mem: Rename Bus to XBar to better reflect its behaviour
[gem5.git] / src / mem / coherent_xbar.cc
1 /*
2 * Copyright (c) 2011-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 */
44
45 /**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50 #include "base/misc.hh"
51 #include "base/trace.hh"
52 #include "debug/AddrRanges.hh"
53 #include "debug/CoherentXBar.hh"
54 #include "mem/coherent_xbar.hh"
55 #include "sim/system.hh"
56
57 CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter)
59 {
60 // create the ports based on the size of the master and slave
61 // vector ports, and the presence of the default port, the ports
62 // are enumerated starting from zero
63 for (int i = 0; i < p->port_master_connection_count; ++i) {
64 std::string portName = csprintf("%s.master[%d]", name(), i);
65 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
66 masterPorts.push_back(bp);
67 reqLayers.push_back(new ReqLayer(*bp, *this,
68 csprintf(".reqLayer%d", i)));
69 snoopLayers.push_back(new SnoopLayer(*bp, *this,
70 csprintf(".snoopLayer%d", i)));
71 }
72
73 // see if we have a default slave device connected and if so add
74 // our corresponding master port
75 if (p->port_default_connection_count) {
76 defaultPortID = masterPorts.size();
77 std::string portName = name() + ".default";
78 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
79 defaultPortID);
80 masterPorts.push_back(bp);
81 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
82 defaultPortID)));
83 snoopLayers.push_back(new SnoopLayer(*bp, *this,
84 csprintf(".snoopLayer%d",
85 defaultPortID)));
86 }
87
88 // create the slave ports, once again starting at zero
89 for (int i = 0; i < p->port_slave_connection_count; ++i) {
90 std::string portName = csprintf("%s.slave[%d]", name(), i);
91 SlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
92 slavePorts.push_back(bp);
93 respLayers.push_back(new RespLayer(*bp, *this,
94 csprintf(".respLayer%d", i)));
95 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
96 }
97
98 if (snoopFilter)
99 snoopFilter->setSlavePorts(slavePorts);
100
101 clearPortCache();
102 }
103
104 CoherentXBar::~CoherentXBar()
105 {
106 for (auto l: reqLayers)
107 delete l;
108 for (auto l: respLayers)
109 delete l;
110 for (auto l: snoopLayers)
111 delete l;
112 for (auto p: snoopRespPorts)
113 delete p;
114 }
115
116 void
117 CoherentXBar::init()
118 {
119 // the base class is responsible for determining the block size
120 BaseXBar::init();
121
122 // iterate over our slave ports and determine which of our
123 // neighbouring master ports are snooping and add them as snoopers
124 for (const auto& p: slavePorts) {
125 // check if the connected master port is snooping
126 if (p->isSnooping()) {
127 DPRINTF(AddrRanges, "Adding snooping master %s\n",
128 p->getMasterPort().name());
129 snoopPorts.push_back(p);
130 }
131 }
132
133 if (snoopPorts.empty())
134 warn("CoherentXBar %s has no snooping ports attached!\n", name());
135 }
136
137 bool
138 CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
139 {
140 // determine the source port based on the id
141 SlavePort *src_port = slavePorts[slave_port_id];
142
143 // remember if the packet is an express snoop
144 bool is_express_snoop = pkt->isExpressSnoop();
145
146 // determine the destination based on the address
147 PortID master_port_id = findPort(pkt->getAddr());
148
149 // test if the crossbar should be considered occupied for the current
150 // port, and exclude express snoops from the check
151 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
152 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
153 src_port->name(), pkt->cmdString(), pkt->getAddr());
154 return false;
155 }
156
157 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
158 src_port->name(), pkt->cmdString(), is_express_snoop,
159 pkt->getAddr());
160
161 // store size and command as they might be modified when
162 // forwarding the packet
163 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
164 unsigned int pkt_cmd = pkt->cmdToIndex();
165
166 // set the source port for routing of the response
167 pkt->setSrc(slave_port_id);
168
169 calcPacketTiming(pkt);
170 Tick packetFinishTime = pkt->lastWordDelay + curTick();
171
172 // uncacheable requests need never be snooped
173 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
174 // the packet is a memory-mapped request and should be
175 // broadcasted to our snoopers but the source
176 if (snoopFilter) {
177 // check with the snoop filter where to forward this packet
178 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
179 packetFinishTime += sf_res.second * clockPeriod();
180 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
181 " SF size: %i lat: %i\n", src_port->name(),
182 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
183 sf_res.second);
184 forwardTiming(pkt, slave_port_id, sf_res.first);
185 } else {
186 forwardTiming(pkt, slave_port_id);
187 }
188 }
189
190 // remember if we add an outstanding req so we can undo it if
191 // necessary, if the packet needs a response, we should add it
192 // as outstanding and express snoops never fail so there is
193 // not need to worry about them
194 bool add_outstanding = !is_express_snoop && pkt->needsResponse();
195
196 // keep track that we have an outstanding request packet
197 // matching this request, this is used by the coherency
198 // mechanism in determining what to do with snoop responses
199 // (in recvTimingSnoop)
200 if (add_outstanding) {
201 // we should never have an exsiting request outstanding
202 assert(outstandingReq.find(pkt->req) == outstandingReq.end());
203 outstandingReq.insert(pkt->req);
204 }
205
206 // Note: Cannot create a copy of the full packet, here.
207 MemCmd orig_cmd(pkt->cmd);
208
209 // since it is a normal request, attempt to send the packet
210 bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
211
212 if (snoopFilter && !pkt->req->isUncacheable()
213 && !system->bypassCaches()) {
214 // The packet may already be overwritten by the sendTimingReq function.
215 // The snoop filter needs to see the original request *and* the return
216 // status of the send operation, so we need to recreate the original
217 // request. Atomic mode does not have the issue, as there the send
218 // operation and the response happen instantaneously and don't need two
219 // phase tracking.
220 MemCmd tmp_cmd(pkt->cmd);
221 pkt->cmd = orig_cmd;
222 // Let the snoop filter know about the success of the send operation
223 snoopFilter->updateRequest(pkt, *src_port, !success);
224 pkt->cmd = tmp_cmd;
225 }
226
227 // if this is an express snoop, we are done at this point
228 if (is_express_snoop) {
229 assert(success);
230 snoops++;
231 } else {
232 // for normal requests, check if successful
233 if (!success) {
234 // inhibited packets should never be forced to retry
235 assert(!pkt->memInhibitAsserted());
236
237 // if it was added as outstanding and the send failed, then
238 // erase it again
239 if (add_outstanding)
240 outstandingReq.erase(pkt->req);
241
242 // undo the calculation so we can check for 0 again
243 pkt->firstWordDelay = pkt->lastWordDelay = 0;
244
245 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
246 src_port->name(), pkt->cmdString(), pkt->getAddr());
247
248 // update the layer state and schedule an idle event
249 reqLayers[master_port_id]->failedTiming(src_port,
250 clockEdge(headerCycles));
251 } else {
252 // update the layer state and schedule an idle event
253 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
254 }
255 }
256
257 // stats updates only consider packets that were successfully sent
258 if (success) {
259 pktCount[slave_port_id][master_port_id]++;
260 pktSize[slave_port_id][master_port_id] += pkt_size;
261 transDist[pkt_cmd]++;
262 }
263
264 return success;
265 }
266
267 bool
268 CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
269 {
270 // determine the source port based on the id
271 MasterPort *src_port = masterPorts[master_port_id];
272
273 // determine the destination based on what is stored in the packet
274 PortID slave_port_id = pkt->getDest();
275
276 // test if the crossbar should be considered occupied for the
277 // current port
278 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
279 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
280 src_port->name(), pkt->cmdString(), pkt->getAddr());
281 return false;
282 }
283
284 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
285 src_port->name(), pkt->cmdString(), pkt->getAddr());
286
287 // store size and command as they might be modified when
288 // forwarding the packet
289 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
290 unsigned int pkt_cmd = pkt->cmdToIndex();
291
292 calcPacketTiming(pkt);
293 Tick packetFinishTime = pkt->lastWordDelay + curTick();
294
295 // the packet is a normal response to a request that we should
296 // have seen passing through the crossbar
297 assert(outstandingReq.find(pkt->req) != outstandingReq.end());
298
299 if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches()) {
300 // let the snoop filter inspect the response and update its state
301 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
302 }
303
304 // remove it as outstanding
305 outstandingReq.erase(pkt->req);
306
307 // send the packet through the destination slave port
308 bool success M5_VAR_USED = slavePorts[slave_port_id]->sendTimingResp(pkt);
309
310 // currently it is illegal to block responses... can lead to
311 // deadlock
312 assert(success);
313
314 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
315
316 // stats updates
317 pktCount[slave_port_id][master_port_id]++;
318 pktSize[slave_port_id][master_port_id] += pkt_size;
319 transDist[pkt_cmd]++;
320
321 return true;
322 }
323
324 void
325 CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
326 {
327 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
328 masterPorts[master_port_id]->name(), pkt->cmdString(),
329 pkt->getAddr());
330
331 // update stats here as we know the forwarding will succeed
332 transDist[pkt->cmdToIndex()]++;
333 snoops++;
334
335 // we should only see express snoops from caches
336 assert(pkt->isExpressSnoop());
337
338 // set the source port for routing of the response
339 pkt->setSrc(master_port_id);
340
341 if (snoopFilter) {
342 // let the Snoop Filter work its magic and guide probing
343 auto sf_res = snoopFilter->lookupSnoop(pkt);
344 // No timing here: packetFinishTime += sf_res.second * clockPeriod();
345 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
346 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
347 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
348 sf_res.second);
349
350 // forward to all snoopers
351 forwardTiming(pkt, InvalidPortID, sf_res.first);
352 } else {
353 forwardTiming(pkt, InvalidPortID);
354 }
355
356 // a snoop request came from a connected slave device (one of
357 // our master ports), and if it is not coming from the slave
358 // device responsible for the address range something is
359 // wrong, hence there is nothing further to do as the packet
360 // would be going back to where it came from
361 assert(master_port_id == findPort(pkt->getAddr()));
362 }
363
364 bool
365 CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
366 {
367 // determine the source port based on the id
368 SlavePort* src_port = slavePorts[slave_port_id];
369
370 // get the destination from the packet
371 PortID dest_port_id = pkt->getDest();
372
373 // determine if the response is from a snoop request we
374 // created as the result of a normal request (in which case it
375 // should be in the outstandingReq), or if we merely forwarded
376 // someone else's snoop request
377 bool forwardAsSnoop = outstandingReq.find(pkt->req) ==
378 outstandingReq.end();
379
380 // test if the crossbar should be considered occupied for the
381 // current port, note that the check is bypassed if the response
382 // is being passed on as a normal response since this is occupying
383 // the response layer rather than the snoop response layer
384 if (forwardAsSnoop) {
385 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
386 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
387 src_port->name(), pkt->cmdString(), pkt->getAddr());
388 return false;
389 }
390 } else {
391 // get the master port that mirrors this slave port internally
392 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
393 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
394 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
395 snoop_port->name(), pkt->cmdString(), pkt->getAddr());
396 return false;
397 }
398 }
399
400 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
401 src_port->name(), pkt->cmdString(), pkt->getAddr());
402
403 // store size and command as they might be modified when
404 // forwarding the packet
405 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
406 unsigned int pkt_cmd = pkt->cmdToIndex();
407
408 // responses are never express snoops
409 assert(!pkt->isExpressSnoop());
410
411 calcPacketTiming(pkt);
412 Tick packetFinishTime = pkt->lastWordDelay + curTick();
413
414 // forward it either as a snoop response or a normal response
415 if (forwardAsSnoop) {
416 // this is a snoop response to a snoop request we forwarded,
417 // e.g. coming from the L1 and going to the L2, and it should
418 // be forwarded as a snoop response
419
420 if (snoopFilter) {
421 // update the probe filter so that it can properly track the line
422 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
423 *masterPorts[dest_port_id]);
424 }
425
426 bool success M5_VAR_USED =
427 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
428 pktCount[slave_port_id][dest_port_id]++;
429 pktSize[slave_port_id][dest_port_id] += pkt_size;
430 assert(success);
431
432 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
433 } else {
434 // we got a snoop response on one of our slave ports,
435 // i.e. from a coherent master connected to the crossbar, and
436 // since we created the snoop request as part of recvTiming,
437 // this should now be a normal response again
438 outstandingReq.erase(pkt->req);
439
440 // this is a snoop response from a coherent master, with a
441 // destination field set on its way through the crossbar as
442 // request, hence it should never go back to where the snoop
443 // response came from, but instead to where the original
444 // request came from
445 assert(slave_port_id != dest_port_id);
446
447 if (snoopFilter) {
448 // update the probe filter so that it can properly track the line
449 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
450 *slavePorts[dest_port_id]);
451 }
452
453 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
454 " FWD RESP\n", src_port->name(), pkt->cmdString(),
455 pkt->getAddr());
456
457 // as a normal response, it should go back to a master through
458 // one of our slave ports, at this point we are ignoring the
459 // fact that the response layer could be busy and do not touch
460 // its state
461 bool success M5_VAR_USED =
462 slavePorts[dest_port_id]->sendTimingResp(pkt);
463
464 // @todo Put the response in an internal FIFO and pass it on
465 // to the response layer from there
466
467 // currently it is illegal to block responses... can lead
468 // to deadlock
469 assert(success);
470
471 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
472 }
473
474 // stats updates
475 transDist[pkt_cmd]++;
476 snoops++;
477
478 return true;
479 }
480
481
482 void
483 CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
484 const std::vector<SlavePort*>& dests)
485 {
486 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
487 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
488
489 // snoops should only happen if the system isn't bypassing caches
490 assert(!system->bypassCaches());
491
492 unsigned fanout = 0;
493
494 for (const auto& p: dests) {
495 // we could have gotten this request from a snooping master
496 // (corresponding to our own slave port that is also in
497 // snoopPorts) and should not send it back to where it came
498 // from
499 if (exclude_slave_port_id == InvalidPortID ||
500 p->getId() != exclude_slave_port_id) {
501 // cache is not allowed to refuse snoop
502 p->sendTimingSnoopReq(pkt);
503 fanout++;
504 }
505 }
506
507 // Stats for fanout of this forward operation
508 snoopFanout.sample(fanout);
509 }
510
511 void
512 CoherentXBar::recvRetry(PortID master_port_id)
513 {
514 // responses and snoop responses never block on forwarding them,
515 // so the retry will always be coming from a port to which we
516 // tried to forward a request
517 reqLayers[master_port_id]->recvRetry();
518 }
519
520 Tick
521 CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
522 {
523 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
524 slavePorts[slave_port_id]->name(), pkt->getAddr(),
525 pkt->cmdString());
526
527 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
528 unsigned int pkt_cmd = pkt->cmdToIndex();
529
530 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
531 Tick snoop_response_latency = 0;
532
533 // uncacheable requests need never be snooped
534 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
535 // forward to all snoopers but the source
536 std::pair<MemCmd, Tick> snoop_result;
537 if (snoopFilter) {
538 // check with the snoop filter where to forward this packet
539 auto sf_res =
540 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
541 snoop_response_latency += sf_res.second * clockPeriod();
542 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
543 " SF size: %i lat: %i\n", __func__,
544 slavePorts[slave_port_id]->name(), pkt->cmdString(),
545 pkt->getAddr(), sf_res.first.size(), sf_res.second);
546 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
547 sf_res.first);
548 } else {
549 snoop_result = forwardAtomic(pkt, slave_port_id);
550 }
551 snoop_response_cmd = snoop_result.first;
552 snoop_response_latency += snoop_result.second;
553 }
554
555 // even if we had a snoop response, we must continue and also
556 // perform the actual request at the destination
557 PortID master_port_id = findPort(pkt->getAddr());
558
559 // stats updates for the request
560 pktCount[slave_port_id][master_port_id]++;
561 pktSize[slave_port_id][master_port_id] += pkt_size;
562 transDist[pkt_cmd]++;
563
564 // forward the request to the appropriate destination
565 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
566
567 // Lower levels have replied, tell the snoop filter
568 if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches() &&
569 pkt->isResponse()) {
570 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
571 }
572
573 // if we got a response from a snooper, restore it here
574 if (snoop_response_cmd != MemCmd::InvalidCmd) {
575 // no one else should have responded
576 assert(!pkt->isResponse());
577 pkt->cmd = snoop_response_cmd;
578 response_latency = snoop_response_latency;
579 }
580
581 // add the response data
582 if (pkt->isResponse()) {
583 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
584 pkt_cmd = pkt->cmdToIndex();
585
586 // stats updates
587 pktCount[slave_port_id][master_port_id]++;
588 pktSize[slave_port_id][master_port_id] += pkt_size;
589 transDist[pkt_cmd]++;
590 }
591
592 // @todo: Not setting first-word time
593 pkt->lastWordDelay = response_latency;
594 return response_latency;
595 }
596
597 Tick
598 CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
599 {
600 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
601 masterPorts[master_port_id]->name(), pkt->getAddr(),
602 pkt->cmdString());
603
604 // add the request snoop data
605 snoops++;
606
607 // forward to all snoopers
608 std::pair<MemCmd, Tick> snoop_result;
609 Tick snoop_response_latency = 0;
610 if (snoopFilter) {
611 auto sf_res = snoopFilter->lookupSnoop(pkt);
612 snoop_response_latency += sf_res.second * clockPeriod();
613 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
614 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
615 pkt->getAddr(), sf_res.first.size(), sf_res.second);
616 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
617 sf_res.first);
618 } else {
619 snoop_result = forwardAtomic(pkt, InvalidPortID);
620 }
621 MemCmd snoop_response_cmd = snoop_result.first;
622 snoop_response_latency += snoop_result.second;
623
624 if (snoop_response_cmd != MemCmd::InvalidCmd)
625 pkt->cmd = snoop_response_cmd;
626
627 // add the response snoop data
628 if (pkt->isResponse()) {
629 snoops++;
630 }
631
632 // @todo: Not setting first-word time
633 pkt->lastWordDelay = snoop_response_latency;
634 return snoop_response_latency;
635 }
636
637 std::pair<MemCmd, Tick>
638 CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
639 PortID source_master_port_id,
640 const std::vector<SlavePort*>& dests)
641 {
642 // the packet may be changed on snoops, record the original
643 // command to enable us to restore it between snoops so that
644 // additional snoops can take place properly
645 MemCmd orig_cmd = pkt->cmd;
646 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
647 Tick snoop_response_latency = 0;
648
649 // snoops should only happen if the system isn't bypassing caches
650 assert(!system->bypassCaches());
651
652 unsigned fanout = 0;
653
654 for (const auto& p: dests) {
655 // we could have gotten this request from a snooping master
656 // (corresponding to our own slave port that is also in
657 // snoopPorts) and should not send it back to where it came
658 // from
659 if (exclude_slave_port_id != InvalidPortID &&
660 p->getId() == exclude_slave_port_id)
661 continue;
662
663 Tick latency = p->sendAtomicSnoop(pkt);
664 fanout++;
665
666 // in contrast to a functional access, we have to keep on
667 // going as all snoopers must be updated even if we get a
668 // response
669 if (!pkt->isResponse())
670 continue;
671
672 // response from snoop agent
673 assert(pkt->cmd != orig_cmd);
674 assert(pkt->memInhibitAsserted());
675 // should only happen once
676 assert(snoop_response_cmd == MemCmd::InvalidCmd);
677 // save response state
678 snoop_response_cmd = pkt->cmd;
679 snoop_response_latency = latency;
680
681 if (snoopFilter) {
682 // Handle responses by the snoopers and differentiate between
683 // responses to requests from above and snoops from below
684 if (source_master_port_id != InvalidPortID) {
685 // Getting a response for a snoop from below
686 assert(exclude_slave_port_id == InvalidPortID);
687 snoopFilter->updateSnoopForward(pkt, *p,
688 *masterPorts[source_master_port_id]);
689 } else {
690 // Getting a response for a request from above
691 assert(source_master_port_id == InvalidPortID);
692 snoopFilter->updateSnoopResponse(pkt, *p,
693 *slavePorts[exclude_slave_port_id]);
694 }
695 }
696 // restore original packet state for remaining snoopers
697 pkt->cmd = orig_cmd;
698 }
699
700 // Stats for fanout
701 snoopFanout.sample(fanout);
702
703 // the packet is restored as part of the loop and any potential
704 // snoop response is part of the returned pair
705 return std::make_pair(snoop_response_cmd, snoop_response_latency);
706 }
707
708 void
709 CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
710 {
711 if (!pkt->isPrint()) {
712 // don't do DPRINTFs on PrintReq as it clutters up the output
713 DPRINTF(CoherentXBar,
714 "recvFunctional: packet src %s addr 0x%x cmd %s\n",
715 slavePorts[slave_port_id]->name(), pkt->getAddr(),
716 pkt->cmdString());
717 }
718
719 // uncacheable requests need never be snooped
720 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
721 // forward to all snoopers but the source
722 forwardFunctional(pkt, slave_port_id);
723 }
724
725 // there is no need to continue if the snooping has found what we
726 // were looking for and the packet is already a response
727 if (!pkt->isResponse()) {
728 PortID dest_id = findPort(pkt->getAddr());
729
730 masterPorts[dest_id]->sendFunctional(pkt);
731 }
732 }
733
734 void
735 CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
736 {
737 if (!pkt->isPrint()) {
738 // don't do DPRINTFs on PrintReq as it clutters up the output
739 DPRINTF(CoherentXBar,
740 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
741 masterPorts[master_port_id]->name(), pkt->getAddr(),
742 pkt->cmdString());
743 }
744
745 // forward to all snoopers
746 forwardFunctional(pkt, InvalidPortID);
747 }
748
749 void
750 CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
751 {
752 // snoops should only happen if the system isn't bypassing caches
753 assert(!system->bypassCaches());
754
755 for (const auto& p: snoopPorts) {
756 // we could have gotten this request from a snooping master
757 // (corresponding to our own slave port that is also in
758 // snoopPorts) and should not send it back to where it came
759 // from
760 if (exclude_slave_port_id == InvalidPortID ||
761 p->getId() != exclude_slave_port_id)
762 p->sendFunctionalSnoop(pkt);
763
764 // if we get a response we are done
765 if (pkt->isResponse()) {
766 break;
767 }
768 }
769 }
770
771 unsigned int
772 CoherentXBar::drain(DrainManager *dm)
773 {
774 // sum up the individual layers
775 unsigned int total = 0;
776 for (auto l: reqLayers)
777 total += l->drain(dm);
778 for (auto l: respLayers)
779 total += l->drain(dm);
780 for (auto l: snoopLayers)
781 total += l->drain(dm);
782 return total;
783 }
784
785 void
786 CoherentXBar::regStats()
787 {
788 // register the stats of the base class and our layers
789 BaseXBar::regStats();
790 for (auto l: reqLayers)
791 l->regStats();
792 for (auto l: respLayers)
793 l->regStats();
794 for (auto l: snoopLayers)
795 l->regStats();
796
797 snoops
798 .name(name() + ".snoops")
799 .desc("Total snoops (count)")
800 ;
801
802 snoopFanout
803 .init(0, snoopPorts.size(), 1)
804 .name(name() + ".snoop_fanout")
805 .desc("Request fanout histogram")
806 ;
807 }
808
809 CoherentXBar *
810 CoherentXBarParams::create()
811 {
812 return new CoherentXBar(this);
813 }