pkt) const
703 {
704 assert(hasTargets());
705 return pkt->matchBlockAddr(blkAddr, isSecure, blkSize);
706 }
707
708 bool
709 MSHR::conflictAddr(const QueueEntry* entry) const
710 {
711 assert(hasTargets());
712 return entry->matchBlockAddr(blkAddr, isSecure);
713 }