mem: Service only the 1st FromCPU MSHR target on ReadRespWithInv
[gem5.git] / src / mem / cache / mshr.cc
1 /*
2 * Copyright (c) 2012-2013, 2015-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 */
44
45 /**
46 * @file
47 * Miss Status and Handling Register (MSHR) definitions.
48 */
49
50 #include "mem/cache/mshr.hh"
51
52 #include <algorithm>
53 #include <cassert>
54 #include <string>
55 #include <vector>
56
57 #include "base/misc.hh"
58 #include "base/types.hh"
59 #include "debug/Cache.hh"
60 #include "mem/cache/cache.hh"
61 #include "sim/core.hh"
62
63 using namespace std;
64
65 MSHR::MSHR() : downstreamPending(false),
66 pendingModified(false),
67 postInvalidate(false), postDowngrade(false),
68 isForward(false)
69 {
70 }
71
72 MSHR::TargetList::TargetList()
73 : needsWritable(false), hasUpgrade(false), allocOnFill(false)
74 {}
75
76
77 void
78 MSHR::TargetList::updateFlags(PacketPtr pkt, Target::Source source,
79 bool alloc_on_fill)
80 {
81 if (source != Target::FromSnoop) {
82 if (pkt->needsWritable()) {
83 needsWritable = true;
84 }
85
86 // StoreCondReq is effectively an upgrade if it's in an MSHR
87 // since it would have been failed already if we didn't have a
88 // read-only copy
89 if (pkt->isUpgrade() || pkt->cmd == MemCmd::StoreCondReq) {
90 hasUpgrade = true;
91 }
92
93 // potentially re-evaluate whether we should allocate on a fill or
94 // not
95 allocOnFill = allocOnFill || alloc_on_fill;
96 }
97 }
98
99 void
100 MSHR::TargetList::populateFlags()
101 {
102 resetFlags();
103 for (auto& t: *this) {
104 updateFlags(t.pkt, t.source, t.allocOnFill);
105 }
106 }
107
108 inline void
109 MSHR::TargetList::add(PacketPtr pkt, Tick readyTime,
110 Counter order, Target::Source source, bool markPending,
111 bool alloc_on_fill)
112 {
113 updateFlags(pkt, source, alloc_on_fill);
114 if (markPending) {
115 // Iterate over the SenderState stack and see if we find
116 // an MSHR entry. If we do, set the downstreamPending
117 // flag. Otherwise, do nothing.
118 MSHR *mshr = pkt->findNextSenderState<MSHR>();
119 if (mshr != nullptr) {
120 assert(!mshr->downstreamPending);
121 mshr->downstreamPending = true;
122 } else {
123 // No need to clear downstreamPending later
124 markPending = false;
125 }
126 }
127
128 emplace_back(pkt, readyTime, order, source, markPending, alloc_on_fill);
129 }
130
131
132 static void
133 replaceUpgrade(PacketPtr pkt)
134 {
135 // remember if the current packet has data allocated
136 bool has_data = pkt->hasData() || pkt->hasRespData();
137
138 if (pkt->cmd == MemCmd::UpgradeReq) {
139 pkt->cmd = MemCmd::ReadExReq;
140 DPRINTF(Cache, "Replacing UpgradeReq with ReadExReq\n");
141 } else if (pkt->cmd == MemCmd::SCUpgradeReq) {
142 pkt->cmd = MemCmd::SCUpgradeFailReq;
143 DPRINTF(Cache, "Replacing SCUpgradeReq with SCUpgradeFailReq\n");
144 } else if (pkt->cmd == MemCmd::StoreCondReq) {
145 pkt->cmd = MemCmd::StoreCondFailReq;
146 DPRINTF(Cache, "Replacing StoreCondReq with StoreCondFailReq\n");
147 }
148
149 if (!has_data) {
150 // there is no sensible way of setting the data field if the
151 // new command actually would carry data
152 assert(!pkt->hasData());
153
154 if (pkt->hasRespData()) {
155 // we went from a packet that had no data (neither request,
156 // nor response), to one that does, and therefore we need to
157 // actually allocate space for the data payload
158 pkt->allocate();
159 }
160 }
161 }
162
163
164 void
165 MSHR::TargetList::replaceUpgrades()
166 {
167 if (!hasUpgrade)
168 return;
169
170 for (auto& t : *this) {
171 replaceUpgrade(t.pkt);
172 }
173
174 hasUpgrade = false;
175 }
176
177
178 void
179 MSHR::TargetList::clearDownstreamPending()
180 {
181 for (auto& t : *this) {
182 if (t.markedPending) {
183 // Iterate over the SenderState stack and see if we find
184 // an MSHR entry. If we find one, clear the
185 // downstreamPending flag by calling
186 // clearDownstreamPending(). This recursively clears the
187 // downstreamPending flag in all caches this packet has
188 // passed through.
189 MSHR *mshr = t.pkt->findNextSenderState<MSHR>();
190 if (mshr != nullptr) {
191 mshr->clearDownstreamPending();
192 }
193 t.markedPending = false;
194 }
195 }
196 }
197
198
199 bool
200 MSHR::TargetList::checkFunctional(PacketPtr pkt)
201 {
202 for (auto& t : *this) {
203 if (pkt->checkFunctional(t.pkt)) {
204 return true;
205 }
206 }
207
208 return false;
209 }
210
211
212 void
213 MSHR::TargetList::print(std::ostream &os, int verbosity,
214 const std::string &prefix) const
215 {
216 for (auto& t : *this) {
217 const char *s;
218 switch (t.source) {
219 case Target::FromCPU:
220 s = "FromCPU";
221 break;
222 case Target::FromSnoop:
223 s = "FromSnoop";
224 break;
225 case Target::FromPrefetcher:
226 s = "FromPrefetcher";
227 break;
228 default:
229 s = "";
230 break;
231 }
232 ccprintf(os, "%s%s: ", prefix, s);
233 t.pkt->print(os, verbosity, "");
234 }
235 }
236
237
238 void
239 MSHR::allocate(Addr blk_addr, unsigned blk_size, PacketPtr target,
240 Tick when_ready, Counter _order, bool alloc_on_fill)
241 {
242 blkAddr = blk_addr;
243 blkSize = blk_size;
244 isSecure = target->isSecure();
245 readyTime = when_ready;
246 order = _order;
247 assert(target);
248 isForward = false;
249 _isUncacheable = target->req->isUncacheable();
250 inService = false;
251 downstreamPending = false;
252 assert(targets.isReset());
253 // Don't know of a case where we would allocate a new MSHR for a
254 // snoop (mem-side request), so set source according to request here
255 Target::Source source = (target->cmd == MemCmd::HardPFReq) ?
256 Target::FromPrefetcher : Target::FromCPU;
257 targets.add(target, when_ready, _order, source, true, alloc_on_fill);
258 assert(deferredTargets.isReset());
259 }
260
261
262 void
263 MSHR::clearDownstreamPending()
264 {
265 assert(downstreamPending);
266 downstreamPending = false;
267 // recursively clear flag on any MSHRs we will be forwarding
268 // responses to
269 targets.clearDownstreamPending();
270 }
271
272 void
273 MSHR::markInService(bool pending_modified_resp)
274 {
275 assert(!inService);
276
277 inService = true;
278 pendingModified = targets.needsWritable || pending_modified_resp;
279 postInvalidate = postDowngrade = false;
280
281 if (!downstreamPending) {
282 // let upstream caches know that the request has made it to a
283 // level where it's going to get a response
284 targets.clearDownstreamPending();
285 }
286 }
287
288
289 void
290 MSHR::deallocate()
291 {
292 assert(targets.empty());
293 targets.resetFlags();
294 assert(deferredTargets.isReset());
295 inService = false;
296 }
297
298 /*
299 * Adds a target to an MSHR
300 */
301 void
302 MSHR::allocateTarget(PacketPtr pkt, Tick whenReady, Counter _order,
303 bool alloc_on_fill)
304 {
305 // assume we'd never issue a prefetch when we've got an
306 // outstanding miss
307 assert(pkt->cmd != MemCmd::HardPFReq);
308
309 // uncacheable accesses always allocate a new MSHR, and cacheable
310 // accesses ignore any uncacheable MSHRs, thus we should never
311 // have targets addded if originally allocated uncacheable
312 assert(!_isUncacheable);
313
314 // if there's a request already in service for this MSHR, we will
315 // have to defer the new target until after the response if any of
316 // the following are true:
317 // - there are other targets already deferred
318 // - there's a pending invalidate to be applied after the response
319 // comes back (but before this target is processed)
320 // - this target requires a writable block and either we're not
321 // getting a writable block back or we have already snooped
322 // another read request that will downgrade our writable block
323 // to non-writable (Shared or Owned)
324 if (inService &&
325 (!deferredTargets.empty() || hasPostInvalidate() ||
326 (pkt->needsWritable() &&
327 (!isPendingModified() || hasPostDowngrade() || isForward)))) {
328 // need to put on deferred list
329 if (hasPostInvalidate())
330 replaceUpgrade(pkt);
331 deferredTargets.add(pkt, whenReady, _order, Target::FromCPU, true,
332 alloc_on_fill);
333 } else {
334 // No request outstanding, or still OK to append to
335 // outstanding request: append to regular target list. Only
336 // mark pending if current request hasn't been issued yet
337 // (isn't in service).
338 targets.add(pkt, whenReady, _order, Target::FromCPU, !inService,
339 alloc_on_fill);
340 }
341 }
342
343 bool
344 MSHR::handleSnoop(PacketPtr pkt, Counter _order)
345 {
346 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
347 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
348
349 // when we snoop packets the needsWritable and isInvalidate flags
350 // should always be the same, however, this assumes that we never
351 // snoop writes as they are currently not marked as invalidations
352 panic_if(pkt->needsWritable() != pkt->isInvalidate(),
353 "%s got snoop %s to addr %#llx where needsWritable, "
354 "does not match isInvalidate", name(), pkt->cmdString(),
355 pkt->getAddr());
356
357 if (!inService || (pkt->isExpressSnoop() && downstreamPending)) {
358 // Request has not been issued yet, or it's been issued
359 // locally but is buffered unissued at some downstream cache
360 // which is forwarding us this snoop. Either way, the packet
361 // we're snooping logically precedes this MSHR's request, so
362 // the snoop has no impact on the MSHR, but must be processed
363 // in the standard way by the cache. The only exception is
364 // that if we're an L2+ cache buffering an UpgradeReq from a
365 // higher-level cache, and the snoop is invalidating, then our
366 // buffered upgrades must be converted to read exclusives,
367 // since the upper-level cache no longer has a valid copy.
368 // That is, even though the upper-level cache got out on its
369 // local bus first, some other invalidating transaction
370 // reached the global bus before the upgrade did.
371 if (pkt->needsWritable()) {
372 targets.replaceUpgrades();
373 deferredTargets.replaceUpgrades();
374 }
375
376 return false;
377 }
378
379 // From here on down, the request issued by this MSHR logically
380 // precedes the request we're snooping.
381 if (pkt->needsWritable()) {
382 // snooped request still precedes the re-request we'll have to
383 // issue for deferred targets, if any...
384 deferredTargets.replaceUpgrades();
385 }
386
387 if (hasPostInvalidate()) {
388 // a prior snoop has already appended an invalidation, so
389 // logically we don't have the block anymore; no need for
390 // further snooping.
391 return true;
392 }
393
394 if (isPendingModified() || pkt->isInvalidate()) {
395 // We need to save and replay the packet in two cases:
396 // 1. We're awaiting a writable copy (Modified or Exclusive),
397 // so this MSHR is the orgering point, and we need to respond
398 // after we receive data.
399 // 2. It's an invalidation (e.g., UpgradeReq), and we need
400 // to forward the snoop up the hierarchy after the current
401 // transaction completes.
402
403 // Start by determining if we will eventually respond or not,
404 // matching the conditions checked in Cache::handleSnoop
405 bool will_respond = isPendingModified() && pkt->needsResponse() &&
406 pkt->cmd != MemCmd::InvalidateReq;
407
408 // The packet we are snooping may be deleted by the time we
409 // actually process the target, and we consequently need to
410 // save a copy here. Clear flags and also allocate new data as
411 // the original packet data storage may have been deleted by
412 // the time we get to process this packet. In the cases where
413 // we are not responding after handling the snoop we also need
414 // to create a copy of the request to be on the safe side. In
415 // the latter case the cache is responsible for deleting both
416 // the packet and the request as part of handling the deferred
417 // snoop.
418 PacketPtr cp_pkt = will_respond ? new Packet(pkt, true, true) :
419 new Packet(new Request(*pkt->req), pkt->cmd);
420
421 if (will_respond) {
422 // we are the ordering point, and will consequently
423 // respond, and depending on whether the packet
424 // needsWritable or not we either pass a Shared line or a
425 // Modified line
426 pkt->setCacheResponding();
427
428 // inform the cache hierarchy that this cache had the line
429 // in the Modified state, even if the response is passed
430 // as Shared (and thus non-writable)
431 pkt->setResponderHadWritable();
432
433 // in the case of an uncacheable request there is no need
434 // to set the responderHadWritable flag, but since the
435 // recipient does not care there is no harm in doing so
436 }
437 targets.add(cp_pkt, curTick(), _order, Target::FromSnoop,
438 downstreamPending && targets.needsWritable, false);
439
440 if (pkt->needsWritable()) {
441 // This transaction will take away our pending copy
442 postInvalidate = true;
443 }
444 }
445
446 if (!pkt->needsWritable() && !pkt->req->isUncacheable()) {
447 // This transaction will get a read-shared copy, downgrading
448 // our copy if we had a writable one
449 postDowngrade = true;
450 // make sure that any downstream cache does not respond with a
451 // writable (and dirty) copy even if it has one, unless it was
452 // explicitly asked for one
453 pkt->setHasSharers();
454 }
455
456 return true;
457 }
458
459 MSHR::TargetList
460 MSHR::extractServiceableTargets(PacketPtr pkt)
461 {
462 TargetList ready_targets;
463 // If the downstream MSHR got an invalidation request then we only
464 // service the first of the FromCPU targets and any other
465 // non-FromCPU target. This way the remaining FromCPU targets
466 // issue a new request and get a fresh copy of the block and we
467 // avoid memory consistency violations.
468 if (pkt->cmd == MemCmd::ReadRespWithInvalidate) {
469 auto it = targets.begin();
470 assert(it->source == Target::FromCPU);
471 ready_targets.push_back(*it);
472 it = targets.erase(it);
473 while (it != targets.end()) {
474 if (it->source == Target::FromCPU) {
475 it++;
476 } else {
477 assert(it->source == Target::FromSnoop);
478 ready_targets.push_back(*it);
479 it = targets.erase(it);
480 }
481 }
482 ready_targets.populateFlags();
483 } else {
484 std::swap(ready_targets, targets);
485 }
486 targets.populateFlags();
487
488 return ready_targets;
489 }
490
491 bool
492 MSHR::promoteDeferredTargets()
493 {
494 if (targets.empty()) {
495 if (deferredTargets.empty()) {
496 return false;
497 }
498
499 std::swap(targets, deferredTargets);
500 } else {
501 // If the targets list is not empty then we have one targets
502 // from the deferredTargets list to the targets list. A new
503 // request will then service the targets list.
504 targets.splice(targets.end(), deferredTargets);
505 targets.populateFlags();
506 }
507
508 // clear deferredTargets flags
509 deferredTargets.resetFlags();
510
511 order = targets.front().order;
512 readyTime = std::max(curTick(), targets.front().readyTime);
513
514 return true;
515 }
516
517
518 void
519 MSHR::promoteWritable()
520 {
521 if (deferredTargets.needsWritable &&
522 !(hasPostInvalidate() || hasPostDowngrade())) {
523 // We got a writable response, but we have deferred targets
524 // which are waiting to request a writable copy (not because
525 // of a pending invalidate). This can happen if the original
526 // request was for a read-only block, but we got a writable
527 // response anyway. Since we got the writable copy there's no
528 // need to defer the targets, so move them up to the regular
529 // target list.
530 assert(!targets.needsWritable);
531 targets.needsWritable = true;
532 // if any of the deferred targets were upper-level cache
533 // requests marked downstreamPending, need to clear that
534 assert(!downstreamPending); // not pending here anymore
535 deferredTargets.clearDownstreamPending();
536 // this clears out deferredTargets too
537 targets.splice(targets.end(), deferredTargets);
538 deferredTargets.resetFlags();
539 }
540 }
541
542
543 bool
544 MSHR::checkFunctional(PacketPtr pkt)
545 {
546 // For printing, we treat the MSHR as a whole as single entity.
547 // For other requests, we iterate over the individual targets
548 // since that's where the actual data lies.
549 if (pkt->isPrint()) {
550 pkt->checkFunctional(this, blkAddr, isSecure, blkSize, nullptr);
551 return false;
552 } else {
553 return (targets.checkFunctional(pkt) ||
554 deferredTargets.checkFunctional(pkt));
555 }
556 }
557
558 bool
559 MSHR::sendPacket(Cache &cache)
560 {
561 return cache.sendMSHRQueuePacket(this);
562 }
563
564 void
565 MSHR::print(std::ostream &os, int verbosity, const std::string &prefix) const
566 {
567 ccprintf(os, "%s[%#llx:%#llx](%s) %s %s %s state: %s %s %s %s %s\n",
568 prefix, blkAddr, blkAddr + blkSize - 1,
569 isSecure ? "s" : "ns",
570 isForward ? "Forward" : "",
571 allocOnFill() ? "AllocOnFill" : "",
572 needsWritable() ? "Wrtbl" : "",
573 _isUncacheable ? "Unc" : "",
574 inService ? "InSvc" : "",
575 downstreamPending ? "DwnPend" : "",
576 postInvalidate ? "PostInv" : "",
577 postDowngrade ? "PostDowngr" : "");
578
579 if (!targets.empty()) {
580 ccprintf(os, "%s Targets:\n", prefix);
581 targets.print(os, verbosity, prefix + " ");
582 }
583 if (!deferredTargets.empty()) {
584 ccprintf(os, "%s Deferred Targets:\n", prefix);
585 deferredTargets.print(os, verbosity, prefix + " ");
586 }
587 }
588
589 std::string
590 MSHR::print() const
591 {
592 ostringstream str;
593 print(str);
594 return str.str();
595 }