223ab6ab5d0126a4d85e8b31df4726e3a1b3c68d
[gem5.git] / src / mem / coherent_xbar.cc
1 /*
2 * Copyright (c) 2011-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 */
44
45 /**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50 #include "base/misc.hh"
51 #include "base/trace.hh"
52 #include "debug/AddrRanges.hh"
53 #include "debug/CoherentXBar.hh"
54 #include "mem/coherent_xbar.hh"
55 #include "sim/system.hh"
56
57 CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
59 snoopResponseLatency(p->snoop_response_latency)
60 {
61 // create the ports based on the size of the master and slave
62 // vector ports, and the presence of the default port, the ports
63 // are enumerated starting from zero
64 for (int i = 0; i < p->port_master_connection_count; ++i) {
65 std::string portName = csprintf("%s.master[%d]", name(), i);
66 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
67 masterPorts.push_back(bp);
68 reqLayers.push_back(new ReqLayer(*bp, *this,
69 csprintf(".reqLayer%d", i)));
70 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
71 csprintf(".snoopLayer%d", i)));
72 }
73
74 // see if we have a default slave device connected and if so add
75 // our corresponding master port
76 if (p->port_default_connection_count) {
77 defaultPortID = masterPorts.size();
78 std::string portName = name() + ".default";
79 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
80 defaultPortID);
81 masterPorts.push_back(bp);
82 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
83 defaultPortID)));
84 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
85 csprintf(".snoopLayer%d",
86 defaultPortID)));
87 }
88
89 // create the slave ports, once again starting at zero
90 for (int i = 0; i < p->port_slave_connection_count; ++i) {
91 std::string portName = csprintf("%s.slave[%d]", name(), i);
92 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
93 slavePorts.push_back(bp);
94 respLayers.push_back(new RespLayer(*bp, *this,
95 csprintf(".respLayer%d", i)));
96 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
97 }
98
99 clearPortCache();
100 }
101
102 CoherentXBar::~CoherentXBar()
103 {
104 for (auto l: reqLayers)
105 delete l;
106 for (auto l: respLayers)
107 delete l;
108 for (auto l: snoopLayers)
109 delete l;
110 for (auto p: snoopRespPorts)
111 delete p;
112 }
113
114 void
115 CoherentXBar::init()
116 {
117 // the base class is responsible for determining the block size
118 BaseXBar::init();
119
120 // iterate over our slave ports and determine which of our
121 // neighbouring master ports are snooping and add them as snoopers
122 for (const auto& p: slavePorts) {
123 // check if the connected master port is snooping
124 if (p->isSnooping()) {
125 DPRINTF(AddrRanges, "Adding snooping master %s\n",
126 p->getMasterPort().name());
127 snoopPorts.push_back(p);
128 }
129 }
130
131 if (snoopPorts.empty())
132 warn("CoherentXBar %s has no snooping ports attached!\n", name());
133
134 // inform the snoop filter about the slave ports so it can create
135 // its own internal representation
136 if (snoopFilter)
137 snoopFilter->setSlavePorts(slavePorts);
138 }
139
140 bool
141 CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
142 {
143 // determine the source port based on the id
144 SlavePort *src_port = slavePorts[slave_port_id];
145
146 // remember if the packet is an express snoop
147 bool is_express_snoop = pkt->isExpressSnoop();
148 bool is_inhibited = pkt->memInhibitAsserted();
149 // for normal requests, going downstream, the express snoop flag
150 // and the inhibited flag should always be the same
151 assert(is_express_snoop == is_inhibited);
152
153 // determine the destination based on the address
154 PortID master_port_id = findPort(pkt->getAddr());
155
156 // test if the crossbar should be considered occupied for the current
157 // port, and exclude express snoops from the check
158 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
159 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
160 src_port->name(), pkt->cmdString(), pkt->getAddr());
161 return false;
162 }
163
164 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
165 src_port->name(), pkt->cmdString(), is_express_snoop,
166 pkt->getAddr());
167
168 // store size and command as they might be modified when
169 // forwarding the packet
170 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
171 unsigned int pkt_cmd = pkt->cmdToIndex();
172
173 // store the old header delay so we can restore it if needed
174 Tick old_header_delay = pkt->headerDelay;
175
176 // a request sees the frontend and forward latency
177 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
178
179 // set the packet header and payload delay
180 calcPacketTiming(pkt, xbar_delay);
181
182 // determine how long to be crossbar layer is busy
183 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
184
185 if (!system->bypassCaches()) {
186 assert(pkt->snoopDelay == 0);
187
188 // the packet is a memory-mapped request and should be
189 // broadcasted to our snoopers but the source
190 if (snoopFilter) {
191 // check with the snoop filter where to forward this packet
192 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
193 // the time required by a packet to be delivered through
194 // the xbar has to be charged also with to lookup latency
195 // of the snoop filter
196 pkt->headerDelay += sf_res.second * clockPeriod();
197 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
198 " SF size: %i lat: %i\n", src_port->name(),
199 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
200 sf_res.second);
201 forwardTiming(pkt, slave_port_id, sf_res.first);
202 } else {
203 forwardTiming(pkt, slave_port_id);
204 }
205
206 // add the snoop delay to our header delay, and then reset it
207 pkt->headerDelay += pkt->snoopDelay;
208 pkt->snoopDelay = 0;
209 }
210
211 // forwardTiming snooped into peer caches of the sender, and if
212 // this is a clean evict, but the packet is found in a cache, do
213 // not forward it
214 if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) {
215 DPRINTF(CoherentXBar, "recvTimingReq: Clean evict 0x%x still cached, "
216 "not forwarding\n", pkt->getAddr());
217
218 // update the layer state and schedule an idle event
219 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
220
221 // queue the packet for deletion
222 pendingDelete.reset(pkt);
223
224 return true;
225 }
226
227 // remember if the packet will generate a snoop response
228 const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted();
229 const bool expect_response = pkt->needsResponse() &&
230 !pkt->memInhibitAsserted();
231
232 // since it is a normal request, attempt to send the packet
233 bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
234
235 if (snoopFilter && !system->bypassCaches()) {
236 // Let the snoop filter know about the success of the send operation
237 snoopFilter->finishRequest(!success, pkt);
238 }
239
240 // check if we were successful in sending the packet onwards
241 if (!success) {
242 // express snoops and inhibited packets should never be forced
243 // to retry
244 assert(!is_express_snoop);
245 assert(!pkt->memInhibitAsserted());
246
247 // restore the header delay
248 pkt->headerDelay = old_header_delay;
249
250 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
251 src_port->name(), pkt->cmdString(), pkt->getAddr());
252
253 // update the layer state and schedule an idle event
254 reqLayers[master_port_id]->failedTiming(src_port,
255 clockEdge(Cycles(1)));
256 } else {
257 // express snoops currently bypass the crossbar state entirely
258 if (!is_express_snoop) {
259 // if this particular request will generate a snoop
260 // response
261 if (expect_snoop_resp) {
262 // we should never have an exsiting request outstanding
263 assert(outstandingSnoop.find(pkt->req) ==
264 outstandingSnoop.end());
265 outstandingSnoop.insert(pkt->req);
266
267 // basic sanity check on the outstanding snoops
268 panic_if(outstandingSnoop.size() > 512,
269 "Outstanding snoop requests exceeded 512\n");
270 }
271
272 // remember where to route the normal response to
273 if (expect_response || expect_snoop_resp) {
274 assert(routeTo.find(pkt->req) == routeTo.end());
275 routeTo[pkt->req] = slave_port_id;
276
277 panic_if(routeTo.size() > 512,
278 "Routing table exceeds 512 packets\n");
279 }
280
281 // update the layer state and schedule an idle event
282 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
283 }
284
285 // stats updates only consider packets that were successfully sent
286 pktCount[slave_port_id][master_port_id]++;
287 pktSize[slave_port_id][master_port_id] += pkt_size;
288 transDist[pkt_cmd]++;
289
290 if (is_express_snoop)
291 snoops++;
292 }
293
294 return success;
295 }
296
297 bool
298 CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
299 {
300 // determine the source port based on the id
301 MasterPort *src_port = masterPorts[master_port_id];
302
303 // determine the destination
304 const auto route_lookup = routeTo.find(pkt->req);
305 assert(route_lookup != routeTo.end());
306 const PortID slave_port_id = route_lookup->second;
307 assert(slave_port_id != InvalidPortID);
308 assert(slave_port_id < respLayers.size());
309
310 // test if the crossbar should be considered occupied for the
311 // current port
312 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
313 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
314 src_port->name(), pkt->cmdString(), pkt->getAddr());
315 return false;
316 }
317
318 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
319 src_port->name(), pkt->cmdString(), pkt->getAddr());
320
321 // store size and command as they might be modified when
322 // forwarding the packet
323 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
324 unsigned int pkt_cmd = pkt->cmdToIndex();
325
326 // a response sees the response latency
327 Tick xbar_delay = responseLatency * clockPeriod();
328
329 // set the packet header and payload delay
330 calcPacketTiming(pkt, xbar_delay);
331
332 // determine how long to be crossbar layer is busy
333 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
334
335 if (snoopFilter && !system->bypassCaches()) {
336 // let the snoop filter inspect the response and update its state
337 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
338 }
339
340 // send the packet through the destination slave port and pay for
341 // any outstanding header delay
342 Tick latency = pkt->headerDelay;
343 pkt->headerDelay = 0;
344 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
345
346 // remove the request from the routing table
347 routeTo.erase(route_lookup);
348
349 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
350
351 // stats updates
352 pktCount[slave_port_id][master_port_id]++;
353 pktSize[slave_port_id][master_port_id] += pkt_size;
354 transDist[pkt_cmd]++;
355
356 return true;
357 }
358
359 void
360 CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
361 {
362 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
363 masterPorts[master_port_id]->name(), pkt->cmdString(),
364 pkt->getAddr());
365
366 // update stats here as we know the forwarding will succeed
367 transDist[pkt->cmdToIndex()]++;
368 snoops++;
369
370 // we should only see express snoops from caches
371 assert(pkt->isExpressSnoop());
372
373 // set the packet header and payload delay, for now use forward latency
374 // @todo Assess the choice of latency further
375 calcPacketTiming(pkt, forwardLatency * clockPeriod());
376
377 // remeber if the packet is inhibited so we can see if it changes
378 const bool is_inhibited = pkt->memInhibitAsserted();
379
380 assert(pkt->snoopDelay == 0);
381
382 if (snoopFilter) {
383 // let the Snoop Filter work its magic and guide probing
384 auto sf_res = snoopFilter->lookupSnoop(pkt);
385 // the time required by a packet to be delivered through
386 // the xbar has to be charged also with to lookup latency
387 // of the snoop filter
388 pkt->headerDelay += sf_res.second * clockPeriod();
389 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
390 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
391 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
392 sf_res.second);
393
394 // forward to all snoopers
395 forwardTiming(pkt, InvalidPortID, sf_res.first);
396 } else {
397 forwardTiming(pkt, InvalidPortID);
398 }
399
400 // add the snoop delay to our header delay, and then reset it
401 pkt->headerDelay += pkt->snoopDelay;
402 pkt->snoopDelay = 0;
403
404 // if we can expect a response, remember how to route it
405 if (!is_inhibited && pkt->memInhibitAsserted()) {
406 assert(routeTo.find(pkt->req) == routeTo.end());
407 routeTo[pkt->req] = master_port_id;
408 }
409
410 // a snoop request came from a connected slave device (one of
411 // our master ports), and if it is not coming from the slave
412 // device responsible for the address range something is
413 // wrong, hence there is nothing further to do as the packet
414 // would be going back to where it came from
415 assert(master_port_id == findPort(pkt->getAddr()));
416 }
417
418 bool
419 CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
420 {
421 // determine the source port based on the id
422 SlavePort* src_port = slavePorts[slave_port_id];
423
424 // get the destination
425 const auto route_lookup = routeTo.find(pkt->req);
426 assert(route_lookup != routeTo.end());
427 const PortID dest_port_id = route_lookup->second;
428 assert(dest_port_id != InvalidPortID);
429
430 // determine if the response is from a snoop request we
431 // created as the result of a normal request (in which case it
432 // should be in the outstandingSnoop), or if we merely forwarded
433 // someone else's snoop request
434 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
435 outstandingSnoop.end();
436
437 // test if the crossbar should be considered occupied for the
438 // current port, note that the check is bypassed if the response
439 // is being passed on as a normal response since this is occupying
440 // the response layer rather than the snoop response layer
441 if (forwardAsSnoop) {
442 assert(dest_port_id < snoopLayers.size());
443 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
444 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
445 src_port->name(), pkt->cmdString(), pkt->getAddr());
446 return false;
447 }
448 } else {
449 // get the master port that mirrors this slave port internally
450 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
451 assert(dest_port_id < respLayers.size());
452 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
453 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
454 snoop_port->name(), pkt->cmdString(), pkt->getAddr());
455 return false;
456 }
457 }
458
459 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
460 src_port->name(), pkt->cmdString(), pkt->getAddr());
461
462 // store size and command as they might be modified when
463 // forwarding the packet
464 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
465 unsigned int pkt_cmd = pkt->cmdToIndex();
466
467 // responses are never express snoops
468 assert(!pkt->isExpressSnoop());
469
470 // a snoop response sees the snoop response latency, and if it is
471 // forwarded as a normal response, the response latency
472 Tick xbar_delay =
473 (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
474 clockPeriod();
475
476 // set the packet header and payload delay
477 calcPacketTiming(pkt, xbar_delay);
478
479 // determine how long to be crossbar layer is busy
480 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
481
482 // forward it either as a snoop response or a normal response
483 if (forwardAsSnoop) {
484 // this is a snoop response to a snoop request we forwarded,
485 // e.g. coming from the L1 and going to the L2, and it should
486 // be forwarded as a snoop response
487
488 if (snoopFilter) {
489 // update the probe filter so that it can properly track the line
490 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
491 *masterPorts[dest_port_id]);
492 }
493
494 bool success M5_VAR_USED =
495 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
496 pktCount[slave_port_id][dest_port_id]++;
497 pktSize[slave_port_id][dest_port_id] += pkt_size;
498 assert(success);
499
500 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
501 } else {
502 // we got a snoop response on one of our slave ports,
503 // i.e. from a coherent master connected to the crossbar, and
504 // since we created the snoop request as part of recvTiming,
505 // this should now be a normal response again
506 outstandingSnoop.erase(pkt->req);
507
508 // this is a snoop response from a coherent master, hence it
509 // should never go back to where the snoop response came from,
510 // but instead to where the original request came from
511 assert(slave_port_id != dest_port_id);
512
513 if (snoopFilter) {
514 // update the probe filter so that it can properly track the line
515 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
516 *slavePorts[dest_port_id]);
517 }
518
519 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
520 " FWD RESP\n", src_port->name(), pkt->cmdString(),
521 pkt->getAddr());
522
523 // as a normal response, it should go back to a master through
524 // one of our slave ports, we also pay for any outstanding
525 // header latency
526 Tick latency = pkt->headerDelay;
527 pkt->headerDelay = 0;
528 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
529
530 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
531 }
532
533 // remove the request from the routing table
534 routeTo.erase(route_lookup);
535
536 // stats updates
537 transDist[pkt_cmd]++;
538 snoops++;
539
540 return true;
541 }
542
543
544 void
545 CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
546 const std::vector<QueuedSlavePort*>& dests)
547 {
548 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
549 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
550
551 // snoops should only happen if the system isn't bypassing caches
552 assert(!system->bypassCaches());
553
554 unsigned fanout = 0;
555
556 for (const auto& p: dests) {
557 // we could have gotten this request from a snooping master
558 // (corresponding to our own slave port that is also in
559 // snoopPorts) and should not send it back to where it came
560 // from
561 if (exclude_slave_port_id == InvalidPortID ||
562 p->getId() != exclude_slave_port_id) {
563 // cache is not allowed to refuse snoop
564 p->sendTimingSnoopReq(pkt);
565 fanout++;
566 }
567 }
568
569 // Stats for fanout of this forward operation
570 snoopFanout.sample(fanout);
571 }
572
573 void
574 CoherentXBar::recvReqRetry(PortID master_port_id)
575 {
576 // responses and snoop responses never block on forwarding them,
577 // so the retry will always be coming from a port to which we
578 // tried to forward a request
579 reqLayers[master_port_id]->recvRetry();
580 }
581
582 Tick
583 CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
584 {
585 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
586 slavePorts[slave_port_id]->name(), pkt->getAddr(),
587 pkt->cmdString());
588
589 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
590 unsigned int pkt_cmd = pkt->cmdToIndex();
591
592 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
593 Tick snoop_response_latency = 0;
594
595 if (!system->bypassCaches()) {
596 // forward to all snoopers but the source
597 std::pair<MemCmd, Tick> snoop_result;
598 if (snoopFilter) {
599 // check with the snoop filter where to forward this packet
600 auto sf_res =
601 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
602 snoop_response_latency += sf_res.second * clockPeriod();
603 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
604 " SF size: %i lat: %i\n", __func__,
605 slavePorts[slave_port_id]->name(), pkt->cmdString(),
606 pkt->getAddr(), sf_res.first.size(), sf_res.second);
607
608 // let the snoop filter know about the success of the send
609 // operation, and do it even before sending it onwards to
610 // avoid situations where atomic upward snoops sneak in
611 // between and change the filter state
612 snoopFilter->finishRequest(false, pkt);
613
614 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
615 sf_res.first);
616 } else {
617 snoop_result = forwardAtomic(pkt, slave_port_id);
618 }
619 snoop_response_cmd = snoop_result.first;
620 snoop_response_latency += snoop_result.second;
621 }
622
623 // forwardAtomic snooped into peer caches of the sender, and if
624 // this is a clean evict, but the packet is found in a cache, do
625 // not forward it
626 if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) {
627 DPRINTF(CoherentXBar, "recvAtomic: Clean evict 0x%x still cached, "
628 "not forwarding\n", pkt->getAddr());
629 return 0;
630 }
631
632 // even if we had a snoop response, we must continue and also
633 // perform the actual request at the destination
634 PortID master_port_id = findPort(pkt->getAddr());
635
636 // stats updates for the request
637 pktCount[slave_port_id][master_port_id]++;
638 pktSize[slave_port_id][master_port_id] += pkt_size;
639 transDist[pkt_cmd]++;
640
641 // forward the request to the appropriate destination
642 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
643
644 // if lower levels have replied, tell the snoop filter
645 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
646 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
647 }
648
649 // if we got a response from a snooper, restore it here
650 if (snoop_response_cmd != MemCmd::InvalidCmd) {
651 // no one else should have responded
652 assert(!pkt->isResponse());
653 pkt->cmd = snoop_response_cmd;
654 response_latency = snoop_response_latency;
655 }
656
657 // add the response data
658 if (pkt->isResponse()) {
659 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
660 pkt_cmd = pkt->cmdToIndex();
661
662 // stats updates
663 pktCount[slave_port_id][master_port_id]++;
664 pktSize[slave_port_id][master_port_id] += pkt_size;
665 transDist[pkt_cmd]++;
666 }
667
668 // @todo: Not setting header time
669 pkt->payloadDelay = response_latency;
670 return response_latency;
671 }
672
673 Tick
674 CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
675 {
676 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
677 masterPorts[master_port_id]->name(), pkt->getAddr(),
678 pkt->cmdString());
679
680 // add the request snoop data
681 snoops++;
682
683 // forward to all snoopers
684 std::pair<MemCmd, Tick> snoop_result;
685 Tick snoop_response_latency = 0;
686 if (snoopFilter) {
687 auto sf_res = snoopFilter->lookupSnoop(pkt);
688 snoop_response_latency += sf_res.second * clockPeriod();
689 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
690 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
691 pkt->getAddr(), sf_res.first.size(), sf_res.second);
692 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
693 sf_res.first);
694 } else {
695 snoop_result = forwardAtomic(pkt, InvalidPortID);
696 }
697 MemCmd snoop_response_cmd = snoop_result.first;
698 snoop_response_latency += snoop_result.second;
699
700 if (snoop_response_cmd != MemCmd::InvalidCmd)
701 pkt->cmd = snoop_response_cmd;
702
703 // add the response snoop data
704 if (pkt->isResponse()) {
705 snoops++;
706 }
707
708 // @todo: Not setting header time
709 pkt->payloadDelay = snoop_response_latency;
710 return snoop_response_latency;
711 }
712
713 std::pair<MemCmd, Tick>
714 CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
715 PortID source_master_port_id,
716 const std::vector<QueuedSlavePort*>& dests)
717 {
718 // the packet may be changed on snoops, record the original
719 // command to enable us to restore it between snoops so that
720 // additional snoops can take place properly
721 MemCmd orig_cmd = pkt->cmd;
722 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
723 Tick snoop_response_latency = 0;
724
725 // snoops should only happen if the system isn't bypassing caches
726 assert(!system->bypassCaches());
727
728 unsigned fanout = 0;
729
730 for (const auto& p: dests) {
731 // we could have gotten this request from a snooping master
732 // (corresponding to our own slave port that is also in
733 // snoopPorts) and should not send it back to where it came
734 // from
735 if (exclude_slave_port_id != InvalidPortID &&
736 p->getId() == exclude_slave_port_id)
737 continue;
738
739 Tick latency = p->sendAtomicSnoop(pkt);
740 fanout++;
741
742 // in contrast to a functional access, we have to keep on
743 // going as all snoopers must be updated even if we get a
744 // response
745 if (!pkt->isResponse())
746 continue;
747
748 // response from snoop agent
749 assert(pkt->cmd != orig_cmd);
750 assert(pkt->memInhibitAsserted());
751 // should only happen once
752 assert(snoop_response_cmd == MemCmd::InvalidCmd);
753 // save response state
754 snoop_response_cmd = pkt->cmd;
755 snoop_response_latency = latency;
756
757 if (snoopFilter) {
758 // Handle responses by the snoopers and differentiate between
759 // responses to requests from above and snoops from below
760 if (source_master_port_id != InvalidPortID) {
761 // Getting a response for a snoop from below
762 assert(exclude_slave_port_id == InvalidPortID);
763 snoopFilter->updateSnoopForward(pkt, *p,
764 *masterPorts[source_master_port_id]);
765 } else {
766 // Getting a response for a request from above
767 assert(source_master_port_id == InvalidPortID);
768 snoopFilter->updateSnoopResponse(pkt, *p,
769 *slavePorts[exclude_slave_port_id]);
770 }
771 }
772 // restore original packet state for remaining snoopers
773 pkt->cmd = orig_cmd;
774 }
775
776 // Stats for fanout
777 snoopFanout.sample(fanout);
778
779 // the packet is restored as part of the loop and any potential
780 // snoop response is part of the returned pair
781 return std::make_pair(snoop_response_cmd, snoop_response_latency);
782 }
783
784 void
785 CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
786 {
787 if (!pkt->isPrint()) {
788 // don't do DPRINTFs on PrintReq as it clutters up the output
789 DPRINTF(CoherentXBar,
790 "recvFunctional: packet src %s addr 0x%x cmd %s\n",
791 slavePorts[slave_port_id]->name(), pkt->getAddr(),
792 pkt->cmdString());
793 }
794
795 if (!system->bypassCaches()) {
796 // forward to all snoopers but the source
797 forwardFunctional(pkt, slave_port_id);
798 }
799
800 // there is no need to continue if the snooping has found what we
801 // were looking for and the packet is already a response
802 if (!pkt->isResponse()) {
803 // since our slave ports are queued ports we need to check them as well
804 for (const auto& p : slavePorts) {
805 // if we find a response that has the data, then the
806 // downstream caches/memories may be out of date, so simply stop
807 // here
808 if (p->checkFunctional(pkt)) {
809 if (pkt->needsResponse())
810 pkt->makeResponse();
811 return;
812 }
813 }
814
815 PortID dest_id = findPort(pkt->getAddr());
816
817 masterPorts[dest_id]->sendFunctional(pkt);
818 }
819 }
820
821 void
822 CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
823 {
824 if (!pkt->isPrint()) {
825 // don't do DPRINTFs on PrintReq as it clutters up the output
826 DPRINTF(CoherentXBar,
827 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
828 masterPorts[master_port_id]->name(), pkt->getAddr(),
829 pkt->cmdString());
830 }
831
832 for (const auto& p : slavePorts) {
833 if (p->checkFunctional(pkt)) {
834 if (pkt->needsResponse())
835 pkt->makeResponse();
836 return;
837 }
838 }
839
840 // forward to all snoopers
841 forwardFunctional(pkt, InvalidPortID);
842 }
843
844 void
845 CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
846 {
847 // snoops should only happen if the system isn't bypassing caches
848 assert(!system->bypassCaches());
849
850 for (const auto& p: snoopPorts) {
851 // we could have gotten this request from a snooping master
852 // (corresponding to our own slave port that is also in
853 // snoopPorts) and should not send it back to where it came
854 // from
855 if (exclude_slave_port_id == InvalidPortID ||
856 p->getId() != exclude_slave_port_id)
857 p->sendFunctionalSnoop(pkt);
858
859 // if we get a response we are done
860 if (pkt->isResponse()) {
861 break;
862 }
863 }
864 }
865
866 void
867 CoherentXBar::regStats()
868 {
869 // register the stats of the base class and our layers
870 BaseXBar::regStats();
871 for (auto l: reqLayers)
872 l->regStats();
873 for (auto l: respLayers)
874 l->regStats();
875 for (auto l: snoopLayers)
876 l->regStats();
877
878 snoops
879 .name(name() + ".snoops")
880 .desc("Total snoops (count)")
881 ;
882
883 snoopFanout
884 .init(0, snoopPorts.size(), 1)
885 .name(name() + ".snoop_fanout")
886 .desc("Request fanout histogram")
887 ;
888 }
889
890 CoherentXBar *
891 CoherentXBarParams::create()
892 {
893 return new CoherentXBar(this);
894 }