mem: Add an option to perform clean writebacks from caches
[gem5.git] / src / mem / coherent_xbar.cc
1 /*
2 * Copyright (c) 2011-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 */
44
45 /**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50 #include "base/misc.hh"
51 #include "base/trace.hh"
52 #include "debug/AddrRanges.hh"
53 #include "debug/CoherentXBar.hh"
54 #include "mem/coherent_xbar.hh"
55 #include "sim/system.hh"
56
57 CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
59 snoopResponseLatency(p->snoop_response_latency)
60 {
61 // create the ports based on the size of the master and slave
62 // vector ports, and the presence of the default port, the ports
63 // are enumerated starting from zero
64 for (int i = 0; i < p->port_master_connection_count; ++i) {
65 std::string portName = csprintf("%s.master[%d]", name(), i);
66 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
67 masterPorts.push_back(bp);
68 reqLayers.push_back(new ReqLayer(*bp, *this,
69 csprintf(".reqLayer%d", i)));
70 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
71 csprintf(".snoopLayer%d", i)));
72 }
73
74 // see if we have a default slave device connected and if so add
75 // our corresponding master port
76 if (p->port_default_connection_count) {
77 defaultPortID = masterPorts.size();
78 std::string portName = name() + ".default";
79 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
80 defaultPortID);
81 masterPorts.push_back(bp);
82 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
83 defaultPortID)));
84 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
85 csprintf(".snoopLayer%d",
86 defaultPortID)));
87 }
88
89 // create the slave ports, once again starting at zero
90 for (int i = 0; i < p->port_slave_connection_count; ++i) {
91 std::string portName = csprintf("%s.slave[%d]", name(), i);
92 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
93 slavePorts.push_back(bp);
94 respLayers.push_back(new RespLayer(*bp, *this,
95 csprintf(".respLayer%d", i)));
96 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
97 }
98
99 clearPortCache();
100 }
101
102 CoherentXBar::~CoherentXBar()
103 {
104 for (auto l: reqLayers)
105 delete l;
106 for (auto l: respLayers)
107 delete l;
108 for (auto l: snoopLayers)
109 delete l;
110 for (auto p: snoopRespPorts)
111 delete p;
112 }
113
114 void
115 CoherentXBar::init()
116 {
117 // the base class is responsible for determining the block size
118 BaseXBar::init();
119
120 // iterate over our slave ports and determine which of our
121 // neighbouring master ports are snooping and add them as snoopers
122 for (const auto& p: slavePorts) {
123 // check if the connected master port is snooping
124 if (p->isSnooping()) {
125 DPRINTF(AddrRanges, "Adding snooping master %s\n",
126 p->getMasterPort().name());
127 snoopPorts.push_back(p);
128 }
129 }
130
131 if (snoopPorts.empty())
132 warn("CoherentXBar %s has no snooping ports attached!\n", name());
133
134 // inform the snoop filter about the slave ports so it can create
135 // its own internal representation
136 if (snoopFilter)
137 snoopFilter->setSlavePorts(slavePorts);
138 }
139
140 bool
141 CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
142 {
143 // determine the source port based on the id
144 SlavePort *src_port = slavePorts[slave_port_id];
145
146 // remember if the packet is an express snoop
147 bool is_express_snoop = pkt->isExpressSnoop();
148 bool is_inhibited = pkt->memInhibitAsserted();
149 // for normal requests, going downstream, the express snoop flag
150 // and the inhibited flag should always be the same
151 assert(is_express_snoop == is_inhibited);
152
153 // determine the destination based on the address
154 PortID master_port_id = findPort(pkt->getAddr());
155
156 // test if the crossbar should be considered occupied for the current
157 // port, and exclude express snoops from the check
158 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
159 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
160 src_port->name(), pkt->cmdString(), pkt->getAddr());
161 return false;
162 }
163
164 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
165 src_port->name(), pkt->cmdString(), is_express_snoop,
166 pkt->getAddr());
167
168 // store size and command as they might be modified when
169 // forwarding the packet
170 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
171 unsigned int pkt_cmd = pkt->cmdToIndex();
172
173 // store the old header delay so we can restore it if needed
174 Tick old_header_delay = pkt->headerDelay;
175
176 // a request sees the frontend and forward latency
177 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
178
179 // set the packet header and payload delay
180 calcPacketTiming(pkt, xbar_delay);
181
182 // determine how long to be crossbar layer is busy
183 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
184
185 if (!system->bypassCaches()) {
186 assert(pkt->snoopDelay == 0);
187
188 // the packet is a memory-mapped request and should be
189 // broadcasted to our snoopers but the source
190 if (snoopFilter) {
191 // check with the snoop filter where to forward this packet
192 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
193 // the time required by a packet to be delivered through
194 // the xbar has to be charged also with to lookup latency
195 // of the snoop filter
196 pkt->headerDelay += sf_res.second * clockPeriod();
197 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
198 " SF size: %i lat: %i\n", src_port->name(),
199 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
200 sf_res.second);
201
202 if (pkt->isEviction()) {
203 // for block-evicting packets, i.e. writebacks and
204 // clean evictions, there is no need to snoop up, as
205 // all we do is determine if the block is cached or
206 // not, instead just set it here based on the snoop
207 // filter result
208 if (!sf_res.first.empty())
209 pkt->setBlockCached();
210 } else {
211 forwardTiming(pkt, slave_port_id, sf_res.first);
212 }
213 } else {
214 forwardTiming(pkt, slave_port_id);
215 }
216
217 // add the snoop delay to our header delay, and then reset it
218 pkt->headerDelay += pkt->snoopDelay;
219 pkt->snoopDelay = 0;
220 }
221
222 // forwardTiming snooped into peer caches of the sender, and if
223 // this is a clean evict or clean writeback, but the packet is
224 // found in a cache, do not forward it
225 if ((pkt->cmd == MemCmd::CleanEvict ||
226 pkt->cmd == MemCmd::WritebackClean) && pkt->isBlockCached()) {
227 DPRINTF(CoherentXBar, "Clean evict/writeback %#llx still cached, "
228 "not forwarding\n", pkt->getAddr());
229
230 // update the layer state and schedule an idle event
231 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
232
233 // queue the packet for deletion
234 pendingDelete.reset(pkt);
235
236 return true;
237 }
238
239 // remember if the packet will generate a snoop response
240 const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted();
241 const bool expect_response = pkt->needsResponse() &&
242 !pkt->memInhibitAsserted();
243
244 // since it is a normal request, attempt to send the packet
245 bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
246
247 if (snoopFilter && !system->bypassCaches()) {
248 // Let the snoop filter know about the success of the send operation
249 snoopFilter->finishRequest(!success, pkt);
250 }
251
252 // check if we were successful in sending the packet onwards
253 if (!success) {
254 // express snoops and inhibited packets should never be forced
255 // to retry
256 assert(!is_express_snoop);
257 assert(!pkt->memInhibitAsserted());
258
259 // restore the header delay
260 pkt->headerDelay = old_header_delay;
261
262 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
263 src_port->name(), pkt->cmdString(), pkt->getAddr());
264
265 // update the layer state and schedule an idle event
266 reqLayers[master_port_id]->failedTiming(src_port,
267 clockEdge(Cycles(1)));
268 } else {
269 // express snoops currently bypass the crossbar state entirely
270 if (!is_express_snoop) {
271 // if this particular request will generate a snoop
272 // response
273 if (expect_snoop_resp) {
274 // we should never have an exsiting request outstanding
275 assert(outstandingSnoop.find(pkt->req) ==
276 outstandingSnoop.end());
277 outstandingSnoop.insert(pkt->req);
278
279 // basic sanity check on the outstanding snoops
280 panic_if(outstandingSnoop.size() > 512,
281 "Outstanding snoop requests exceeded 512\n");
282 }
283
284 // remember where to route the normal response to
285 if (expect_response || expect_snoop_resp) {
286 assert(routeTo.find(pkt->req) == routeTo.end());
287 routeTo[pkt->req] = slave_port_id;
288
289 panic_if(routeTo.size() > 512,
290 "Routing table exceeds 512 packets\n");
291 }
292
293 // update the layer state and schedule an idle event
294 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
295 }
296
297 // stats updates only consider packets that were successfully sent
298 pktCount[slave_port_id][master_port_id]++;
299 pktSize[slave_port_id][master_port_id] += pkt_size;
300 transDist[pkt_cmd]++;
301
302 if (is_express_snoop)
303 snoops++;
304 }
305
306 return success;
307 }
308
309 bool
310 CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
311 {
312 // determine the source port based on the id
313 MasterPort *src_port = masterPorts[master_port_id];
314
315 // determine the destination
316 const auto route_lookup = routeTo.find(pkt->req);
317 assert(route_lookup != routeTo.end());
318 const PortID slave_port_id = route_lookup->second;
319 assert(slave_port_id != InvalidPortID);
320 assert(slave_port_id < respLayers.size());
321
322 // test if the crossbar should be considered occupied for the
323 // current port
324 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
325 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
326 src_port->name(), pkt->cmdString(), pkt->getAddr());
327 return false;
328 }
329
330 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
331 src_port->name(), pkt->cmdString(), pkt->getAddr());
332
333 // store size and command as they might be modified when
334 // forwarding the packet
335 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
336 unsigned int pkt_cmd = pkt->cmdToIndex();
337
338 // a response sees the response latency
339 Tick xbar_delay = responseLatency * clockPeriod();
340
341 // set the packet header and payload delay
342 calcPacketTiming(pkt, xbar_delay);
343
344 // determine how long to be crossbar layer is busy
345 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
346
347 if (snoopFilter && !system->bypassCaches()) {
348 // let the snoop filter inspect the response and update its state
349 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
350 }
351
352 // send the packet through the destination slave port and pay for
353 // any outstanding header delay
354 Tick latency = pkt->headerDelay;
355 pkt->headerDelay = 0;
356 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
357
358 // remove the request from the routing table
359 routeTo.erase(route_lookup);
360
361 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
362
363 // stats updates
364 pktCount[slave_port_id][master_port_id]++;
365 pktSize[slave_port_id][master_port_id] += pkt_size;
366 transDist[pkt_cmd]++;
367
368 return true;
369 }
370
371 void
372 CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
373 {
374 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
375 masterPorts[master_port_id]->name(), pkt->cmdString(),
376 pkt->getAddr());
377
378 // update stats here as we know the forwarding will succeed
379 transDist[pkt->cmdToIndex()]++;
380 snoops++;
381
382 // we should only see express snoops from caches
383 assert(pkt->isExpressSnoop());
384
385 // set the packet header and payload delay, for now use forward latency
386 // @todo Assess the choice of latency further
387 calcPacketTiming(pkt, forwardLatency * clockPeriod());
388
389 // remeber if the packet is inhibited so we can see if it changes
390 const bool is_inhibited = pkt->memInhibitAsserted();
391
392 assert(pkt->snoopDelay == 0);
393
394 if (snoopFilter) {
395 // let the Snoop Filter work its magic and guide probing
396 auto sf_res = snoopFilter->lookupSnoop(pkt);
397 // the time required by a packet to be delivered through
398 // the xbar has to be charged also with to lookup latency
399 // of the snoop filter
400 pkt->headerDelay += sf_res.second * clockPeriod();
401 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
402 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
403 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
404 sf_res.second);
405
406 // forward to all snoopers
407 forwardTiming(pkt, InvalidPortID, sf_res.first);
408 } else {
409 forwardTiming(pkt, InvalidPortID);
410 }
411
412 // add the snoop delay to our header delay, and then reset it
413 pkt->headerDelay += pkt->snoopDelay;
414 pkt->snoopDelay = 0;
415
416 // if we can expect a response, remember how to route it
417 if (!is_inhibited && pkt->memInhibitAsserted()) {
418 assert(routeTo.find(pkt->req) == routeTo.end());
419 routeTo[pkt->req] = master_port_id;
420 }
421
422 // a snoop request came from a connected slave device (one of
423 // our master ports), and if it is not coming from the slave
424 // device responsible for the address range something is
425 // wrong, hence there is nothing further to do as the packet
426 // would be going back to where it came from
427 assert(master_port_id == findPort(pkt->getAddr()));
428 }
429
430 bool
431 CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
432 {
433 // determine the source port based on the id
434 SlavePort* src_port = slavePorts[slave_port_id];
435
436 // get the destination
437 const auto route_lookup = routeTo.find(pkt->req);
438 assert(route_lookup != routeTo.end());
439 const PortID dest_port_id = route_lookup->second;
440 assert(dest_port_id != InvalidPortID);
441
442 // determine if the response is from a snoop request we
443 // created as the result of a normal request (in which case it
444 // should be in the outstandingSnoop), or if we merely forwarded
445 // someone else's snoop request
446 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
447 outstandingSnoop.end();
448
449 // test if the crossbar should be considered occupied for the
450 // current port, note that the check is bypassed if the response
451 // is being passed on as a normal response since this is occupying
452 // the response layer rather than the snoop response layer
453 if (forwardAsSnoop) {
454 assert(dest_port_id < snoopLayers.size());
455 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
456 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
457 src_port->name(), pkt->cmdString(), pkt->getAddr());
458 return false;
459 }
460 } else {
461 // get the master port that mirrors this slave port internally
462 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
463 assert(dest_port_id < respLayers.size());
464 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
465 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
466 snoop_port->name(), pkt->cmdString(), pkt->getAddr());
467 return false;
468 }
469 }
470
471 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
472 src_port->name(), pkt->cmdString(), pkt->getAddr());
473
474 // store size and command as they might be modified when
475 // forwarding the packet
476 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
477 unsigned int pkt_cmd = pkt->cmdToIndex();
478
479 // responses are never express snoops
480 assert(!pkt->isExpressSnoop());
481
482 // a snoop response sees the snoop response latency, and if it is
483 // forwarded as a normal response, the response latency
484 Tick xbar_delay =
485 (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
486 clockPeriod();
487
488 // set the packet header and payload delay
489 calcPacketTiming(pkt, xbar_delay);
490
491 // determine how long to be crossbar layer is busy
492 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
493
494 // forward it either as a snoop response or a normal response
495 if (forwardAsSnoop) {
496 // this is a snoop response to a snoop request we forwarded,
497 // e.g. coming from the L1 and going to the L2, and it should
498 // be forwarded as a snoop response
499
500 if (snoopFilter) {
501 // update the probe filter so that it can properly track the line
502 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
503 *masterPorts[dest_port_id]);
504 }
505
506 bool success M5_VAR_USED =
507 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
508 pktCount[slave_port_id][dest_port_id]++;
509 pktSize[slave_port_id][dest_port_id] += pkt_size;
510 assert(success);
511
512 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
513 } else {
514 // we got a snoop response on one of our slave ports,
515 // i.e. from a coherent master connected to the crossbar, and
516 // since we created the snoop request as part of recvTiming,
517 // this should now be a normal response again
518 outstandingSnoop.erase(pkt->req);
519
520 // this is a snoop response from a coherent master, hence it
521 // should never go back to where the snoop response came from,
522 // but instead to where the original request came from
523 assert(slave_port_id != dest_port_id);
524
525 if (snoopFilter) {
526 // update the probe filter so that it can properly track the line
527 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
528 *slavePorts[dest_port_id]);
529 }
530
531 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
532 " FWD RESP\n", src_port->name(), pkt->cmdString(),
533 pkt->getAddr());
534
535 // as a normal response, it should go back to a master through
536 // one of our slave ports, we also pay for any outstanding
537 // header latency
538 Tick latency = pkt->headerDelay;
539 pkt->headerDelay = 0;
540 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
541
542 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
543 }
544
545 // remove the request from the routing table
546 routeTo.erase(route_lookup);
547
548 // stats updates
549 transDist[pkt_cmd]++;
550 snoops++;
551
552 return true;
553 }
554
555
556 void
557 CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
558 const std::vector<QueuedSlavePort*>& dests)
559 {
560 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
561 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
562
563 // snoops should only happen if the system isn't bypassing caches
564 assert(!system->bypassCaches());
565
566 unsigned fanout = 0;
567
568 for (const auto& p: dests) {
569 // we could have gotten this request from a snooping master
570 // (corresponding to our own slave port that is also in
571 // snoopPorts) and should not send it back to where it came
572 // from
573 if (exclude_slave_port_id == InvalidPortID ||
574 p->getId() != exclude_slave_port_id) {
575 // cache is not allowed to refuse snoop
576 p->sendTimingSnoopReq(pkt);
577 fanout++;
578 }
579 }
580
581 // Stats for fanout of this forward operation
582 snoopFanout.sample(fanout);
583 }
584
585 void
586 CoherentXBar::recvReqRetry(PortID master_port_id)
587 {
588 // responses and snoop responses never block on forwarding them,
589 // so the retry will always be coming from a port to which we
590 // tried to forward a request
591 reqLayers[master_port_id]->recvRetry();
592 }
593
594 Tick
595 CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
596 {
597 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
598 slavePorts[slave_port_id]->name(), pkt->getAddr(),
599 pkt->cmdString());
600
601 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
602 unsigned int pkt_cmd = pkt->cmdToIndex();
603
604 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
605 Tick snoop_response_latency = 0;
606
607 if (!system->bypassCaches()) {
608 // forward to all snoopers but the source
609 std::pair<MemCmd, Tick> snoop_result;
610 if (snoopFilter) {
611 // check with the snoop filter where to forward this packet
612 auto sf_res =
613 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
614 snoop_response_latency += sf_res.second * clockPeriod();
615 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
616 " SF size: %i lat: %i\n", __func__,
617 slavePorts[slave_port_id]->name(), pkt->cmdString(),
618 pkt->getAddr(), sf_res.first.size(), sf_res.second);
619
620 // let the snoop filter know about the success of the send
621 // operation, and do it even before sending it onwards to
622 // avoid situations where atomic upward snoops sneak in
623 // between and change the filter state
624 snoopFilter->finishRequest(false, pkt);
625
626 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
627 sf_res.first);
628 } else {
629 snoop_result = forwardAtomic(pkt, slave_port_id);
630 }
631 snoop_response_cmd = snoop_result.first;
632 snoop_response_latency += snoop_result.second;
633 }
634
635 // forwardAtomic snooped into peer caches of the sender, and if
636 // this is a clean evict, but the packet is found in a cache, do
637 // not forward it
638 if ((pkt->cmd == MemCmd::CleanEvict ||
639 pkt->cmd == MemCmd::WritebackClean) && pkt->isBlockCached()) {
640 DPRINTF(CoherentXBar, "Clean evict/writeback %#llx still cached, "
641 "not forwarding\n", pkt->getAddr());
642 return 0;
643 }
644
645 // even if we had a snoop response, we must continue and also
646 // perform the actual request at the destination
647 PortID master_port_id = findPort(pkt->getAddr());
648
649 // stats updates for the request
650 pktCount[slave_port_id][master_port_id]++;
651 pktSize[slave_port_id][master_port_id] += pkt_size;
652 transDist[pkt_cmd]++;
653
654 // forward the request to the appropriate destination
655 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
656
657 // if lower levels have replied, tell the snoop filter
658 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
659 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
660 }
661
662 // if we got a response from a snooper, restore it here
663 if (snoop_response_cmd != MemCmd::InvalidCmd) {
664 // no one else should have responded
665 assert(!pkt->isResponse());
666 pkt->cmd = snoop_response_cmd;
667 response_latency = snoop_response_latency;
668 }
669
670 // add the response data
671 if (pkt->isResponse()) {
672 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
673 pkt_cmd = pkt->cmdToIndex();
674
675 // stats updates
676 pktCount[slave_port_id][master_port_id]++;
677 pktSize[slave_port_id][master_port_id] += pkt_size;
678 transDist[pkt_cmd]++;
679 }
680
681 // @todo: Not setting header time
682 pkt->payloadDelay = response_latency;
683 return response_latency;
684 }
685
686 Tick
687 CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
688 {
689 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
690 masterPorts[master_port_id]->name(), pkt->getAddr(),
691 pkt->cmdString());
692
693 // add the request snoop data
694 snoops++;
695
696 // forward to all snoopers
697 std::pair<MemCmd, Tick> snoop_result;
698 Tick snoop_response_latency = 0;
699 if (snoopFilter) {
700 auto sf_res = snoopFilter->lookupSnoop(pkt);
701 snoop_response_latency += sf_res.second * clockPeriod();
702 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
703 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
704 pkt->getAddr(), sf_res.first.size(), sf_res.second);
705 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
706 sf_res.first);
707 } else {
708 snoop_result = forwardAtomic(pkt, InvalidPortID);
709 }
710 MemCmd snoop_response_cmd = snoop_result.first;
711 snoop_response_latency += snoop_result.second;
712
713 if (snoop_response_cmd != MemCmd::InvalidCmd)
714 pkt->cmd = snoop_response_cmd;
715
716 // add the response snoop data
717 if (pkt->isResponse()) {
718 snoops++;
719 }
720
721 // @todo: Not setting header time
722 pkt->payloadDelay = snoop_response_latency;
723 return snoop_response_latency;
724 }
725
726 std::pair<MemCmd, Tick>
727 CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
728 PortID source_master_port_id,
729 const std::vector<QueuedSlavePort*>& dests)
730 {
731 // the packet may be changed on snoops, record the original
732 // command to enable us to restore it between snoops so that
733 // additional snoops can take place properly
734 MemCmd orig_cmd = pkt->cmd;
735 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
736 Tick snoop_response_latency = 0;
737
738 // snoops should only happen if the system isn't bypassing caches
739 assert(!system->bypassCaches());
740
741 unsigned fanout = 0;
742
743 for (const auto& p: dests) {
744 // we could have gotten this request from a snooping master
745 // (corresponding to our own slave port that is also in
746 // snoopPorts) and should not send it back to where it came
747 // from
748 if (exclude_slave_port_id != InvalidPortID &&
749 p->getId() == exclude_slave_port_id)
750 continue;
751
752 Tick latency = p->sendAtomicSnoop(pkt);
753 fanout++;
754
755 // in contrast to a functional access, we have to keep on
756 // going as all snoopers must be updated even if we get a
757 // response
758 if (!pkt->isResponse())
759 continue;
760
761 // response from snoop agent
762 assert(pkt->cmd != orig_cmd);
763 assert(pkt->memInhibitAsserted());
764 // should only happen once
765 assert(snoop_response_cmd == MemCmd::InvalidCmd);
766 // save response state
767 snoop_response_cmd = pkt->cmd;
768 snoop_response_latency = latency;
769
770 if (snoopFilter) {
771 // Handle responses by the snoopers and differentiate between
772 // responses to requests from above and snoops from below
773 if (source_master_port_id != InvalidPortID) {
774 // Getting a response for a snoop from below
775 assert(exclude_slave_port_id == InvalidPortID);
776 snoopFilter->updateSnoopForward(pkt, *p,
777 *masterPorts[source_master_port_id]);
778 } else {
779 // Getting a response for a request from above
780 assert(source_master_port_id == InvalidPortID);
781 snoopFilter->updateSnoopResponse(pkt, *p,
782 *slavePorts[exclude_slave_port_id]);
783 }
784 }
785 // restore original packet state for remaining snoopers
786 pkt->cmd = orig_cmd;
787 }
788
789 // Stats for fanout
790 snoopFanout.sample(fanout);
791
792 // the packet is restored as part of the loop and any potential
793 // snoop response is part of the returned pair
794 return std::make_pair(snoop_response_cmd, snoop_response_latency);
795 }
796
797 void
798 CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
799 {
800 if (!pkt->isPrint()) {
801 // don't do DPRINTFs on PrintReq as it clutters up the output
802 DPRINTF(CoherentXBar,
803 "recvFunctional: packet src %s addr 0x%x cmd %s\n",
804 slavePorts[slave_port_id]->name(), pkt->getAddr(),
805 pkt->cmdString());
806 }
807
808 if (!system->bypassCaches()) {
809 // forward to all snoopers but the source
810 forwardFunctional(pkt, slave_port_id);
811 }
812
813 // there is no need to continue if the snooping has found what we
814 // were looking for and the packet is already a response
815 if (!pkt->isResponse()) {
816 // since our slave ports are queued ports we need to check them as well
817 for (const auto& p : slavePorts) {
818 // if we find a response that has the data, then the
819 // downstream caches/memories may be out of date, so simply stop
820 // here
821 if (p->checkFunctional(pkt)) {
822 if (pkt->needsResponse())
823 pkt->makeResponse();
824 return;
825 }
826 }
827
828 PortID dest_id = findPort(pkt->getAddr());
829
830 masterPorts[dest_id]->sendFunctional(pkt);
831 }
832 }
833
834 void
835 CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
836 {
837 if (!pkt->isPrint()) {
838 // don't do DPRINTFs on PrintReq as it clutters up the output
839 DPRINTF(CoherentXBar,
840 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
841 masterPorts[master_port_id]->name(), pkt->getAddr(),
842 pkt->cmdString());
843 }
844
845 for (const auto& p : slavePorts) {
846 if (p->checkFunctional(pkt)) {
847 if (pkt->needsResponse())
848 pkt->makeResponse();
849 return;
850 }
851 }
852
853 // forward to all snoopers
854 forwardFunctional(pkt, InvalidPortID);
855 }
856
857 void
858 CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
859 {
860 // snoops should only happen if the system isn't bypassing caches
861 assert(!system->bypassCaches());
862
863 for (const auto& p: snoopPorts) {
864 // we could have gotten this request from a snooping master
865 // (corresponding to our own slave port that is also in
866 // snoopPorts) and should not send it back to where it came
867 // from
868 if (exclude_slave_port_id == InvalidPortID ||
869 p->getId() != exclude_slave_port_id)
870 p->sendFunctionalSnoop(pkt);
871
872 // if we get a response we are done
873 if (pkt->isResponse()) {
874 break;
875 }
876 }
877 }
878
879 void
880 CoherentXBar::regStats()
881 {
882 // register the stats of the base class and our layers
883 BaseXBar::regStats();
884 for (auto l: reqLayers)
885 l->regStats();
886 for (auto l: respLayers)
887 l->regStats();
888 for (auto l: snoopLayers)
889 l->regStats();
890
891 snoops
892 .name(name() + ".snoops")
893 .desc("Total snoops (count)")
894 ;
895
896 snoopFanout
897 .init(0, snoopPorts.size(), 1)
898 .name(name() + ".snoop_fanout")
899 .desc("Request fanout histogram")
900 ;
901 }
902
903 CoherentXBar *
904 CoherentXBarParams::create()
905 {
906 return new CoherentXBar(this);
907 }