cpu, dev, mem: Use the new Port methods.
[gem5.git] / src / mem / coherent_xbar.cc
1 /*
2 * Copyright (c) 2011-2019 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 * Nikos Nikoleris
44 */
45
46 /**
47 * @file
48 * Definition of a crossbar object.
49 */
50
51 #include "mem/coherent_xbar.hh"
52
53 #include "base/logging.hh"
54 #include "base/trace.hh"
55 #include "debug/AddrRanges.hh"
56 #include "debug/CoherentXBar.hh"
57 #include "sim/system.hh"
58
59 CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
60 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
61 snoopResponseLatency(p->snoop_response_latency),
62 maxOutstandingSnoopCheck(p->max_outstanding_snoops),
63 maxRoutingTableSizeCheck(p->max_routing_table_size),
64 pointOfCoherency(p->point_of_coherency),
65 pointOfUnification(p->point_of_unification)
66 {
67 // create the ports based on the size of the master and slave
68 // vector ports, and the presence of the default port, the ports
69 // are enumerated starting from zero
70 for (int i = 0; i < p->port_master_connection_count; ++i) {
71 std::string portName = csprintf("%s.master[%d]", name(), i);
72 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
73 masterPorts.push_back(bp);
74 reqLayers.push_back(new ReqLayer(*bp, *this,
75 csprintf(".reqLayer%d", i)));
76 snoopLayers.push_back(
77 new SnoopRespLayer(*bp, *this, csprintf(".snoopLayer%d", i)));
78 }
79
80 // see if we have a default slave device connected and if so add
81 // our corresponding master port
82 if (p->port_default_connection_count) {
83 defaultPortID = masterPorts.size();
84 std::string portName = name() + ".default";
85 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
86 defaultPortID);
87 masterPorts.push_back(bp);
88 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
89 defaultPortID)));
90 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
91 csprintf(".snoopLayer%d",
92 defaultPortID)));
93 }
94
95 // create the slave ports, once again starting at zero
96 for (int i = 0; i < p->port_slave_connection_count; ++i) {
97 std::string portName = csprintf("%s.slave[%d]", name(), i);
98 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
99 slavePorts.push_back(bp);
100 respLayers.push_back(new RespLayer(*bp, *this,
101 csprintf(".respLayer%d", i)));
102 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
103 }
104 }
105
106 CoherentXBar::~CoherentXBar()
107 {
108 for (auto l: reqLayers)
109 delete l;
110 for (auto l: respLayers)
111 delete l;
112 for (auto l: snoopLayers)
113 delete l;
114 for (auto p: snoopRespPorts)
115 delete p;
116 }
117
118 void
119 CoherentXBar::init()
120 {
121 BaseXBar::init();
122
123 // iterate over our slave ports and determine which of our
124 // neighbouring master ports are snooping and add them as snoopers
125 for (const auto& p: slavePorts) {
126 // check if the connected master port is snooping
127 if (p->isSnooping()) {
128 DPRINTF(AddrRanges, "Adding snooping master %s\n", p->getPeer());
129 snoopPorts.push_back(p);
130 }
131 }
132
133 if (snoopPorts.empty())
134 warn("CoherentXBar %s has no snooping ports attached!\n", name());
135
136 // inform the snoop filter about the slave ports so it can create
137 // its own internal representation
138 if (snoopFilter)
139 snoopFilter->setSlavePorts(slavePorts);
140 }
141
142 bool
143 CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
144 {
145 // determine the source port based on the id
146 SlavePort *src_port = slavePorts[slave_port_id];
147
148 // remember if the packet is an express snoop
149 bool is_express_snoop = pkt->isExpressSnoop();
150 bool cache_responding = pkt->cacheResponding();
151 // for normal requests, going downstream, the express snoop flag
152 // and the cache responding flag should always be the same
153 assert(is_express_snoop == cache_responding);
154
155 // determine the destination based on the destination address range
156 PortID master_port_id = findPort(pkt->getAddrRange());
157
158 // test if the crossbar should be considered occupied for the current
159 // port, and exclude express snoops from the check
160 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
161 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
162 src_port->name(), pkt->print());
163 return false;
164 }
165
166 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
167 src_port->name(), pkt->print());
168
169 // store size and command as they might be modified when
170 // forwarding the packet
171 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
172 unsigned int pkt_cmd = pkt->cmdToIndex();
173
174 // store the old header delay so we can restore it if needed
175 Tick old_header_delay = pkt->headerDelay;
176
177 // a request sees the frontend and forward latency
178 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
179
180 // set the packet header and payload delay
181 calcPacketTiming(pkt, xbar_delay);
182
183 // determine how long to be crossbar layer is busy
184 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
185
186 // is this the destination point for this packet? (e.g. true if
187 // this xbar is the PoC for a cache maintenance operation to the
188 // PoC) otherwise the destination is any cache that can satisfy
189 // the request
190 const bool is_destination = isDestination(pkt);
191
192 const bool snoop_caches = !system->bypassCaches() &&
193 pkt->cmd != MemCmd::WriteClean;
194 if (snoop_caches) {
195 assert(pkt->snoopDelay == 0);
196
197 if (pkt->isClean() && !is_destination) {
198 // before snooping we need to make sure that the memory
199 // below is not busy and the cache clean request can be
200 // forwarded to it
201 if (!masterPorts[master_port_id]->tryTiming(pkt)) {
202 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
203 src_port->name(), pkt->print());
204
205 // update the layer state and schedule an idle event
206 reqLayers[master_port_id]->failedTiming(src_port,
207 clockEdge(Cycles(1)));
208 return false;
209 }
210 }
211
212
213 // the packet is a memory-mapped request and should be
214 // broadcasted to our snoopers but the source
215 if (snoopFilter) {
216 // check with the snoop filter where to forward this packet
217 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
218 // the time required by a packet to be delivered through
219 // the xbar has to be charged also with to lookup latency
220 // of the snoop filter
221 pkt->headerDelay += sf_res.second * clockPeriod();
222 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
223 __func__, src_port->name(), pkt->print(),
224 sf_res.first.size(), sf_res.second);
225
226 if (pkt->isEviction()) {
227 // for block-evicting packets, i.e. writebacks and
228 // clean evictions, there is no need to snoop up, as
229 // all we do is determine if the block is cached or
230 // not, instead just set it here based on the snoop
231 // filter result
232 if (!sf_res.first.empty())
233 pkt->setBlockCached();
234 } else {
235 forwardTiming(pkt, slave_port_id, sf_res.first);
236 }
237 } else {
238 forwardTiming(pkt, slave_port_id);
239 }
240
241 // add the snoop delay to our header delay, and then reset it
242 pkt->headerDelay += pkt->snoopDelay;
243 pkt->snoopDelay = 0;
244 }
245
246 // set up a sensible starting point
247 bool success = true;
248
249 // remember if the packet will generate a snoop response by
250 // checking if a cache set the cacheResponding flag during the
251 // snooping above
252 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
253 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
254
255 const bool sink_packet = sinkPacket(pkt);
256
257 // in certain cases the crossbar is responsible for responding
258 bool respond_directly = false;
259 // store the original address as an address mapper could possibly
260 // modify the address upon a sendTimingRequest
261 const Addr addr(pkt->getAddr());
262 if (sink_packet) {
263 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
264 pkt->print());
265 } else {
266 // determine if we are forwarding the packet, or responding to
267 // it
268 if (forwardPacket(pkt)) {
269 // if we are passing on, rather than sinking, a packet to
270 // which an upstream cache has committed to responding,
271 // the line was needs writable, and the responding only
272 // had an Owned copy, so we need to immidiately let the
273 // downstream caches know, bypass any flow control
274 if (pkt->cacheResponding()) {
275 pkt->setExpressSnoop();
276 }
277
278 // make sure that the write request (e.g., WriteClean)
279 // will stop at the memory below if this crossbar is its
280 // destination
281 if (pkt->isWrite() && is_destination) {
282 pkt->clearWriteThrough();
283 }
284
285 // since it is a normal request, attempt to send the packet
286 success = masterPorts[master_port_id]->sendTimingReq(pkt);
287 } else {
288 // no need to forward, turn this packet around and respond
289 // directly
290 assert(pkt->needsResponse());
291
292 respond_directly = true;
293 assert(!expect_snoop_resp);
294 expect_response = false;
295 }
296 }
297
298 if (snoopFilter && snoop_caches) {
299 // Let the snoop filter know about the success of the send operation
300 snoopFilter->finishRequest(!success, addr, pkt->isSecure());
301 }
302
303 // check if we were successful in sending the packet onwards
304 if (!success) {
305 // express snoops should never be forced to retry
306 assert(!is_express_snoop);
307
308 // restore the header delay
309 pkt->headerDelay = old_header_delay;
310
311 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
312 src_port->name(), pkt->print());
313
314 // update the layer state and schedule an idle event
315 reqLayers[master_port_id]->failedTiming(src_port,
316 clockEdge(Cycles(1)));
317 } else {
318 // express snoops currently bypass the crossbar state entirely
319 if (!is_express_snoop) {
320 // if this particular request will generate a snoop
321 // response
322 if (expect_snoop_resp) {
323 // we should never have an exsiting request outstanding
324 assert(outstandingSnoop.find(pkt->req) ==
325 outstandingSnoop.end());
326 outstandingSnoop.insert(pkt->req);
327
328 // basic sanity check on the outstanding snoops
329 panic_if(outstandingSnoop.size() > maxOutstandingSnoopCheck,
330 "%s: Outstanding snoop requests exceeded %d\n",
331 name(), maxOutstandingSnoopCheck);
332 }
333
334 // remember where to route the normal response to
335 if (expect_response || expect_snoop_resp) {
336 assert(routeTo.find(pkt->req) == routeTo.end());
337 routeTo[pkt->req] = slave_port_id;
338
339 panic_if(routeTo.size() > maxRoutingTableSizeCheck,
340 "%s: Routing table exceeds %d packets\n",
341 name(), maxRoutingTableSizeCheck);
342 }
343
344 // update the layer state and schedule an idle event
345 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
346 }
347
348 // stats updates only consider packets that were successfully sent
349 pktCount[slave_port_id][master_port_id]++;
350 pktSize[slave_port_id][master_port_id] += pkt_size;
351 transDist[pkt_cmd]++;
352
353 if (is_express_snoop) {
354 snoops++;
355 snoopTraffic += pkt_size;
356 }
357 }
358
359 if (sink_packet)
360 // queue the packet for deletion
361 pendingDelete.reset(pkt);
362
363 // normally we respond to the packet we just received if we need to
364 PacketPtr rsp_pkt = pkt;
365 PortID rsp_port_id = slave_port_id;
366
367 // If this is the destination of the cache clean operation the
368 // crossbar is responsible for responding. This crossbar will
369 // respond when the cache clean is complete. A cache clean
370 // is complete either:
371 // * direcly, if no cache above had a dirty copy of the block
372 // as indicated by the satisfied flag of the packet, or
373 // * when the crossbar has seen both the cache clean request
374 // (CleanSharedReq, CleanInvalidReq) and the corresponding
375 // write (WriteClean) which updates the block in the memory
376 // below.
377 if (success &&
378 ((pkt->isClean() && pkt->satisfied()) ||
379 pkt->cmd == MemCmd::WriteClean) &&
380 is_destination) {
381 PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt;
382 auto cmo_lookup = outstandingCMO.find(pkt->id);
383 if (cmo_lookup != outstandingCMO.end()) {
384 // the cache clean request has already reached this xbar
385 respond_directly = true;
386 if (pkt->isWrite()) {
387 rsp_pkt = cmo_lookup->second;
388 assert(rsp_pkt);
389
390 // determine the destination
391 const auto route_lookup = routeTo.find(rsp_pkt->req);
392 assert(route_lookup != routeTo.end());
393 rsp_port_id = route_lookup->second;
394 assert(rsp_port_id != InvalidPortID);
395 assert(rsp_port_id < respLayers.size());
396 // remove the request from the routing table
397 routeTo.erase(route_lookup);
398 }
399 outstandingCMO.erase(cmo_lookup);
400 } else {
401 respond_directly = false;
402 outstandingCMO.emplace(pkt->id, deferred_rsp);
403 if (!pkt->isWrite()) {
404 assert(routeTo.find(pkt->req) == routeTo.end());
405 routeTo[pkt->req] = slave_port_id;
406
407 panic_if(routeTo.size() > maxRoutingTableSizeCheck,
408 "%s: Routing table exceeds %d packets\n",
409 name(), maxRoutingTableSizeCheck);
410 }
411 }
412 }
413
414
415 if (respond_directly) {
416 assert(rsp_pkt->needsResponse());
417 assert(success);
418
419 rsp_pkt->makeResponse();
420
421 if (snoopFilter && !system->bypassCaches()) {
422 // let the snoop filter inspect the response and update its state
423 snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]);
424 }
425
426 // we send the response after the current packet, even if the
427 // response is not for this packet (e.g. cache clean operation
428 // where both the request and the write packet have to cross
429 // the destination xbar before the response is sent.)
430 Tick response_time = clockEdge() + pkt->headerDelay;
431 rsp_pkt->headerDelay = 0;
432
433 slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time);
434 }
435
436 return success;
437 }
438
439 bool
440 CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
441 {
442 // determine the source port based on the id
443 MasterPort *src_port = masterPorts[master_port_id];
444
445 // determine the destination
446 const auto route_lookup = routeTo.find(pkt->req);
447 assert(route_lookup != routeTo.end());
448 const PortID slave_port_id = route_lookup->second;
449 assert(slave_port_id != InvalidPortID);
450 assert(slave_port_id < respLayers.size());
451
452 // test if the crossbar should be considered occupied for the
453 // current port
454 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
455 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
456 src_port->name(), pkt->print());
457 return false;
458 }
459
460 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
461 src_port->name(), pkt->print());
462
463 // store size and command as they might be modified when
464 // forwarding the packet
465 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
466 unsigned int pkt_cmd = pkt->cmdToIndex();
467
468 // a response sees the response latency
469 Tick xbar_delay = responseLatency * clockPeriod();
470
471 // set the packet header and payload delay
472 calcPacketTiming(pkt, xbar_delay);
473
474 // determine how long to be crossbar layer is busy
475 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
476
477 if (snoopFilter && !system->bypassCaches()) {
478 // let the snoop filter inspect the response and update its state
479 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
480 }
481
482 // send the packet through the destination slave port and pay for
483 // any outstanding header delay
484 Tick latency = pkt->headerDelay;
485 pkt->headerDelay = 0;
486 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
487
488 // remove the request from the routing table
489 routeTo.erase(route_lookup);
490
491 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
492
493 // stats updates
494 pktCount[slave_port_id][master_port_id]++;
495 pktSize[slave_port_id][master_port_id] += pkt_size;
496 transDist[pkt_cmd]++;
497
498 return true;
499 }
500
501 void
502 CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
503 {
504 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
505 masterPorts[master_port_id]->name(), pkt->print());
506
507 // update stats here as we know the forwarding will succeed
508 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
509 transDist[pkt->cmdToIndex()]++;
510 snoops++;
511 snoopTraffic += pkt_size;
512
513 // we should only see express snoops from caches
514 assert(pkt->isExpressSnoop());
515
516 // set the packet header and payload delay, for now use forward latency
517 // @todo Assess the choice of latency further
518 calcPacketTiming(pkt, forwardLatency * clockPeriod());
519
520 // remember if a cache has already committed to responding so we
521 // can see if it changes during the snooping
522 const bool cache_responding = pkt->cacheResponding();
523
524 assert(pkt->snoopDelay == 0);
525
526 if (snoopFilter) {
527 // let the Snoop Filter work its magic and guide probing
528 auto sf_res = snoopFilter->lookupSnoop(pkt);
529 // the time required by a packet to be delivered through
530 // the xbar has to be charged also with to lookup latency
531 // of the snoop filter
532 pkt->headerDelay += sf_res.second * clockPeriod();
533 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
534 __func__, masterPorts[master_port_id]->name(), pkt->print(),
535 sf_res.first.size(), sf_res.second);
536
537 // forward to all snoopers
538 forwardTiming(pkt, InvalidPortID, sf_res.first);
539 } else {
540 forwardTiming(pkt, InvalidPortID);
541 }
542
543 // add the snoop delay to our header delay, and then reset it
544 pkt->headerDelay += pkt->snoopDelay;
545 pkt->snoopDelay = 0;
546
547 // if we can expect a response, remember how to route it
548 if (!cache_responding && pkt->cacheResponding()) {
549 assert(routeTo.find(pkt->req) == routeTo.end());
550 routeTo[pkt->req] = master_port_id;
551 }
552
553 // a snoop request came from a connected slave device (one of
554 // our master ports), and if it is not coming from the slave
555 // device responsible for the address range something is
556 // wrong, hence there is nothing further to do as the packet
557 // would be going back to where it came from
558 assert(findPort(pkt->getAddrRange()) == master_port_id);
559 }
560
561 bool
562 CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
563 {
564 // determine the source port based on the id
565 SlavePort* src_port = slavePorts[slave_port_id];
566
567 // get the destination
568 const auto route_lookup = routeTo.find(pkt->req);
569 assert(route_lookup != routeTo.end());
570 const PortID dest_port_id = route_lookup->second;
571 assert(dest_port_id != InvalidPortID);
572
573 // determine if the response is from a snoop request we
574 // created as the result of a normal request (in which case it
575 // should be in the outstandingSnoop), or if we merely forwarded
576 // someone else's snoop request
577 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
578 outstandingSnoop.end();
579
580 // test if the crossbar should be considered occupied for the
581 // current port, note that the check is bypassed if the response
582 // is being passed on as a normal response since this is occupying
583 // the response layer rather than the snoop response layer
584 if (forwardAsSnoop) {
585 assert(dest_port_id < snoopLayers.size());
586 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
587 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
588 src_port->name(), pkt->print());
589 return false;
590 }
591 } else {
592 // get the master port that mirrors this slave port internally
593 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
594 assert(dest_port_id < respLayers.size());
595 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
596 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
597 snoop_port->name(), pkt->print());
598 return false;
599 }
600 }
601
602 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
603 src_port->name(), pkt->print());
604
605 // store size and command as they might be modified when
606 // forwarding the packet
607 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
608 unsigned int pkt_cmd = pkt->cmdToIndex();
609
610 // responses are never express snoops
611 assert(!pkt->isExpressSnoop());
612
613 // a snoop response sees the snoop response latency, and if it is
614 // forwarded as a normal response, the response latency
615 Tick xbar_delay =
616 (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
617 clockPeriod();
618
619 // set the packet header and payload delay
620 calcPacketTiming(pkt, xbar_delay);
621
622 // determine how long to be crossbar layer is busy
623 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
624
625 // forward it either as a snoop response or a normal response
626 if (forwardAsSnoop) {
627 // this is a snoop response to a snoop request we forwarded,
628 // e.g. coming from the L1 and going to the L2, and it should
629 // be forwarded as a snoop response
630
631 if (snoopFilter) {
632 // update the probe filter so that it can properly track the line
633 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
634 *masterPorts[dest_port_id]);
635 }
636
637 bool success M5_VAR_USED =
638 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
639 pktCount[slave_port_id][dest_port_id]++;
640 pktSize[slave_port_id][dest_port_id] += pkt_size;
641 assert(success);
642
643 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
644 } else {
645 // we got a snoop response on one of our slave ports,
646 // i.e. from a coherent master connected to the crossbar, and
647 // since we created the snoop request as part of recvTiming,
648 // this should now be a normal response again
649 outstandingSnoop.erase(pkt->req);
650
651 // this is a snoop response from a coherent master, hence it
652 // should never go back to where the snoop response came from,
653 // but instead to where the original request came from
654 assert(slave_port_id != dest_port_id);
655
656 if (snoopFilter) {
657 // update the probe filter so that it can properly track the line
658 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
659 *slavePorts[dest_port_id]);
660 }
661
662 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
663 src_port->name(), pkt->print());
664
665 // as a normal response, it should go back to a master through
666 // one of our slave ports, we also pay for any outstanding
667 // header latency
668 Tick latency = pkt->headerDelay;
669 pkt->headerDelay = 0;
670 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
671
672 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
673 }
674
675 // remove the request from the routing table
676 routeTo.erase(route_lookup);
677
678 // stats updates
679 transDist[pkt_cmd]++;
680 snoops++;
681 snoopTraffic += pkt_size;
682
683 return true;
684 }
685
686
687 void
688 CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
689 const std::vector<QueuedSlavePort*>& dests)
690 {
691 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
692
693 // snoops should only happen if the system isn't bypassing caches
694 assert(!system->bypassCaches());
695
696 unsigned fanout = 0;
697
698 for (const auto& p: dests) {
699 // we could have gotten this request from a snooping master
700 // (corresponding to our own slave port that is also in
701 // snoopPorts) and should not send it back to where it came
702 // from
703 if (exclude_slave_port_id == InvalidPortID ||
704 p->getId() != exclude_slave_port_id) {
705 // cache is not allowed to refuse snoop
706 p->sendTimingSnoopReq(pkt);
707 fanout++;
708 }
709 }
710
711 // Stats for fanout of this forward operation
712 snoopFanout.sample(fanout);
713 }
714
715 void
716 CoherentXBar::recvReqRetry(PortID master_port_id)
717 {
718 // responses and snoop responses never block on forwarding them,
719 // so the retry will always be coming from a port to which we
720 // tried to forward a request
721 reqLayers[master_port_id]->recvRetry();
722 }
723
724 Tick
725 CoherentXBar::recvAtomicBackdoor(PacketPtr pkt, PortID slave_port_id,
726 MemBackdoorPtr *backdoor)
727 {
728 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
729 slavePorts[slave_port_id]->name(), pkt->print());
730
731 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
732 unsigned int pkt_cmd = pkt->cmdToIndex();
733
734 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
735 Tick snoop_response_latency = 0;
736
737 // is this the destination point for this packet? (e.g. true if
738 // this xbar is the PoC for a cache maintenance operation to the
739 // PoC) otherwise the destination is any cache that can satisfy
740 // the request
741 const bool is_destination = isDestination(pkt);
742
743 const bool snoop_caches = !system->bypassCaches() &&
744 pkt->cmd != MemCmd::WriteClean;
745 if (snoop_caches) {
746 // forward to all snoopers but the source
747 std::pair<MemCmd, Tick> snoop_result;
748 if (snoopFilter) {
749 // check with the snoop filter where to forward this packet
750 auto sf_res =
751 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
752 snoop_response_latency += sf_res.second * clockPeriod();
753 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
754 __func__, slavePorts[slave_port_id]->name(), pkt->print(),
755 sf_res.first.size(), sf_res.second);
756
757 // let the snoop filter know about the success of the send
758 // operation, and do it even before sending it onwards to
759 // avoid situations where atomic upward snoops sneak in
760 // between and change the filter state
761 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
762
763 if (pkt->isEviction()) {
764 // for block-evicting packets, i.e. writebacks and
765 // clean evictions, there is no need to snoop up, as
766 // all we do is determine if the block is cached or
767 // not, instead just set it here based on the snoop
768 // filter result
769 if (!sf_res.first.empty())
770 pkt->setBlockCached();
771 } else {
772 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
773 sf_res.first);
774 }
775 } else {
776 snoop_result = forwardAtomic(pkt, slave_port_id);
777 }
778 snoop_response_cmd = snoop_result.first;
779 snoop_response_latency += snoop_result.second;
780 }
781
782 // set up a sensible default value
783 Tick response_latency = 0;
784
785 const bool sink_packet = sinkPacket(pkt);
786
787 // even if we had a snoop response, we must continue and also
788 // perform the actual request at the destination
789 PortID master_port_id = findPort(pkt->getAddrRange());
790
791 if (sink_packet) {
792 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
793 pkt->print());
794 } else {
795 if (forwardPacket(pkt)) {
796 // make sure that the write request (e.g., WriteClean)
797 // will stop at the memory below if this crossbar is its
798 // destination
799 if (pkt->isWrite() && is_destination) {
800 pkt->clearWriteThrough();
801 }
802
803 // forward the request to the appropriate destination
804 auto master = masterPorts[master_port_id];
805 response_latency = backdoor ?
806 master->sendAtomicBackdoor(pkt, *backdoor) :
807 master->sendAtomic(pkt);
808 } else {
809 // if it does not need a response we sink the packet above
810 assert(pkt->needsResponse());
811
812 pkt->makeResponse();
813 }
814 }
815
816 // stats updates for the request
817 pktCount[slave_port_id][master_port_id]++;
818 pktSize[slave_port_id][master_port_id] += pkt_size;
819 transDist[pkt_cmd]++;
820
821
822 // if lower levels have replied, tell the snoop filter
823 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
824 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
825 }
826
827 // if we got a response from a snooper, restore it here
828 if (snoop_response_cmd != MemCmd::InvalidCmd) {
829 // no one else should have responded
830 assert(!pkt->isResponse());
831 pkt->cmd = snoop_response_cmd;
832 response_latency = snoop_response_latency;
833 }
834
835 // If this is the destination of the cache clean operation the
836 // crossbar is responsible for responding. This crossbar will
837 // respond when the cache clean is complete. An atomic cache clean
838 // is complete when the crossbars receives the cache clean
839 // request (CleanSharedReq, CleanInvalidReq), as either:
840 // * no cache above had a dirty copy of the block as indicated by
841 // the satisfied flag of the packet, or
842 // * the crossbar has already seen the corresponding write
843 // (WriteClean) which updates the block in the memory below.
844 if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) {
845 auto it = outstandingCMO.find(pkt->id);
846 assert(it != outstandingCMO.end());
847 // we are responding right away
848 outstandingCMO.erase(it);
849 } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) {
850 // if this is the destination of the operation, the xbar
851 // sends the responce to the cache clean operation only
852 // after having encountered the cache clean request
853 auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr);
854 // in atomic mode we know that the WriteClean packet should
855 // precede the clean request
856 assert(ret.second);
857 }
858
859 // add the response data
860 if (pkt->isResponse()) {
861 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
862 pkt_cmd = pkt->cmdToIndex();
863
864 // stats updates
865 pktCount[slave_port_id][master_port_id]++;
866 pktSize[slave_port_id][master_port_id] += pkt_size;
867 transDist[pkt_cmd]++;
868 }
869
870 // @todo: Not setting header time
871 pkt->payloadDelay = response_latency;
872 return response_latency;
873 }
874
875 Tick
876 CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
877 {
878 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
879 masterPorts[master_port_id]->name(), pkt->print());
880
881 // add the request snoop data
882 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
883 snoops++;
884 snoopTraffic += pkt_size;
885
886 // forward to all snoopers
887 std::pair<MemCmd, Tick> snoop_result;
888 Tick snoop_response_latency = 0;
889 if (snoopFilter) {
890 auto sf_res = snoopFilter->lookupSnoop(pkt);
891 snoop_response_latency += sf_res.second * clockPeriod();
892 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
893 __func__, masterPorts[master_port_id]->name(), pkt->print(),
894 sf_res.first.size(), sf_res.second);
895 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
896 sf_res.first);
897 } else {
898 snoop_result = forwardAtomic(pkt, InvalidPortID);
899 }
900 MemCmd snoop_response_cmd = snoop_result.first;
901 snoop_response_latency += snoop_result.second;
902
903 if (snoop_response_cmd != MemCmd::InvalidCmd)
904 pkt->cmd = snoop_response_cmd;
905
906 // add the response snoop data
907 if (pkt->isResponse()) {
908 snoops++;
909 }
910
911 // @todo: Not setting header time
912 pkt->payloadDelay = snoop_response_latency;
913 return snoop_response_latency;
914 }
915
916 std::pair<MemCmd, Tick>
917 CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
918 PortID source_master_port_id,
919 const std::vector<QueuedSlavePort*>& dests)
920 {
921 // the packet may be changed on snoops, record the original
922 // command to enable us to restore it between snoops so that
923 // additional snoops can take place properly
924 MemCmd orig_cmd = pkt->cmd;
925 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
926 Tick snoop_response_latency = 0;
927
928 // snoops should only happen if the system isn't bypassing caches
929 assert(!system->bypassCaches());
930
931 unsigned fanout = 0;
932
933 for (const auto& p: dests) {
934 // we could have gotten this request from a snooping master
935 // (corresponding to our own slave port that is also in
936 // snoopPorts) and should not send it back to where it came
937 // from
938 if (exclude_slave_port_id != InvalidPortID &&
939 p->getId() == exclude_slave_port_id)
940 continue;
941
942 Tick latency = p->sendAtomicSnoop(pkt);
943 fanout++;
944
945 // in contrast to a functional access, we have to keep on
946 // going as all snoopers must be updated even if we get a
947 // response
948 if (!pkt->isResponse())
949 continue;
950
951 // response from snoop agent
952 assert(pkt->cmd != orig_cmd);
953 assert(pkt->cacheResponding());
954 // should only happen once
955 assert(snoop_response_cmd == MemCmd::InvalidCmd);
956 // save response state
957 snoop_response_cmd = pkt->cmd;
958 snoop_response_latency = latency;
959
960 if (snoopFilter) {
961 // Handle responses by the snoopers and differentiate between
962 // responses to requests from above and snoops from below
963 if (source_master_port_id != InvalidPortID) {
964 // Getting a response for a snoop from below
965 assert(exclude_slave_port_id == InvalidPortID);
966 snoopFilter->updateSnoopForward(pkt, *p,
967 *masterPorts[source_master_port_id]);
968 } else {
969 // Getting a response for a request from above
970 assert(source_master_port_id == InvalidPortID);
971 snoopFilter->updateSnoopResponse(pkt, *p,
972 *slavePorts[exclude_slave_port_id]);
973 }
974 }
975 // restore original packet state for remaining snoopers
976 pkt->cmd = orig_cmd;
977 }
978
979 // Stats for fanout
980 snoopFanout.sample(fanout);
981
982 // the packet is restored as part of the loop and any potential
983 // snoop response is part of the returned pair
984 return std::make_pair(snoop_response_cmd, snoop_response_latency);
985 }
986
987 void
988 CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
989 {
990 if (!pkt->isPrint()) {
991 // don't do DPRINTFs on PrintReq as it clutters up the output
992 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
993 slavePorts[slave_port_id]->name(), pkt->print());
994 }
995
996 if (!system->bypassCaches()) {
997 // forward to all snoopers but the source
998 forwardFunctional(pkt, slave_port_id);
999 }
1000
1001 // there is no need to continue if the snooping has found what we
1002 // were looking for and the packet is already a response
1003 if (!pkt->isResponse()) {
1004 // since our slave ports are queued ports we need to check them as well
1005 for (const auto& p : slavePorts) {
1006 // if we find a response that has the data, then the
1007 // downstream caches/memories may be out of date, so simply stop
1008 // here
1009 if (p->trySatisfyFunctional(pkt)) {
1010 if (pkt->needsResponse())
1011 pkt->makeResponse();
1012 return;
1013 }
1014 }
1015
1016 PortID dest_id = findPort(pkt->getAddrRange());
1017
1018 masterPorts[dest_id]->sendFunctional(pkt);
1019 }
1020 }
1021
1022 void
1023 CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
1024 {
1025 if (!pkt->isPrint()) {
1026 // don't do DPRINTFs on PrintReq as it clutters up the output
1027 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
1028 masterPorts[master_port_id]->name(), pkt->print());
1029 }
1030
1031 for (const auto& p : slavePorts) {
1032 if (p->trySatisfyFunctional(pkt)) {
1033 if (pkt->needsResponse())
1034 pkt->makeResponse();
1035 return;
1036 }
1037 }
1038
1039 // forward to all snoopers
1040 forwardFunctional(pkt, InvalidPortID);
1041 }
1042
1043 void
1044 CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
1045 {
1046 // snoops should only happen if the system isn't bypassing caches
1047 assert(!system->bypassCaches());
1048
1049 for (const auto& p: snoopPorts) {
1050 // we could have gotten this request from a snooping master
1051 // (corresponding to our own slave port that is also in
1052 // snoopPorts) and should not send it back to where it came
1053 // from
1054 if (exclude_slave_port_id == InvalidPortID ||
1055 p->getId() != exclude_slave_port_id)
1056 p->sendFunctionalSnoop(pkt);
1057
1058 // if we get a response we are done
1059 if (pkt->isResponse()) {
1060 break;
1061 }
1062 }
1063 }
1064
1065 bool
1066 CoherentXBar::sinkPacket(const PacketPtr pkt) const
1067 {
1068 // we can sink the packet if:
1069 // 1) the crossbar is the point of coherency, and a cache is
1070 // responding after being snooped
1071 // 2) the crossbar is the point of coherency, and the packet is a
1072 // coherency packet (not a read or a write) that does not
1073 // require a response
1074 // 3) this is a clean evict or clean writeback, but the packet is
1075 // found in a cache above this crossbar
1076 // 4) a cache is responding after being snooped, and the packet
1077 // either does not need the block to be writable, or the cache
1078 // that has promised to respond (setting the cache responding
1079 // flag) is providing writable and thus had a Modified block,
1080 // and no further action is needed
1081 return (pointOfCoherency && pkt->cacheResponding()) ||
1082 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
1083 !pkt->needsResponse()) ||
1084 (pkt->isCleanEviction() && pkt->isBlockCached()) ||
1085 (pkt->cacheResponding() &&
1086 (!pkt->needsWritable() || pkt->responderHadWritable()));
1087 }
1088
1089 bool
1090 CoherentXBar::forwardPacket(const PacketPtr pkt)
1091 {
1092 // we are forwarding the packet if:
1093 // 1) this is a cache clean request to the PoU/PoC and this
1094 // crossbar is above the PoU/PoC
1095 // 2) this is a read or a write
1096 // 3) this crossbar is above the point of coherency
1097 if (pkt->isClean()) {
1098 return !isDestination(pkt);
1099 }
1100 return pkt->isRead() || pkt->isWrite() || !pointOfCoherency;
1101 }
1102
1103
1104 void
1105 CoherentXBar::regStats()
1106 {
1107 // register the stats of the base class and our layers
1108 BaseXBar::regStats();
1109 for (auto l: reqLayers)
1110 l->regStats();
1111 for (auto l: respLayers)
1112 l->regStats();
1113 for (auto l: snoopLayers)
1114 l->regStats();
1115
1116 snoops
1117 .name(name() + ".snoops")
1118 .desc("Total snoops (count)")
1119 ;
1120
1121 snoopTraffic
1122 .name(name() + ".snoopTraffic")
1123 .desc("Total snoop traffic (bytes)")
1124 ;
1125
1126 snoopFanout
1127 .init(0, snoopPorts.size(), 1)
1128 .name(name() + ".snoop_fanout")
1129 .desc("Request fanout histogram")
1130 ;
1131 }
1132
1133 CoherentXBar *
1134 CoherentXBarParams::create()
1135 {
1136 return new CoherentXBar(this);
1137 }