mem: Split port retry for all different packet classes
[gem5.git] / src / mem / coherent_xbar.cc
1 /*
2 * Copyright (c) 2011-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 */
44
45 /**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50 #include "base/misc.hh"
51 #include "base/trace.hh"
52 #include "debug/AddrRanges.hh"
53 #include "debug/CoherentXBar.hh"
54 #include "mem/coherent_xbar.hh"
55 #include "sim/system.hh"
56
57 CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter)
59 {
60 // create the ports based on the size of the master and slave
61 // vector ports, and the presence of the default port, the ports
62 // are enumerated starting from zero
63 for (int i = 0; i < p->port_master_connection_count; ++i) {
64 std::string portName = csprintf("%s.master[%d]", name(), i);
65 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
66 masterPorts.push_back(bp);
67 reqLayers.push_back(new ReqLayer(*bp, *this,
68 csprintf(".reqLayer%d", i)));
69 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
70 csprintf(".snoopLayer%d", i)));
71 }
72
73 // see if we have a default slave device connected and if so add
74 // our corresponding master port
75 if (p->port_default_connection_count) {
76 defaultPortID = masterPorts.size();
77 std::string portName = name() + ".default";
78 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
79 defaultPortID);
80 masterPorts.push_back(bp);
81 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
82 defaultPortID)));
83 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
84 csprintf(".snoopLayer%d",
85 defaultPortID)));
86 }
87
88 // create the slave ports, once again starting at zero
89 for (int i = 0; i < p->port_slave_connection_count; ++i) {
90 std::string portName = csprintf("%s.slave[%d]", name(), i);
91 SlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
92 slavePorts.push_back(bp);
93 respLayers.push_back(new RespLayer(*bp, *this,
94 csprintf(".respLayer%d", i)));
95 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
96 }
97
98 if (snoopFilter)
99 snoopFilter->setSlavePorts(slavePorts);
100
101 clearPortCache();
102 }
103
104 CoherentXBar::~CoherentXBar()
105 {
106 for (auto l: reqLayers)
107 delete l;
108 for (auto l: respLayers)
109 delete l;
110 for (auto l: snoopLayers)
111 delete l;
112 for (auto p: snoopRespPorts)
113 delete p;
114 }
115
116 void
117 CoherentXBar::init()
118 {
119 // the base class is responsible for determining the block size
120 BaseXBar::init();
121
122 // iterate over our slave ports and determine which of our
123 // neighbouring master ports are snooping and add them as snoopers
124 for (const auto& p: slavePorts) {
125 // check if the connected master port is snooping
126 if (p->isSnooping()) {
127 DPRINTF(AddrRanges, "Adding snooping master %s\n",
128 p->getMasterPort().name());
129 snoopPorts.push_back(p);
130 }
131 }
132
133 if (snoopPorts.empty())
134 warn("CoherentXBar %s has no snooping ports attached!\n", name());
135 }
136
137 bool
138 CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
139 {
140 // determine the source port based on the id
141 SlavePort *src_port = slavePorts[slave_port_id];
142
143 // remember if the packet is an express snoop
144 bool is_express_snoop = pkt->isExpressSnoop();
145 bool is_inhibited = pkt->memInhibitAsserted();
146 // for normal requests, going downstream, the express snoop flag
147 // and the inhibited flag should always be the same
148 assert(is_express_snoop == is_inhibited);
149
150 // determine the destination based on the address
151 PortID master_port_id = findPort(pkt->getAddr());
152
153 // test if the crossbar should be considered occupied for the current
154 // port, and exclude express snoops from the check
155 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
156 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
157 src_port->name(), pkt->cmdString(), pkt->getAddr());
158 return false;
159 }
160
161 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
162 src_port->name(), pkt->cmdString(), is_express_snoop,
163 pkt->getAddr());
164
165 // store size and command as they might be modified when
166 // forwarding the packet
167 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
168 unsigned int pkt_cmd = pkt->cmdToIndex();
169
170 calcPacketTiming(pkt);
171 Tick packetFinishTime = curTick() + pkt->payloadDelay;
172
173 // uncacheable requests need never be snooped
174 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
175 // the packet is a memory-mapped request and should be
176 // broadcasted to our snoopers but the source
177 if (snoopFilter) {
178 // check with the snoop filter where to forward this packet
179 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
180 packetFinishTime += sf_res.second * clockPeriod();
181 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
182 " SF size: %i lat: %i\n", src_port->name(),
183 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
184 sf_res.second);
185 forwardTiming(pkt, slave_port_id, sf_res.first);
186 } else {
187 forwardTiming(pkt, slave_port_id);
188 }
189 }
190
191 // remember if the packet will generate a snoop response
192 const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted();
193 const bool expect_response = pkt->needsResponse() &&
194 !pkt->memInhibitAsserted();
195
196 // Note: Cannot create a copy of the full packet, here.
197 MemCmd orig_cmd(pkt->cmd);
198
199 // since it is a normal request, attempt to send the packet
200 bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
201
202 if (snoopFilter && !pkt->req->isUncacheable()
203 && !system->bypassCaches()) {
204 // The packet may already be overwritten by the sendTimingReq function.
205 // The snoop filter needs to see the original request *and* the return
206 // status of the send operation, so we need to recreate the original
207 // request. Atomic mode does not have the issue, as there the send
208 // operation and the response happen instantaneously and don't need two
209 // phase tracking.
210 MemCmd tmp_cmd(pkt->cmd);
211 pkt->cmd = orig_cmd;
212 // Let the snoop filter know about the success of the send operation
213 snoopFilter->updateRequest(pkt, *src_port, !success);
214 pkt->cmd = tmp_cmd;
215 }
216
217 // check if we were successful in sending the packet onwards
218 if (!success) {
219 // express snoops and inhibited packets should never be forced
220 // to retry
221 assert(!is_express_snoop);
222 assert(!pkt->memInhibitAsserted());
223
224 // undo the calculation so we can check for 0 again
225 pkt->headerDelay = pkt->payloadDelay = 0;
226
227 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
228 src_port->name(), pkt->cmdString(), pkt->getAddr());
229
230 // update the layer state and schedule an idle event
231 reqLayers[master_port_id]->failedTiming(src_port,
232 clockEdge(headerCycles));
233 } else {
234 // express snoops currently bypass the crossbar state entirely
235 if (!is_express_snoop) {
236 // if this particular request will generate a snoop
237 // response
238 if (expect_snoop_resp) {
239 // we should never have an exsiting request outstanding
240 assert(outstandingSnoop.find(pkt->req) ==
241 outstandingSnoop.end());
242 outstandingSnoop.insert(pkt->req);
243
244 // basic sanity check on the outstanding snoops
245 panic_if(outstandingSnoop.size() > 512,
246 "Outstanding snoop requests exceeded 512\n");
247 }
248
249 // remember where to route the normal response to
250 if (expect_response || expect_snoop_resp) {
251 assert(routeTo.find(pkt->req) == routeTo.end());
252 routeTo[pkt->req] = slave_port_id;
253
254 panic_if(routeTo.size() > 512,
255 "Routing table exceeds 512 packets\n");
256 }
257
258 // update the layer state and schedule an idle event
259 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
260 }
261
262 // stats updates only consider packets that were successfully sent
263 pktCount[slave_port_id][master_port_id]++;
264 pktSize[slave_port_id][master_port_id] += pkt_size;
265 transDist[pkt_cmd]++;
266
267 if (is_express_snoop)
268 snoops++;
269 }
270
271 return success;
272 }
273
274 bool
275 CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
276 {
277 // determine the source port based on the id
278 MasterPort *src_port = masterPorts[master_port_id];
279
280 // determine the destination
281 const auto route_lookup = routeTo.find(pkt->req);
282 assert(route_lookup != routeTo.end());
283 const PortID slave_port_id = route_lookup->second;
284 assert(slave_port_id != InvalidPortID);
285 assert(slave_port_id < respLayers.size());
286
287 // test if the crossbar should be considered occupied for the
288 // current port
289 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
290 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
291 src_port->name(), pkt->cmdString(), pkt->getAddr());
292 return false;
293 }
294
295 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
296 src_port->name(), pkt->cmdString(), pkt->getAddr());
297
298 // store size and command as they might be modified when
299 // forwarding the packet
300 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
301 unsigned int pkt_cmd = pkt->cmdToIndex();
302
303 calcPacketTiming(pkt);
304 Tick packetFinishTime = curTick() + pkt->payloadDelay;
305
306 if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches()) {
307 // let the snoop filter inspect the response and update its state
308 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
309 }
310
311 // send the packet through the destination slave port
312 bool success M5_VAR_USED = slavePorts[slave_port_id]->sendTimingResp(pkt);
313
314 // currently it is illegal to block responses... can lead to
315 // deadlock
316 assert(success);
317
318 // remove the request from the routing table
319 routeTo.erase(route_lookup);
320
321 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
322
323 // stats updates
324 pktCount[slave_port_id][master_port_id]++;
325 pktSize[slave_port_id][master_port_id] += pkt_size;
326 transDist[pkt_cmd]++;
327
328 return true;
329 }
330
331 void
332 CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
333 {
334 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
335 masterPorts[master_port_id]->name(), pkt->cmdString(),
336 pkt->getAddr());
337
338 // update stats here as we know the forwarding will succeed
339 transDist[pkt->cmdToIndex()]++;
340 snoops++;
341
342 // we should only see express snoops from caches
343 assert(pkt->isExpressSnoop());
344
345 // remeber if the packet is inhibited so we can see if it changes
346 const bool is_inhibited = pkt->memInhibitAsserted();
347
348 if (snoopFilter) {
349 // let the Snoop Filter work its magic and guide probing
350 auto sf_res = snoopFilter->lookupSnoop(pkt);
351 // No timing here: packetFinishTime += sf_res.second * clockPeriod();
352 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
353 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
354 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
355 sf_res.second);
356
357 // forward to all snoopers
358 forwardTiming(pkt, InvalidPortID, sf_res.first);
359 } else {
360 forwardTiming(pkt, InvalidPortID);
361 }
362
363 // if we can expect a response, remember how to route it
364 if (!is_inhibited && pkt->memInhibitAsserted()) {
365 assert(routeTo.find(pkt->req) == routeTo.end());
366 routeTo[pkt->req] = master_port_id;
367 }
368
369 // a snoop request came from a connected slave device (one of
370 // our master ports), and if it is not coming from the slave
371 // device responsible for the address range something is
372 // wrong, hence there is nothing further to do as the packet
373 // would be going back to where it came from
374 assert(master_port_id == findPort(pkt->getAddr()));
375 }
376
377 bool
378 CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
379 {
380 // determine the source port based on the id
381 SlavePort* src_port = slavePorts[slave_port_id];
382
383 // get the destination
384 const auto route_lookup = routeTo.find(pkt->req);
385 assert(route_lookup != routeTo.end());
386 const PortID dest_port_id = route_lookup->second;
387 assert(dest_port_id != InvalidPortID);
388
389 // determine if the response is from a snoop request we
390 // created as the result of a normal request (in which case it
391 // should be in the outstandingSnoop), or if we merely forwarded
392 // someone else's snoop request
393 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
394 outstandingSnoop.end();
395
396 // test if the crossbar should be considered occupied for the
397 // current port, note that the check is bypassed if the response
398 // is being passed on as a normal response since this is occupying
399 // the response layer rather than the snoop response layer
400 if (forwardAsSnoop) {
401 assert(dest_port_id < snoopLayers.size());
402 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
403 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
404 src_port->name(), pkt->cmdString(), pkt->getAddr());
405 return false;
406 }
407 } else {
408 // get the master port that mirrors this slave port internally
409 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
410 assert(dest_port_id < respLayers.size());
411 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
412 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
413 snoop_port->name(), pkt->cmdString(), pkt->getAddr());
414 return false;
415 }
416 }
417
418 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
419 src_port->name(), pkt->cmdString(), pkt->getAddr());
420
421 // store size and command as they might be modified when
422 // forwarding the packet
423 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
424 unsigned int pkt_cmd = pkt->cmdToIndex();
425
426 // responses are never express snoops
427 assert(!pkt->isExpressSnoop());
428
429 calcPacketTiming(pkt);
430 Tick packetFinishTime = curTick() + pkt->payloadDelay;
431
432 // forward it either as a snoop response or a normal response
433 if (forwardAsSnoop) {
434 // this is a snoop response to a snoop request we forwarded,
435 // e.g. coming from the L1 and going to the L2, and it should
436 // be forwarded as a snoop response
437
438 if (snoopFilter) {
439 // update the probe filter so that it can properly track the line
440 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
441 *masterPorts[dest_port_id]);
442 }
443
444 bool success M5_VAR_USED =
445 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
446 pktCount[slave_port_id][dest_port_id]++;
447 pktSize[slave_port_id][dest_port_id] += pkt_size;
448 assert(success);
449
450 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
451 } else {
452 // we got a snoop response on one of our slave ports,
453 // i.e. from a coherent master connected to the crossbar, and
454 // since we created the snoop request as part of recvTiming,
455 // this should now be a normal response again
456 outstandingSnoop.erase(pkt->req);
457
458 // this is a snoop response from a coherent master, hence it
459 // should never go back to where the snoop response came from,
460 // but instead to where the original request came from
461 assert(slave_port_id != dest_port_id);
462
463 if (snoopFilter) {
464 // update the probe filter so that it can properly track the line
465 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
466 *slavePorts[dest_port_id]);
467 }
468
469 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
470 " FWD RESP\n", src_port->name(), pkt->cmdString(),
471 pkt->getAddr());
472
473 // as a normal response, it should go back to a master through
474 // one of our slave ports, at this point we are ignoring the
475 // fact that the response layer could be busy and do not touch
476 // its state
477 bool success M5_VAR_USED =
478 slavePorts[dest_port_id]->sendTimingResp(pkt);
479
480 // @todo Put the response in an internal FIFO and pass it on
481 // to the response layer from there
482
483 // currently it is illegal to block responses... can lead
484 // to deadlock
485 assert(success);
486
487 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
488 }
489
490 // remove the request from the routing table
491 routeTo.erase(route_lookup);
492
493 // stats updates
494 transDist[pkt_cmd]++;
495 snoops++;
496
497 return true;
498 }
499
500
501 void
502 CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
503 const std::vector<SlavePort*>& dests)
504 {
505 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
506 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
507
508 // snoops should only happen if the system isn't bypassing caches
509 assert(!system->bypassCaches());
510
511 unsigned fanout = 0;
512
513 for (const auto& p: dests) {
514 // we could have gotten this request from a snooping master
515 // (corresponding to our own slave port that is also in
516 // snoopPorts) and should not send it back to where it came
517 // from
518 if (exclude_slave_port_id == InvalidPortID ||
519 p->getId() != exclude_slave_port_id) {
520 // cache is not allowed to refuse snoop
521 p->sendTimingSnoopReq(pkt);
522 fanout++;
523 }
524 }
525
526 // Stats for fanout of this forward operation
527 snoopFanout.sample(fanout);
528 }
529
530 void
531 CoherentXBar::recvReqRetry(PortID master_port_id)
532 {
533 // responses and snoop responses never block on forwarding them,
534 // so the retry will always be coming from a port to which we
535 // tried to forward a request
536 reqLayers[master_port_id]->recvRetry();
537 }
538
539 Tick
540 CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
541 {
542 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
543 slavePorts[slave_port_id]->name(), pkt->getAddr(),
544 pkt->cmdString());
545
546 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
547 unsigned int pkt_cmd = pkt->cmdToIndex();
548
549 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
550 Tick snoop_response_latency = 0;
551
552 // uncacheable requests need never be snooped
553 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
554 // forward to all snoopers but the source
555 std::pair<MemCmd, Tick> snoop_result;
556 if (snoopFilter) {
557 // check with the snoop filter where to forward this packet
558 auto sf_res =
559 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
560 snoop_response_latency += sf_res.second * clockPeriod();
561 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
562 " SF size: %i lat: %i\n", __func__,
563 slavePorts[slave_port_id]->name(), pkt->cmdString(),
564 pkt->getAddr(), sf_res.first.size(), sf_res.second);
565 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
566 sf_res.first);
567 } else {
568 snoop_result = forwardAtomic(pkt, slave_port_id);
569 }
570 snoop_response_cmd = snoop_result.first;
571 snoop_response_latency += snoop_result.second;
572 }
573
574 // even if we had a snoop response, we must continue and also
575 // perform the actual request at the destination
576 PortID master_port_id = findPort(pkt->getAddr());
577
578 // stats updates for the request
579 pktCount[slave_port_id][master_port_id]++;
580 pktSize[slave_port_id][master_port_id] += pkt_size;
581 transDist[pkt_cmd]++;
582
583 // forward the request to the appropriate destination
584 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
585
586 // Lower levels have replied, tell the snoop filter
587 if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches() &&
588 pkt->isResponse()) {
589 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
590 }
591
592 // if we got a response from a snooper, restore it here
593 if (snoop_response_cmd != MemCmd::InvalidCmd) {
594 // no one else should have responded
595 assert(!pkt->isResponse());
596 pkt->cmd = snoop_response_cmd;
597 response_latency = snoop_response_latency;
598 }
599
600 // add the response data
601 if (pkt->isResponse()) {
602 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
603 pkt_cmd = pkt->cmdToIndex();
604
605 // stats updates
606 pktCount[slave_port_id][master_port_id]++;
607 pktSize[slave_port_id][master_port_id] += pkt_size;
608 transDist[pkt_cmd]++;
609 }
610
611 // @todo: Not setting header time
612 pkt->payloadDelay = response_latency;
613 return response_latency;
614 }
615
616 Tick
617 CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
618 {
619 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
620 masterPorts[master_port_id]->name(), pkt->getAddr(),
621 pkt->cmdString());
622
623 // add the request snoop data
624 snoops++;
625
626 // forward to all snoopers
627 std::pair<MemCmd, Tick> snoop_result;
628 Tick snoop_response_latency = 0;
629 if (snoopFilter) {
630 auto sf_res = snoopFilter->lookupSnoop(pkt);
631 snoop_response_latency += sf_res.second * clockPeriod();
632 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
633 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
634 pkt->getAddr(), sf_res.first.size(), sf_res.second);
635 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
636 sf_res.first);
637 } else {
638 snoop_result = forwardAtomic(pkt, InvalidPortID);
639 }
640 MemCmd snoop_response_cmd = snoop_result.first;
641 snoop_response_latency += snoop_result.second;
642
643 if (snoop_response_cmd != MemCmd::InvalidCmd)
644 pkt->cmd = snoop_response_cmd;
645
646 // add the response snoop data
647 if (pkt->isResponse()) {
648 snoops++;
649 }
650
651 // @todo: Not setting header time
652 pkt->payloadDelay = snoop_response_latency;
653 return snoop_response_latency;
654 }
655
656 std::pair<MemCmd, Tick>
657 CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
658 PortID source_master_port_id,
659 const std::vector<SlavePort*>& dests)
660 {
661 // the packet may be changed on snoops, record the original
662 // command to enable us to restore it between snoops so that
663 // additional snoops can take place properly
664 MemCmd orig_cmd = pkt->cmd;
665 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
666 Tick snoop_response_latency = 0;
667
668 // snoops should only happen if the system isn't bypassing caches
669 assert(!system->bypassCaches());
670
671 unsigned fanout = 0;
672
673 for (const auto& p: dests) {
674 // we could have gotten this request from a snooping master
675 // (corresponding to our own slave port that is also in
676 // snoopPorts) and should not send it back to where it came
677 // from
678 if (exclude_slave_port_id != InvalidPortID &&
679 p->getId() == exclude_slave_port_id)
680 continue;
681
682 Tick latency = p->sendAtomicSnoop(pkt);
683 fanout++;
684
685 // in contrast to a functional access, we have to keep on
686 // going as all snoopers must be updated even if we get a
687 // response
688 if (!pkt->isResponse())
689 continue;
690
691 // response from snoop agent
692 assert(pkt->cmd != orig_cmd);
693 assert(pkt->memInhibitAsserted());
694 // should only happen once
695 assert(snoop_response_cmd == MemCmd::InvalidCmd);
696 // save response state
697 snoop_response_cmd = pkt->cmd;
698 snoop_response_latency = latency;
699
700 if (snoopFilter) {
701 // Handle responses by the snoopers and differentiate between
702 // responses to requests from above and snoops from below
703 if (source_master_port_id != InvalidPortID) {
704 // Getting a response for a snoop from below
705 assert(exclude_slave_port_id == InvalidPortID);
706 snoopFilter->updateSnoopForward(pkt, *p,
707 *masterPorts[source_master_port_id]);
708 } else {
709 // Getting a response for a request from above
710 assert(source_master_port_id == InvalidPortID);
711 snoopFilter->updateSnoopResponse(pkt, *p,
712 *slavePorts[exclude_slave_port_id]);
713 }
714 }
715 // restore original packet state for remaining snoopers
716 pkt->cmd = orig_cmd;
717 }
718
719 // Stats for fanout
720 snoopFanout.sample(fanout);
721
722 // the packet is restored as part of the loop and any potential
723 // snoop response is part of the returned pair
724 return std::make_pair(snoop_response_cmd, snoop_response_latency);
725 }
726
727 void
728 CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
729 {
730 if (!pkt->isPrint()) {
731 // don't do DPRINTFs on PrintReq as it clutters up the output
732 DPRINTF(CoherentXBar,
733 "recvFunctional: packet src %s addr 0x%x cmd %s\n",
734 slavePorts[slave_port_id]->name(), pkt->getAddr(),
735 pkt->cmdString());
736 }
737
738 // uncacheable requests need never be snooped
739 if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
740 // forward to all snoopers but the source
741 forwardFunctional(pkt, slave_port_id);
742 }
743
744 // there is no need to continue if the snooping has found what we
745 // were looking for and the packet is already a response
746 if (!pkt->isResponse()) {
747 PortID dest_id = findPort(pkt->getAddr());
748
749 masterPorts[dest_id]->sendFunctional(pkt);
750 }
751 }
752
753 void
754 CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
755 {
756 if (!pkt->isPrint()) {
757 // don't do DPRINTFs on PrintReq as it clutters up the output
758 DPRINTF(CoherentXBar,
759 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
760 masterPorts[master_port_id]->name(), pkt->getAddr(),
761 pkt->cmdString());
762 }
763
764 // forward to all snoopers
765 forwardFunctional(pkt, InvalidPortID);
766 }
767
768 void
769 CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
770 {
771 // snoops should only happen if the system isn't bypassing caches
772 assert(!system->bypassCaches());
773
774 for (const auto& p: snoopPorts) {
775 // we could have gotten this request from a snooping master
776 // (corresponding to our own slave port that is also in
777 // snoopPorts) and should not send it back to where it came
778 // from
779 if (exclude_slave_port_id == InvalidPortID ||
780 p->getId() != exclude_slave_port_id)
781 p->sendFunctionalSnoop(pkt);
782
783 // if we get a response we are done
784 if (pkt->isResponse()) {
785 break;
786 }
787 }
788 }
789
790 unsigned int
791 CoherentXBar::drain(DrainManager *dm)
792 {
793 // sum up the individual layers
794 unsigned int total = 0;
795 for (auto l: reqLayers)
796 total += l->drain(dm);
797 for (auto l: respLayers)
798 total += l->drain(dm);
799 for (auto l: snoopLayers)
800 total += l->drain(dm);
801 return total;
802 }
803
804 void
805 CoherentXBar::regStats()
806 {
807 // register the stats of the base class and our layers
808 BaseXBar::regStats();
809 for (auto l: reqLayers)
810 l->regStats();
811 for (auto l: respLayers)
812 l->regStats();
813 for (auto l: snoopLayers)
814 l->regStats();
815
816 snoops
817 .name(name() + ".snoops")
818 .desc("Total snoops (count)")
819 ;
820
821 snoopFanout
822 .init(0, snoopPorts.size(), 1)
823 .name(name() + ".snoop_fanout")
824 .desc("Request fanout histogram")
825 ;
826 }
827
828 CoherentXBar *
829 CoherentXBarParams::create()
830 {
831 return new CoherentXBar(this);
832 }