mem: Relax packet src/dest check and shift onus to crossbar
[gem5.git] / src / mem / coherent_xbar.cc
1 /*
2 * Copyright (c) 2011-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 */
44
45 /**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50 #include "base/misc.hh"
51 #include "base/trace.hh"
52 #include "debug/AddrRanges.hh"
53 #include "debug/CoherentXBar.hh"
54 #include "mem/coherent_xbar.hh"
55 #include "sim/system.hh"
56
57 CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter)
59 {
60 // create the ports based on the size of the master and slave
61 // vector ports, and the presence of the default port, the ports
62 // are enumerated starting from zero
63 for (int i = 0; i < p->port_master_connection_count; ++i) {
64 std::string portName = csprintf("%s.master[%d]", name(), i);
65 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
66 masterPorts.push_back(bp);
67 reqLayers.push_back(new ReqLayer(*bp, *this,
68 csprintf(".reqLayer%d", i)));
69 snoopLayers.push_back(new SnoopLayer(*bp, *this,
70 csprintf(".snoopLayer%d", i)));
71 }
72
73 // see if we have a default slave device connected and if so add
74 // our corresponding master port
75 if (p->port_default_connection_count) {
76 defaultPortID = masterPorts.size();
77 std::string portName = name() + ".default";
78 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
79 defaultPortID);
80 masterPorts.push_back(bp);
81 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
82 defaultPortID)));
83 snoopLayers.push_back(new SnoopLayer(*bp, *this,
84 csprintf(".snoopLayer%d",
85 defaultPortID)));
86 }
87
88 // create the slave ports, once again starting at zero
89 for (int i = 0; i < p->port_slave_connection_count; ++i) {
90 std::string portName = csprintf("%s.slave[%d]", name(), i);
91 SlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
92 slavePorts.push_back(bp);
93 respLayers.push_back(new RespLayer(*bp, *this,
94 csprintf(".respLayer%d", i)));
95 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
96 }
97
98 if (snoopFilter)
99 snoopFilter->setSlavePorts(slavePorts);
100
101 clearPortCache();
102 }
103
104 CoherentXBar::~CoherentXBar()
105 {
106 for (auto l: reqLayers)
107 delete l;
108 for (auto l: respLayers)
109 delete l;
110 for (auto l: snoopLayers)
111 delete l;
112 for (auto p: snoopRespPorts)
113 delete p;
114 }
115
116 void
117 CoherentXBar::init()
118 {
119 // the base class is responsible for determining the block size
120 BaseXBar::init();
121
122 // iterate over our slave ports and determine which of our
123 // neighbouring master ports are snooping and add them as snoopers
124 for (const auto& p: slavePorts) {
125 // check if the connected master port is snooping
126 if (p->isSnooping()) {
127 DPRINTF(AddrRanges, "Adding snooping master %s\n",
128 p->getMasterPort().name());
129 snoopPorts.push_back(p);
130 }
131 }
132
133 if (snoopPorts.empty())
134 warn("CoherentXBar %s has no snooping ports attached!\n", name());
135 }
136
137 bool
138 CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
139 {
140 // determine the source port based on the id
141 SlavePort *src_port = slavePorts[slave_port_id];
142
143 // remember if the packet is an express snoop
144 bool is_express_snoop = pkt->isExpressSnoop();
145
146 // determine the destination based on the address
147 PortID master_port_id = findPort(pkt->getAddr());
148
149 // test if the crossbar should be considered occupied for the current
150 // port, and exclude express snoops from the check
151 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
152 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
153 src_port->name(), pkt->cmdString(), pkt->getAddr());
154 return false;
155 }
156
157 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
158 src_port->name(), pkt->cmdString(), is_express_snoop,
159 pkt->getAddr());
160
161 // store size and command as they might be modified when
162 // forwarding the packet
163 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
164 unsigned int pkt_cmd = pkt->cmdToIndex();
165
166 // set the source port for routing of the response
167 pkt->setSrc(slave_port_id);
168
169 calcPacketTiming(pkt);
170 Tick packetFinishTime = pkt->lastWordDelay + curTick();
171
172 // uncacheable requests need never be snooped
173 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
174 // the packet is a memory-mapped request and should be
175 // broadcasted to our snoopers but the source
176 if (snoopFilter) {
177 // check with the snoop filter where to forward this packet
178 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
179 packetFinishTime += sf_res.second * clockPeriod();
180 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
181 " SF size: %i lat: %i\n", src_port->name(),
182 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
183 sf_res.second);
184 forwardTiming(pkt, slave_port_id, sf_res.first);
185 } else {
186 forwardTiming(pkt, slave_port_id);
187 }
188 }
189
190 // remember if we add an outstanding req so we can undo it if
191 // necessary, if the packet needs a response, we should add it
192 // as outstanding and express snoops never fail so there is
193 // not need to worry about them
194 bool add_outstanding = !is_express_snoop && pkt->needsResponse();
195
196 // keep track that we have an outstanding request packet
197 // matching this request, this is used by the coherency
198 // mechanism in determining what to do with snoop responses
199 // (in recvTimingSnoop)
200 if (add_outstanding) {
201 // we should never have an exsiting request outstanding
202 assert(outstandingReq.find(pkt->req) == outstandingReq.end());
203 outstandingReq.insert(pkt->req);
204 }
205
206 // Note: Cannot create a copy of the full packet, here.
207 MemCmd orig_cmd(pkt->cmd);
208
209 // since it is a normal request, attempt to send the packet
210 bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
211
212 if (snoopFilter && !pkt->req->isUncacheable()
213 && !system->bypassCaches()) {
214 // The packet may already be overwritten by the sendTimingReq function.
215 // The snoop filter needs to see the original request *and* the return
216 // status of the send operation, so we need to recreate the original
217 // request. Atomic mode does not have the issue, as there the send
218 // operation and the response happen instantaneously and don't need two
219 // phase tracking.
220 MemCmd tmp_cmd(pkt->cmd);
221 pkt->cmd = orig_cmd;
222 // Let the snoop filter know about the success of the send operation
223 snoopFilter->updateRequest(pkt, *src_port, !success);
224 pkt->cmd = tmp_cmd;
225 }
226
227 // if this is an express snoop, we are done at this point
228 if (is_express_snoop) {
229 assert(success);
230 snoops++;
231 } else {
232 // for normal requests, check if successful
233 if (!success) {
234 // inhibited packets should never be forced to retry
235 assert(!pkt->memInhibitAsserted());
236
237 // if it was added as outstanding and the send failed, then
238 // erase it again
239 if (add_outstanding)
240 outstandingReq.erase(pkt->req);
241
242 // undo the calculation so we can check for 0 again
243 pkt->firstWordDelay = pkt->lastWordDelay = 0;
244
245 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
246 src_port->name(), pkt->cmdString(), pkt->getAddr());
247
248 // update the layer state and schedule an idle event
249 reqLayers[master_port_id]->failedTiming(src_port,
250 clockEdge(headerCycles));
251 } else {
252 // update the layer state and schedule an idle event
253 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
254 }
255 }
256
257 // stats updates only consider packets that were successfully sent
258 if (success) {
259 pktCount[slave_port_id][master_port_id]++;
260 pktSize[slave_port_id][master_port_id] += pkt_size;
261 transDist[pkt_cmd]++;
262 }
263
264 return success;
265 }
266
267 bool
268 CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
269 {
270 // determine the source port based on the id
271 MasterPort *src_port = masterPorts[master_port_id];
272
273 // determine the destination based on what is stored in the packet
274 PortID slave_port_id = pkt->getDest();
275 assert(slave_port_id != InvalidPortID);
276 assert(slave_port_id < respLayers.size());
277
278 // test if the crossbar should be considered occupied for the
279 // current port
280 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
281 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
282 src_port->name(), pkt->cmdString(), pkt->getAddr());
283 return false;
284 }
285
286 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
287 src_port->name(), pkt->cmdString(), pkt->getAddr());
288
289 // store size and command as they might be modified when
290 // forwarding the packet
291 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
292 unsigned int pkt_cmd = pkt->cmdToIndex();
293
294 calcPacketTiming(pkt);
295 Tick packetFinishTime = pkt->lastWordDelay + curTick();
296
297 // the packet is a normal response to a request that we should
298 // have seen passing through the crossbar
299 assert(outstandingReq.find(pkt->req) != outstandingReq.end());
300
301 if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches()) {
302 // let the snoop filter inspect the response and update its state
303 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
304 }
305
306 // remove it as outstanding
307 outstandingReq.erase(pkt->req);
308
309 // send the packet through the destination slave port
310 bool success M5_VAR_USED = slavePorts[slave_port_id]->sendTimingResp(pkt);
311
312 // currently it is illegal to block responses... can lead to
313 // deadlock
314 assert(success);
315
316 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
317
318 // stats updates
319 pktCount[slave_port_id][master_port_id]++;
320 pktSize[slave_port_id][master_port_id] += pkt_size;
321 transDist[pkt_cmd]++;
322
323 return true;
324 }
325
326 void
327 CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
328 {
329 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
330 masterPorts[master_port_id]->name(), pkt->cmdString(),
331 pkt->getAddr());
332
333 // update stats here as we know the forwarding will succeed
334 transDist[pkt->cmdToIndex()]++;
335 snoops++;
336
337 // we should only see express snoops from caches
338 assert(pkt->isExpressSnoop());
339
340 // set the source port for routing of the response
341 pkt->setSrc(master_port_id);
342
343 if (snoopFilter) {
344 // let the Snoop Filter work its magic and guide probing
345 auto sf_res = snoopFilter->lookupSnoop(pkt);
346 // No timing here: packetFinishTime += sf_res.second * clockPeriod();
347 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
348 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
349 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
350 sf_res.second);
351
352 // forward to all snoopers
353 forwardTiming(pkt, InvalidPortID, sf_res.first);
354 } else {
355 forwardTiming(pkt, InvalidPortID);
356 }
357
358 // a snoop request came from a connected slave device (one of
359 // our master ports), and if it is not coming from the slave
360 // device responsible for the address range something is
361 // wrong, hence there is nothing further to do as the packet
362 // would be going back to where it came from
363 assert(master_port_id == findPort(pkt->getAddr()));
364 }
365
366 bool
367 CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
368 {
369 // determine the source port based on the id
370 SlavePort* src_port = slavePorts[slave_port_id];
371
372 // get the destination from the packet
373 PortID dest_port_id = pkt->getDest();
374 assert(dest_port_id != InvalidPortID);
375
376 // determine if the response is from a snoop request we
377 // created as the result of a normal request (in which case it
378 // should be in the outstandingReq), or if we merely forwarded
379 // someone else's snoop request
380 bool forwardAsSnoop = outstandingReq.find(pkt->req) ==
381 outstandingReq.end();
382
383 // test if the crossbar should be considered occupied for the
384 // current port, note that the check is bypassed if the response
385 // is being passed on as a normal response since this is occupying
386 // the response layer rather than the snoop response layer
387 if (forwardAsSnoop) {
388 assert(dest_port_id < snoopLayers.size());
389 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
390 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
391 src_port->name(), pkt->cmdString(), pkt->getAddr());
392 return false;
393 }
394 } else {
395 // get the master port that mirrors this slave port internally
396 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
397 assert(dest_port_id < respLayers.size());
398 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
399 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
400 snoop_port->name(), pkt->cmdString(), pkt->getAddr());
401 return false;
402 }
403 }
404
405 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
406 src_port->name(), pkt->cmdString(), pkt->getAddr());
407
408 // store size and command as they might be modified when
409 // forwarding the packet
410 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
411 unsigned int pkt_cmd = pkt->cmdToIndex();
412
413 // responses are never express snoops
414 assert(!pkt->isExpressSnoop());
415
416 calcPacketTiming(pkt);
417 Tick packetFinishTime = pkt->lastWordDelay + curTick();
418
419 // forward it either as a snoop response or a normal response
420 if (forwardAsSnoop) {
421 // this is a snoop response to a snoop request we forwarded,
422 // e.g. coming from the L1 and going to the L2, and it should
423 // be forwarded as a snoop response
424
425 if (snoopFilter) {
426 // update the probe filter so that it can properly track the line
427 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
428 *masterPorts[dest_port_id]);
429 }
430
431 bool success M5_VAR_USED =
432 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
433 pktCount[slave_port_id][dest_port_id]++;
434 pktSize[slave_port_id][dest_port_id] += pkt_size;
435 assert(success);
436
437 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
438 } else {
439 // we got a snoop response on one of our slave ports,
440 // i.e. from a coherent master connected to the crossbar, and
441 // since we created the snoop request as part of recvTiming,
442 // this should now be a normal response again
443 outstandingReq.erase(pkt->req);
444
445 // this is a snoop response from a coherent master, with a
446 // destination field set on its way through the crossbar as
447 // request, hence it should never go back to where the snoop
448 // response came from, but instead to where the original
449 // request came from
450 assert(slave_port_id != dest_port_id);
451
452 if (snoopFilter) {
453 // update the probe filter so that it can properly track the line
454 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
455 *slavePorts[dest_port_id]);
456 }
457
458 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
459 " FWD RESP\n", src_port->name(), pkt->cmdString(),
460 pkt->getAddr());
461
462 // as a normal response, it should go back to a master through
463 // one of our slave ports, at this point we are ignoring the
464 // fact that the response layer could be busy and do not touch
465 // its state
466 bool success M5_VAR_USED =
467 slavePorts[dest_port_id]->sendTimingResp(pkt);
468
469 // @todo Put the response in an internal FIFO and pass it on
470 // to the response layer from there
471
472 // currently it is illegal to block responses... can lead
473 // to deadlock
474 assert(success);
475
476 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
477 }
478
479 // stats updates
480 transDist[pkt_cmd]++;
481 snoops++;
482
483 return true;
484 }
485
486
487 void
488 CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
489 const std::vector<SlavePort*>& dests)
490 {
491 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
492 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
493
494 // snoops should only happen if the system isn't bypassing caches
495 assert(!system->bypassCaches());
496
497 unsigned fanout = 0;
498
499 for (const auto& p: dests) {
500 // we could have gotten this request from a snooping master
501 // (corresponding to our own slave port that is also in
502 // snoopPorts) and should not send it back to where it came
503 // from
504 if (exclude_slave_port_id == InvalidPortID ||
505 p->getId() != exclude_slave_port_id) {
506 // cache is not allowed to refuse snoop
507 p->sendTimingSnoopReq(pkt);
508 fanout++;
509 }
510 }
511
512 // Stats for fanout of this forward operation
513 snoopFanout.sample(fanout);
514 }
515
516 void
517 CoherentXBar::recvRetry(PortID master_port_id)
518 {
519 // responses and snoop responses never block on forwarding them,
520 // so the retry will always be coming from a port to which we
521 // tried to forward a request
522 reqLayers[master_port_id]->recvRetry();
523 }
524
525 Tick
526 CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
527 {
528 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
529 slavePorts[slave_port_id]->name(), pkt->getAddr(),
530 pkt->cmdString());
531
532 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
533 unsigned int pkt_cmd = pkt->cmdToIndex();
534
535 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
536 Tick snoop_response_latency = 0;
537
538 // uncacheable requests need never be snooped
539 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
540 // forward to all snoopers but the source
541 std::pair<MemCmd, Tick> snoop_result;
542 if (snoopFilter) {
543 // check with the snoop filter where to forward this packet
544 auto sf_res =
545 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
546 snoop_response_latency += sf_res.second * clockPeriod();
547 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
548 " SF size: %i lat: %i\n", __func__,
549 slavePorts[slave_port_id]->name(), pkt->cmdString(),
550 pkt->getAddr(), sf_res.first.size(), sf_res.second);
551 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
552 sf_res.first);
553 } else {
554 snoop_result = forwardAtomic(pkt, slave_port_id);
555 }
556 snoop_response_cmd = snoop_result.first;
557 snoop_response_latency += snoop_result.second;
558 }
559
560 // even if we had a snoop response, we must continue and also
561 // perform the actual request at the destination
562 PortID master_port_id = findPort(pkt->getAddr());
563
564 // stats updates for the request
565 pktCount[slave_port_id][master_port_id]++;
566 pktSize[slave_port_id][master_port_id] += pkt_size;
567 transDist[pkt_cmd]++;
568
569 // forward the request to the appropriate destination
570 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
571
572 // Lower levels have replied, tell the snoop filter
573 if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches() &&
574 pkt->isResponse()) {
575 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
576 }
577
578 // if we got a response from a snooper, restore it here
579 if (snoop_response_cmd != MemCmd::InvalidCmd) {
580 // no one else should have responded
581 assert(!pkt->isResponse());
582 pkt->cmd = snoop_response_cmd;
583 response_latency = snoop_response_latency;
584 }
585
586 // add the response data
587 if (pkt->isResponse()) {
588 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
589 pkt_cmd = pkt->cmdToIndex();
590
591 // stats updates
592 pktCount[slave_port_id][master_port_id]++;
593 pktSize[slave_port_id][master_port_id] += pkt_size;
594 transDist[pkt_cmd]++;
595 }
596
597 // @todo: Not setting first-word time
598 pkt->lastWordDelay = response_latency;
599 return response_latency;
600 }
601
602 Tick
603 CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
604 {
605 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
606 masterPorts[master_port_id]->name(), pkt->getAddr(),
607 pkt->cmdString());
608
609 // add the request snoop data
610 snoops++;
611
612 // forward to all snoopers
613 std::pair<MemCmd, Tick> snoop_result;
614 Tick snoop_response_latency = 0;
615 if (snoopFilter) {
616 auto sf_res = snoopFilter->lookupSnoop(pkt);
617 snoop_response_latency += sf_res.second * clockPeriod();
618 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
619 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
620 pkt->getAddr(), sf_res.first.size(), sf_res.second);
621 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
622 sf_res.first);
623 } else {
624 snoop_result = forwardAtomic(pkt, InvalidPortID);
625 }
626 MemCmd snoop_response_cmd = snoop_result.first;
627 snoop_response_latency += snoop_result.second;
628
629 if (snoop_response_cmd != MemCmd::InvalidCmd)
630 pkt->cmd = snoop_response_cmd;
631
632 // add the response snoop data
633 if (pkt->isResponse()) {
634 snoops++;
635 }
636
637 // @todo: Not setting first-word time
638 pkt->lastWordDelay = snoop_response_latency;
639 return snoop_response_latency;
640 }
641
642 std::pair<MemCmd, Tick>
643 CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
644 PortID source_master_port_id,
645 const std::vector<SlavePort*>& dests)
646 {
647 // the packet may be changed on snoops, record the original
648 // command to enable us to restore it between snoops so that
649 // additional snoops can take place properly
650 MemCmd orig_cmd = pkt->cmd;
651 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
652 Tick snoop_response_latency = 0;
653
654 // snoops should only happen if the system isn't bypassing caches
655 assert(!system->bypassCaches());
656
657 unsigned fanout = 0;
658
659 for (const auto& p: dests) {
660 // we could have gotten this request from a snooping master
661 // (corresponding to our own slave port that is also in
662 // snoopPorts) and should not send it back to where it came
663 // from
664 if (exclude_slave_port_id != InvalidPortID &&
665 p->getId() == exclude_slave_port_id)
666 continue;
667
668 Tick latency = p->sendAtomicSnoop(pkt);
669 fanout++;
670
671 // in contrast to a functional access, we have to keep on
672 // going as all snoopers must be updated even if we get a
673 // response
674 if (!pkt->isResponse())
675 continue;
676
677 // response from snoop agent
678 assert(pkt->cmd != orig_cmd);
679 assert(pkt->memInhibitAsserted());
680 // should only happen once
681 assert(snoop_response_cmd == MemCmd::InvalidCmd);
682 // save response state
683 snoop_response_cmd = pkt->cmd;
684 snoop_response_latency = latency;
685
686 if (snoopFilter) {
687 // Handle responses by the snoopers and differentiate between
688 // responses to requests from above and snoops from below
689 if (source_master_port_id != InvalidPortID) {
690 // Getting a response for a snoop from below
691 assert(exclude_slave_port_id == InvalidPortID);
692 snoopFilter->updateSnoopForward(pkt, *p,
693 *masterPorts[source_master_port_id]);
694 } else {
695 // Getting a response for a request from above
696 assert(source_master_port_id == InvalidPortID);
697 snoopFilter->updateSnoopResponse(pkt, *p,
698 *slavePorts[exclude_slave_port_id]);
699 }
700 }
701 // restore original packet state for remaining snoopers
702 pkt->cmd = orig_cmd;
703 }
704
705 // Stats for fanout
706 snoopFanout.sample(fanout);
707
708 // the packet is restored as part of the loop and any potential
709 // snoop response is part of the returned pair
710 return std::make_pair(snoop_response_cmd, snoop_response_latency);
711 }
712
713 void
714 CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
715 {
716 if (!pkt->isPrint()) {
717 // don't do DPRINTFs on PrintReq as it clutters up the output
718 DPRINTF(CoherentXBar,
719 "recvFunctional: packet src %s addr 0x%x cmd %s\n",
720 slavePorts[slave_port_id]->name(), pkt->getAddr(),
721 pkt->cmdString());
722 }
723
724 // uncacheable requests need never be snooped
725 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
726 // forward to all snoopers but the source
727 forwardFunctional(pkt, slave_port_id);
728 }
729
730 // there is no need to continue if the snooping has found what we
731 // were looking for and the packet is already a response
732 if (!pkt->isResponse()) {
733 PortID dest_id = findPort(pkt->getAddr());
734
735 masterPorts[dest_id]->sendFunctional(pkt);
736 }
737 }
738
739 void
740 CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
741 {
742 if (!pkt->isPrint()) {
743 // don't do DPRINTFs on PrintReq as it clutters up the output
744 DPRINTF(CoherentXBar,
745 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
746 masterPorts[master_port_id]->name(), pkt->getAddr(),
747 pkt->cmdString());
748 }
749
750 // forward to all snoopers
751 forwardFunctional(pkt, InvalidPortID);
752 }
753
754 void
755 CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
756 {
757 // snoops should only happen if the system isn't bypassing caches
758 assert(!system->bypassCaches());
759
760 for (const auto& p: snoopPorts) {
761 // we could have gotten this request from a snooping master
762 // (corresponding to our own slave port that is also in
763 // snoopPorts) and should not send it back to where it came
764 // from
765 if (exclude_slave_port_id == InvalidPortID ||
766 p->getId() != exclude_slave_port_id)
767 p->sendFunctionalSnoop(pkt);
768
769 // if we get a response we are done
770 if (pkt->isResponse()) {
771 break;
772 }
773 }
774 }
775
776 unsigned int
777 CoherentXBar::drain(DrainManager *dm)
778 {
779 // sum up the individual layers
780 unsigned int total = 0;
781 for (auto l: reqLayers)
782 total += l->drain(dm);
783 for (auto l: respLayers)
784 total += l->drain(dm);
785 for (auto l: snoopLayers)
786 total += l->drain(dm);
787 return total;
788 }
789
790 void
791 CoherentXBar::regStats()
792 {
793 // register the stats of the base class and our layers
794 BaseXBar::regStats();
795 for (auto l: reqLayers)
796 l->regStats();
797 for (auto l: respLayers)
798 l->regStats();
799 for (auto l: snoopLayers)
800 l->regStats();
801
802 snoops
803 .name(name() + ".snoops")
804 .desc("Total snoops (count)")
805 ;
806
807 snoopFanout
808 .init(0, snoopPorts.size(), 1)
809 .name(name() + ".snoop_fanout")
810 .desc("Request fanout histogram")
811 ;
812 }
813
814 CoherentXBar *
815 CoherentXBarParams::create()
816 {
817 return new CoherentXBar(this);
818 }