38c240fcff216839a3b06085a10ad65bc8e83de7
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45 #include "base/bitfield.hh"
46 #include "base/trace.hh"
47 #include "debug/DRAM.hh"
48 #include "debug/DRAMPower.hh"
49 #include "debug/DRAMState.hh"
50 #include "debug/Drain.hh"
51 #include "mem/dram_ctrl.hh"
52 #include "sim/system.hh"
53
54 using namespace std;
55
56 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
57 AbstractMemory(p),
58 port(name() + ".port", *this),
59 retryRdReq(false), retryWrReq(false),
60 busState(READ),
61 nextReqEvent(this), respondEvent(this), activateEvent(this),
62 prechargeEvent(this), refreshEvent(this), powerEvent(this),
63 drainManager(NULL),
64 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
65 deviceRowBufferSize(p->device_rowbuffer_size),
66 devicesPerRank(p->devices_per_rank),
67 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
68 rowBufferSize(devicesPerRank * deviceRowBufferSize),
69 columnsPerRowBuffer(rowBufferSize / burstSize),
70 columnsPerStripe(range.granularity() / burstSize),
71 ranksPerChannel(p->ranks_per_channel),
72 bankGroupsPerRank(p->bank_groups_per_rank),
73 bankGroupArch(p->bank_groups_per_rank > 0),
74 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
75 readBufferSize(p->read_buffer_size),
76 writeBufferSize(p->write_buffer_size),
77 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
78 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
79 minWritesPerSwitch(p->min_writes_per_switch),
80 writesThisTime(0), readsThisTime(0),
81 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
82 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
83 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
84 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
85 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
86 pageMgmt(p->page_policy),
87 maxAccessesPerRow(p->max_accesses_per_row),
88 frontendLatency(p->static_frontend_latency),
89 backendLatency(p->static_backend_latency),
90 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
91 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
92 nextReqTime(0), pwrStateTick(0), numBanksActive(0),
93 activeRank(0)
94 {
95 // create the bank states based on the dimensions of the ranks and
96 // banks
97 banks.resize(ranksPerChannel);
98 actTicks.resize(ranksPerChannel);
99 for (size_t c = 0; c < ranksPerChannel; ++c) {
100 banks[c].resize(banksPerRank);
101 actTicks[c].resize(activationLimit, 0);
102 }
103
104 // set the bank indices
105 for (int r = 0; r < ranksPerChannel; r++) {
106 for (int b = 0; b < banksPerRank; b++) {
107 banks[r][b].rank = r;
108 banks[r][b].bank = b;
109 if (bankGroupArch) {
110 // Simply assign lower bits to bank group in order to
111 // rotate across bank groups as banks are incremented
112 // e.g. with 4 banks per bank group and 16 banks total:
113 // banks 0,4,8,12 are in bank group 0
114 // banks 1,5,9,13 are in bank group 1
115 // banks 2,6,10,14 are in bank group 2
116 // banks 3,7,11,15 are in bank group 3
117 banks[r][b].bankgr = b % bankGroupsPerRank;
118 } else {
119 // No bank groups; simply assign to bank number
120 banks[r][b].bankgr = b;
121 }
122 }
123 }
124
125 // perform a basic check of the write thresholds
126 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
127 fatal("Write buffer low threshold %d must be smaller than the "
128 "high threshold %d\n", p->write_low_thresh_perc,
129 p->write_high_thresh_perc);
130
131 // determine the rows per bank by looking at the total capacity
132 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
133
134 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
135 AbstractMemory::size());
136
137 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
138 rowBufferSize, columnsPerRowBuffer);
139
140 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
141
142 // a bit of sanity checks on the interleaving
143 if (range.interleaved()) {
144 if (channels != range.stripes())
145 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
146 name(), range.stripes(), channels);
147
148 if (addrMapping == Enums::RoRaBaChCo) {
149 if (rowBufferSize != range.granularity()) {
150 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
151 "address map\n", name());
152 }
153 } else if (addrMapping == Enums::RoRaBaCoCh ||
154 addrMapping == Enums::RoCoRaBaCh) {
155 // for the interleavings with channel bits in the bottom,
156 // if the system uses a channel striping granularity that
157 // is larger than the DRAM burst size, then map the
158 // sequential accesses within a stripe to a number of
159 // columns in the DRAM, effectively placing some of the
160 // lower-order column bits as the least-significant bits
161 // of the address (above the ones denoting the burst size)
162 assert(columnsPerStripe >= 1);
163
164 // channel striping has to be done at a granularity that
165 // is equal or larger to a cache line
166 if (system()->cacheLineSize() > range.granularity()) {
167 fatal("Channel interleaving of %s must be at least as large "
168 "as the cache line size\n", name());
169 }
170
171 // ...and equal or smaller than the row-buffer size
172 if (rowBufferSize < range.granularity()) {
173 fatal("Channel interleaving of %s must be at most as large "
174 "as the row-buffer size\n", name());
175 }
176 // this is essentially the check above, so just to be sure
177 assert(columnsPerStripe <= columnsPerRowBuffer);
178 }
179 }
180
181 // some basic sanity checks
182 if (tREFI <= tRP || tREFI <= tRFC) {
183 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
184 tREFI, tRP, tRFC);
185 }
186
187 // basic bank group architecture checks ->
188 if (bankGroupArch) {
189 // must have at least one bank per bank group
190 if (bankGroupsPerRank > banksPerRank) {
191 fatal("banks per rank (%d) must be equal to or larger than "
192 "banks groups per rank (%d)\n",
193 banksPerRank, bankGroupsPerRank);
194 }
195 // must have same number of banks in each bank group
196 if ((banksPerRank % bankGroupsPerRank) != 0) {
197 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
198 "per rank (%d) for equal banks per bank group\n",
199 banksPerRank, bankGroupsPerRank);
200 }
201 // tCCD_L should be greater than minimal, back-to-back burst delay
202 if (tCCD_L <= tBURST) {
203 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
204 "bank groups per rank (%d) is greater than 1\n",
205 tCCD_L, tBURST, bankGroupsPerRank);
206 }
207 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
208 if (tRRD_L <= tRRD) {
209 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
210 "bank groups per rank (%d) is greater than 1\n",
211 tRRD_L, tRRD, bankGroupsPerRank);
212 }
213 }
214
215 }
216
217 void
218 DRAMCtrl::init()
219 {
220 if (!port.isConnected()) {
221 fatal("DRAMCtrl %s is unconnected!\n", name());
222 } else {
223 port.sendRangeChange();
224 }
225 }
226
227 void
228 DRAMCtrl::startup()
229 {
230 // update the start tick for the precharge accounting to the
231 // current tick
232 pwrStateTick = curTick();
233
234 // shift the bus busy time sufficiently far ahead that we never
235 // have to worry about negative values when computing the time for
236 // the next request, this will add an insignificant bubble at the
237 // start of simulation
238 busBusyUntil = curTick() + tRP + tRCD + tCL;
239
240 // kick off the refresh, and give ourselves enough time to
241 // precharge
242 schedule(refreshEvent, curTick() + tREFI - tRP);
243 }
244
245 Tick
246 DRAMCtrl::recvAtomic(PacketPtr pkt)
247 {
248 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
249
250 // do the actual memory access and turn the packet into a response
251 access(pkt);
252
253 Tick latency = 0;
254 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
255 // this value is not supposed to be accurate, just enough to
256 // keep things going, mimic a closed page
257 latency = tRP + tRCD + tCL;
258 }
259 return latency;
260 }
261
262 bool
263 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
264 {
265 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
266 readBufferSize, readQueue.size() + respQueue.size(),
267 neededEntries);
268
269 return
270 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
271 }
272
273 bool
274 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
275 {
276 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
277 writeBufferSize, writeQueue.size(), neededEntries);
278 return (writeQueue.size() + neededEntries) > writeBufferSize;
279 }
280
281 DRAMCtrl::DRAMPacket*
282 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
283 bool isRead)
284 {
285 // decode the address based on the address mapping scheme, with
286 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
287 // channel, respectively
288 uint8_t rank;
289 uint8_t bank;
290 // use a 64-bit unsigned during the computations as the row is
291 // always the top bits, and check before creating the DRAMPacket
292 uint64_t row;
293
294 // truncate the address to a DRAM burst, which makes it unique to
295 // a specific column, row, bank, rank and channel
296 Addr addr = dramPktAddr / burstSize;
297
298 // we have removed the lowest order address bits that denote the
299 // position within the column
300 if (addrMapping == Enums::RoRaBaChCo) {
301 // the lowest order bits denote the column to ensure that
302 // sequential cache lines occupy the same row
303 addr = addr / columnsPerRowBuffer;
304
305 // take out the channel part of the address
306 addr = addr / channels;
307
308 // after the channel bits, get the bank bits to interleave
309 // over the banks
310 bank = addr % banksPerRank;
311 addr = addr / banksPerRank;
312
313 // after the bank, we get the rank bits which thus interleaves
314 // over the ranks
315 rank = addr % ranksPerChannel;
316 addr = addr / ranksPerChannel;
317
318 // lastly, get the row bits
319 row = addr % rowsPerBank;
320 addr = addr / rowsPerBank;
321 } else if (addrMapping == Enums::RoRaBaCoCh) {
322 // take out the lower-order column bits
323 addr = addr / columnsPerStripe;
324
325 // take out the channel part of the address
326 addr = addr / channels;
327
328 // next, the higher-order column bites
329 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
330
331 // after the column bits, we get the bank bits to interleave
332 // over the banks
333 bank = addr % banksPerRank;
334 addr = addr / banksPerRank;
335
336 // after the bank, we get the rank bits which thus interleaves
337 // over the ranks
338 rank = addr % ranksPerChannel;
339 addr = addr / ranksPerChannel;
340
341 // lastly, get the row bits
342 row = addr % rowsPerBank;
343 addr = addr / rowsPerBank;
344 } else if (addrMapping == Enums::RoCoRaBaCh) {
345 // optimise for closed page mode and utilise maximum
346 // parallelism of the DRAM (at the cost of power)
347
348 // take out the lower-order column bits
349 addr = addr / columnsPerStripe;
350
351 // take out the channel part of the address, not that this has
352 // to match with how accesses are interleaved between the
353 // controllers in the address mapping
354 addr = addr / channels;
355
356 // start with the bank bits, as this provides the maximum
357 // opportunity for parallelism between requests
358 bank = addr % banksPerRank;
359 addr = addr / banksPerRank;
360
361 // next get the rank bits
362 rank = addr % ranksPerChannel;
363 addr = addr / ranksPerChannel;
364
365 // next, the higher-order column bites
366 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
367
368 // lastly, get the row bits
369 row = addr % rowsPerBank;
370 addr = addr / rowsPerBank;
371 } else
372 panic("Unknown address mapping policy chosen!");
373
374 assert(rank < ranksPerChannel);
375 assert(bank < banksPerRank);
376 assert(row < rowsPerBank);
377 assert(row < Bank::NO_ROW);
378
379 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
380 dramPktAddr, rank, bank, row);
381
382 // create the corresponding DRAM packet with the entry time and
383 // ready time set to the current tick, the latter will be updated
384 // later
385 uint16_t bank_id = banksPerRank * rank + bank;
386 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
387 size, banks[rank][bank]);
388 }
389
390 void
391 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
392 {
393 // only add to the read queue here. whenever the request is
394 // eventually done, set the readyTime, and call schedule()
395 assert(!pkt->isWrite());
396
397 assert(pktCount != 0);
398
399 // if the request size is larger than burst size, the pkt is split into
400 // multiple DRAM packets
401 // Note if the pkt starting address is not aligened to burst size, the
402 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
403 // are aligned to burst size boundaries. This is to ensure we accurately
404 // check read packets against packets in write queue.
405 Addr addr = pkt->getAddr();
406 unsigned pktsServicedByWrQ = 0;
407 BurstHelper* burst_helper = NULL;
408 for (int cnt = 0; cnt < pktCount; ++cnt) {
409 unsigned size = std::min((addr | (burstSize - 1)) + 1,
410 pkt->getAddr() + pkt->getSize()) - addr;
411 readPktSize[ceilLog2(size)]++;
412 readBursts++;
413
414 // First check write buffer to see if the data is already at
415 // the controller
416 bool foundInWrQ = false;
417 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
418 // check if the read is subsumed in the write entry we are
419 // looking at
420 if ((*i)->addr <= addr &&
421 (addr + size) <= ((*i)->addr + (*i)->size)) {
422 foundInWrQ = true;
423 servicedByWrQ++;
424 pktsServicedByWrQ++;
425 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
426 "write queue\n", addr, size);
427 bytesReadWrQ += burstSize;
428 break;
429 }
430 }
431
432 // If not found in the write q, make a DRAM packet and
433 // push it onto the read queue
434 if (!foundInWrQ) {
435
436 // Make the burst helper for split packets
437 if (pktCount > 1 && burst_helper == NULL) {
438 DPRINTF(DRAM, "Read to addr %lld translates to %d "
439 "dram requests\n", pkt->getAddr(), pktCount);
440 burst_helper = new BurstHelper(pktCount);
441 }
442
443 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
444 dram_pkt->burstHelper = burst_helper;
445
446 assert(!readQueueFull(1));
447 rdQLenPdf[readQueue.size() + respQueue.size()]++;
448
449 DPRINTF(DRAM, "Adding to read queue\n");
450
451 readQueue.push_back(dram_pkt);
452
453 // Update stats
454 avgRdQLen = readQueue.size() + respQueue.size();
455 }
456
457 // Starting address of next dram pkt (aligend to burstSize boundary)
458 addr = (addr | (burstSize - 1)) + 1;
459 }
460
461 // If all packets are serviced by write queue, we send the repsonse back
462 if (pktsServicedByWrQ == pktCount) {
463 accessAndRespond(pkt, frontendLatency);
464 return;
465 }
466
467 // Update how many split packets are serviced by write queue
468 if (burst_helper != NULL)
469 burst_helper->burstsServiced = pktsServicedByWrQ;
470
471 // If we are not already scheduled to get a request out of the
472 // queue, do so now
473 if (!nextReqEvent.scheduled()) {
474 DPRINTF(DRAM, "Request scheduled immediately\n");
475 schedule(nextReqEvent, curTick());
476 }
477 }
478
479 void
480 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
481 {
482 // only add to the write queue here. whenever the request is
483 // eventually done, set the readyTime, and call schedule()
484 assert(pkt->isWrite());
485
486 // if the request size is larger than burst size, the pkt is split into
487 // multiple DRAM packets
488 Addr addr = pkt->getAddr();
489 for (int cnt = 0; cnt < pktCount; ++cnt) {
490 unsigned size = std::min((addr | (burstSize - 1)) + 1,
491 pkt->getAddr() + pkt->getSize()) - addr;
492 writePktSize[ceilLog2(size)]++;
493 writeBursts++;
494
495 // see if we can merge with an existing item in the write
496 // queue and keep track of whether we have merged or not so we
497 // can stop at that point and also avoid enqueueing a new
498 // request
499 bool merged = false;
500 auto w = writeQueue.begin();
501
502 while(!merged && w != writeQueue.end()) {
503 // either of the two could be first, if they are the same
504 // it does not matter which way we go
505 if ((*w)->addr >= addr) {
506 // the existing one starts after the new one, figure
507 // out where the new one ends with respect to the
508 // existing one
509 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
510 // check if the existing one is completely
511 // subsumed in the new one
512 DPRINTF(DRAM, "Merging write covering existing burst\n");
513 merged = true;
514 // update both the address and the size
515 (*w)->addr = addr;
516 (*w)->size = size;
517 } else if ((addr + size) >= (*w)->addr &&
518 ((*w)->addr + (*w)->size - addr) <= burstSize) {
519 // the new one is just before or partially
520 // overlapping with the existing one, and together
521 // they fit within a burst
522 DPRINTF(DRAM, "Merging write before existing burst\n");
523 merged = true;
524 // the existing queue item needs to be adjusted with
525 // respect to both address and size
526 (*w)->size = (*w)->addr + (*w)->size - addr;
527 (*w)->addr = addr;
528 }
529 } else {
530 // the new one starts after the current one, figure
531 // out where the existing one ends with respect to the
532 // new one
533 if (((*w)->addr + (*w)->size) >= (addr + size)) {
534 // check if the new one is completely subsumed in the
535 // existing one
536 DPRINTF(DRAM, "Merging write into existing burst\n");
537 merged = true;
538 // no adjustments necessary
539 } else if (((*w)->addr + (*w)->size) >= addr &&
540 (addr + size - (*w)->addr) <= burstSize) {
541 // the existing one is just before or partially
542 // overlapping with the new one, and together
543 // they fit within a burst
544 DPRINTF(DRAM, "Merging write after existing burst\n");
545 merged = true;
546 // the address is right, and only the size has
547 // to be adjusted
548 (*w)->size = addr + size - (*w)->addr;
549 }
550 }
551 ++w;
552 }
553
554 // if the item was not merged we need to create a new write
555 // and enqueue it
556 if (!merged) {
557 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
558
559 assert(writeQueue.size() < writeBufferSize);
560 wrQLenPdf[writeQueue.size()]++;
561
562 DPRINTF(DRAM, "Adding to write queue\n");
563
564 writeQueue.push_back(dram_pkt);
565
566 // Update stats
567 avgWrQLen = writeQueue.size();
568 } else {
569 // keep track of the fact that this burst effectively
570 // disappeared as it was merged with an existing one
571 mergedWrBursts++;
572 }
573
574 // Starting address of next dram pkt (aligend to burstSize boundary)
575 addr = (addr | (burstSize - 1)) + 1;
576 }
577
578 // we do not wait for the writes to be send to the actual memory,
579 // but instead take responsibility for the consistency here and
580 // snoop the write queue for any upcoming reads
581 // @todo, if a pkt size is larger than burst size, we might need a
582 // different front end latency
583 accessAndRespond(pkt, frontendLatency);
584
585 // If we are not already scheduled to get a request out of the
586 // queue, do so now
587 if (!nextReqEvent.scheduled()) {
588 DPRINTF(DRAM, "Request scheduled immediately\n");
589 schedule(nextReqEvent, curTick());
590 }
591 }
592
593 void
594 DRAMCtrl::printQs() const {
595 DPRINTF(DRAM, "===READ QUEUE===\n\n");
596 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
597 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
598 }
599 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
600 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
601 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
602 }
603 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
604 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
605 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
606 }
607 }
608
609 bool
610 DRAMCtrl::recvTimingReq(PacketPtr pkt)
611 {
612 /// @todo temporary hack to deal with memory corruption issues until
613 /// 4-phase transactions are complete
614 for (int x = 0; x < pendingDelete.size(); x++)
615 delete pendingDelete[x];
616 pendingDelete.clear();
617
618 // This is where we enter from the outside world
619 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
620 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
621
622 // simply drop inhibited packets for now
623 if (pkt->memInhibitAsserted()) {
624 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
625 pendingDelete.push_back(pkt);
626 return true;
627 }
628
629 // Calc avg gap between requests
630 if (prevArrival != 0) {
631 totGap += curTick() - prevArrival;
632 }
633 prevArrival = curTick();
634
635
636 // Find out how many dram packets a pkt translates to
637 // If the burst size is equal or larger than the pkt size, then a pkt
638 // translates to only one dram packet. Otherwise, a pkt translates to
639 // multiple dram packets
640 unsigned size = pkt->getSize();
641 unsigned offset = pkt->getAddr() & (burstSize - 1);
642 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
643
644 // check local buffers and do not accept if full
645 if (pkt->isRead()) {
646 assert(size != 0);
647 if (readQueueFull(dram_pkt_count)) {
648 DPRINTF(DRAM, "Read queue full, not accepting\n");
649 // remember that we have to retry this port
650 retryRdReq = true;
651 numRdRetry++;
652 return false;
653 } else {
654 addToReadQueue(pkt, dram_pkt_count);
655 readReqs++;
656 bytesReadSys += size;
657 }
658 } else if (pkt->isWrite()) {
659 assert(size != 0);
660 if (writeQueueFull(dram_pkt_count)) {
661 DPRINTF(DRAM, "Write queue full, not accepting\n");
662 // remember that we have to retry this port
663 retryWrReq = true;
664 numWrRetry++;
665 return false;
666 } else {
667 addToWriteQueue(pkt, dram_pkt_count);
668 writeReqs++;
669 bytesWrittenSys += size;
670 }
671 } else {
672 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
673 neitherReadNorWrite++;
674 accessAndRespond(pkt, 1);
675 }
676
677 return true;
678 }
679
680 void
681 DRAMCtrl::processRespondEvent()
682 {
683 DPRINTF(DRAM,
684 "processRespondEvent(): Some req has reached its readyTime\n");
685
686 DRAMPacket* dram_pkt = respQueue.front();
687
688 if (dram_pkt->burstHelper) {
689 // it is a split packet
690 dram_pkt->burstHelper->burstsServiced++;
691 if (dram_pkt->burstHelper->burstsServiced ==
692 dram_pkt->burstHelper->burstCount) {
693 // we have now serviced all children packets of a system packet
694 // so we can now respond to the requester
695 // @todo we probably want to have a different front end and back
696 // end latency for split packets
697 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
698 delete dram_pkt->burstHelper;
699 dram_pkt->burstHelper = NULL;
700 }
701 } else {
702 // it is not a split packet
703 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
704 }
705
706 delete respQueue.front();
707 respQueue.pop_front();
708
709 if (!respQueue.empty()) {
710 assert(respQueue.front()->readyTime >= curTick());
711 assert(!respondEvent.scheduled());
712 schedule(respondEvent, respQueue.front()->readyTime);
713 } else {
714 // if there is nothing left in any queue, signal a drain
715 if (writeQueue.empty() && readQueue.empty() &&
716 drainManager) {
717 drainManager->signalDrainDone();
718 drainManager = NULL;
719 }
720 }
721
722 // We have made a location in the queue available at this point,
723 // so if there is a read that was forced to wait, retry now
724 if (retryRdReq) {
725 retryRdReq = false;
726 port.sendRetry();
727 }
728 }
729
730 void
731 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
732 {
733 // This method does the arbitration between requests. The chosen
734 // packet is simply moved to the head of the queue. The other
735 // methods know that this is the place to look. For example, with
736 // FCFS, this method does nothing
737 assert(!queue.empty());
738
739 if (queue.size() == 1) {
740 DPRINTF(DRAM, "Single request, nothing to do\n");
741 return;
742 }
743
744 if (memSchedPolicy == Enums::fcfs) {
745 // Do nothing, since the correct request is already head
746 } else if (memSchedPolicy == Enums::frfcfs) {
747 reorderQueue(queue, switched_cmd_type);
748 } else
749 panic("No scheduling policy chosen\n");
750 }
751
752 void
753 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
754 {
755 // Only determine this when needed
756 uint64_t earliest_banks = 0;
757
758 // Search for row hits first, if no row hit is found then schedule the
759 // packet to one of the earliest banks available
760 bool found_earliest_pkt = false;
761 bool found_prepped_diff_rank_pkt = false;
762 auto selected_pkt_it = queue.begin();
763
764 for (auto i = queue.begin(); i != queue.end() ; ++i) {
765 DRAMPacket* dram_pkt = *i;
766 const Bank& bank = dram_pkt->bankRef;
767 // Check if it is a row hit
768 if (bank.openRow == dram_pkt->row) {
769 if (dram_pkt->rank == activeRank || switched_cmd_type) {
770 // FCFS within the hits, giving priority to commands
771 // that access the same rank as the previous burst
772 // to minimize bus turnaround delays
773 // Only give rank prioity when command type is not changing
774 DPRINTF(DRAM, "Row buffer hit\n");
775 selected_pkt_it = i;
776 break;
777 } else if (!found_prepped_diff_rank_pkt) {
778 // found row hit for command on different rank than prev burst
779 selected_pkt_it = i;
780 found_prepped_diff_rank_pkt = true;
781 }
782 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
783 // No row hit and
784 // haven't found an entry with a row hit to a new rank
785 if (earliest_banks == 0)
786 // Determine entries with earliest bank prep delay
787 // Function will give priority to commands that access the
788 // same rank as previous burst and can prep the bank seamlessly
789 earliest_banks = minBankPrep(queue, switched_cmd_type);
790
791 // FCFS - Bank is first available bank
792 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
793 // Remember the packet to be scheduled to one of the earliest
794 // banks available, FCFS amongst the earliest banks
795 selected_pkt_it = i;
796 found_earliest_pkt = true;
797 }
798 }
799 }
800
801 DRAMPacket* selected_pkt = *selected_pkt_it;
802 queue.erase(selected_pkt_it);
803 queue.push_front(selected_pkt);
804 }
805
806 void
807 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
808 {
809 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
810
811 bool needsResponse = pkt->needsResponse();
812 // do the actual memory access which also turns the packet into a
813 // response
814 access(pkt);
815
816 // turn packet around to go back to requester if response expected
817 if (needsResponse) {
818 // access already turned the packet into a response
819 assert(pkt->isResponse());
820
821 // @todo someone should pay for this
822 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
823
824 // queue the packet in the response queue to be sent out after
825 // the static latency has passed
826 port.schedTimingResp(pkt, curTick() + static_latency);
827 } else {
828 // @todo the packet is going to be deleted, and the DRAMPacket
829 // is still having a pointer to it
830 pendingDelete.push_back(pkt);
831 }
832
833 DPRINTF(DRAM, "Done\n");
834
835 return;
836 }
837
838 void
839 DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
840 {
841 // get the rank index from the bank
842 uint8_t rank = bank.rank;
843
844 assert(actTicks[rank].size() == activationLimit);
845
846 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
847
848 // update the open row
849 assert(bank.openRow == Bank::NO_ROW);
850 bank.openRow = row;
851
852 // start counting anew, this covers both the case when we
853 // auto-precharged, and when this access is forced to
854 // precharge
855 bank.bytesAccessed = 0;
856 bank.rowAccesses = 0;
857
858 ++numBanksActive;
859 assert(numBanksActive <= banksPerRank * ranksPerChannel);
860
861 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
862 bank.bank, bank.rank, act_tick, numBanksActive);
863
864 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK), bank.bank,
865 bank.rank);
866
867 // The next access has to respect tRAS for this bank
868 bank.preAllowedAt = act_tick + tRAS;
869
870 // Respect the row-to-column command delay
871 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt);
872
873 // start by enforcing tRRD
874 for(int i = 0; i < banksPerRank; i++) {
875 // next activate to any bank in this rank must not happen
876 // before tRRD
877 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) {
878 // bank group architecture requires longer delays between
879 // ACT commands within the same bank group. Use tRRD_L
880 // in this case
881 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L,
882 banks[rank][i].actAllowedAt);
883 } else {
884 // use shorter tRRD value when either
885 // 1) bank group architecture is not supportted
886 // 2) bank is in a different bank group
887 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
888 banks[rank][i].actAllowedAt);
889 }
890 }
891
892 // next, we deal with tXAW, if the activation limit is disabled
893 // then we are done
894 if (actTicks[rank].empty())
895 return;
896
897 // sanity check
898 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
899 panic("Got %d activates in window %d (%llu - %llu) which is smaller "
900 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
901 act_tick, actTicks[rank].back(), tXAW);
902 }
903
904 // shift the times used for the book keeping, the last element
905 // (highest index) is the oldest one and hence the lowest value
906 actTicks[rank].pop_back();
907
908 // record an new activation (in the future)
909 actTicks[rank].push_front(act_tick);
910
911 // cannot activate more than X times in time window tXAW, push the
912 // next one (the X + 1'st activate) to be tXAW away from the
913 // oldest in our window of X
914 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
915 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
916 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
917 for(int j = 0; j < banksPerRank; j++)
918 // next activate must not happen before end of window
919 banks[rank][j].actAllowedAt =
920 std::max(actTicks[rank].back() + tXAW,
921 banks[rank][j].actAllowedAt);
922 }
923
924 // at the point when this activate takes place, make sure we
925 // transition to the active power state
926 if (!activateEvent.scheduled())
927 schedule(activateEvent, act_tick);
928 else if (activateEvent.when() > act_tick)
929 // move it sooner in time
930 reschedule(activateEvent, act_tick);
931 }
932
933 void
934 DRAMCtrl::processActivateEvent()
935 {
936 // we should transition to the active state as soon as any bank is active
937 if (pwrState != PWR_ACT)
938 // note that at this point numBanksActive could be back at
939 // zero again due to a precharge scheduled in the future
940 schedulePowerEvent(PWR_ACT, curTick());
941 }
942
943 void
944 DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
945 {
946 // make sure the bank has an open row
947 assert(bank.openRow != Bank::NO_ROW);
948
949 // sample the bytes per activate here since we are closing
950 // the page
951 bytesPerActivate.sample(bank.bytesAccessed);
952
953 bank.openRow = Bank::NO_ROW;
954
955 // no precharge allowed before this one
956 bank.preAllowedAt = pre_at;
957
958 Tick pre_done_at = pre_at + tRP;
959
960 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
961
962 assert(numBanksActive != 0);
963 --numBanksActive;
964
965 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
966 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
967
968 if (trace)
969 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK),
970 bank.bank, bank.rank);
971
972 // if we look at the current number of active banks we might be
973 // tempted to think the DRAM is now idle, however this can be
974 // undone by an activate that is scheduled to happen before we
975 // would have reached the idle state, so schedule an event and
976 // rather check once we actually make it to the point in time when
977 // the (last) precharge takes place
978 if (!prechargeEvent.scheduled())
979 schedule(prechargeEvent, pre_done_at);
980 else if (prechargeEvent.when() < pre_done_at)
981 reschedule(prechargeEvent, pre_done_at);
982 }
983
984 void
985 DRAMCtrl::processPrechargeEvent()
986 {
987 // if we reached zero, then special conditions apply as we track
988 // if all banks are precharged for the power models
989 if (numBanksActive == 0) {
990 // we should transition to the idle state when the last bank
991 // is precharged
992 schedulePowerEvent(PWR_IDLE, curTick());
993 }
994 }
995
996 void
997 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
998 {
999 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1000 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1001
1002 // get the bank
1003 Bank& bank = dram_pkt->bankRef;
1004
1005 // for the state we need to track if it is a row hit or not
1006 bool row_hit = true;
1007
1008 // respect any constraints on the command (e.g. tRCD or tCCD)
1009 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1010
1011 // Determine the access latency and update the bank state
1012 if (bank.openRow == dram_pkt->row) {
1013 // nothing to do
1014 } else {
1015 row_hit = false;
1016
1017 // If there is a page open, precharge it.
1018 if (bank.openRow != Bank::NO_ROW) {
1019 prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
1020 }
1021
1022 // next we need to account for the delay in activating the
1023 // page
1024 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1025
1026 // Record the activation and deal with all the global timing
1027 // constraints caused be a new activation (tRRD and tXAW)
1028 activateBank(bank, act_tick, dram_pkt->row);
1029
1030 // issue the command as early as possible
1031 cmd_at = bank.colAllowedAt;
1032 }
1033
1034 // we need to wait until the bus is available before we can issue
1035 // the command
1036 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1037
1038 // update the packet ready time
1039 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1040
1041 // only one burst can use the bus at any one point in time
1042 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1043
1044 // update the time for the next read/write burst for each
1045 // bank (add a max with tCCD/tCCD_L here)
1046 Tick cmd_dly;
1047 for(int j = 0; j < ranksPerChannel; j++) {
1048 for(int i = 0; i < banksPerRank; i++) {
1049 // next burst to same bank group in this rank must not happen
1050 // before tCCD_L. Different bank group timing requirement is
1051 // tBURST; Add tCS for different ranks
1052 if (dram_pkt->rank == j) {
1053 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) {
1054 // bank group architecture requires longer delays between
1055 // RD/WR burst commands to the same bank group.
1056 // Use tCCD_L in this case
1057 cmd_dly = tCCD_L;
1058 } else {
1059 // use tBURST (equivalent to tCCD_S), the shorter
1060 // cas-to-cas delay value, when either:
1061 // 1) bank group architecture is not supportted
1062 // 2) bank is in a different bank group
1063 cmd_dly = tBURST;
1064 }
1065 } else {
1066 // different rank is by default in a different bank group
1067 // use tBURST (equivalent to tCCD_S), which is the shorter
1068 // cas-to-cas delay in this case
1069 // Add tCS to account for rank-to-rank bus delay requirements
1070 cmd_dly = tBURST + tCS;
1071 }
1072 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly,
1073 banks[j][i].colAllowedAt);
1074 }
1075 }
1076
1077 // Save rank of current access
1078 activeRank = dram_pkt->rank;
1079
1080 // If this is a write, we also need to respect the write recovery
1081 // time before a precharge, in the case of a read, respect the
1082 // read to precharge constraint
1083 bank.preAllowedAt = std::max(bank.preAllowedAt,
1084 dram_pkt->isRead ? cmd_at + tRTP :
1085 dram_pkt->readyTime + tWR);
1086
1087 // increment the bytes accessed and the accesses per row
1088 bank.bytesAccessed += burstSize;
1089 ++bank.rowAccesses;
1090
1091 // if we reached the max, then issue with an auto-precharge
1092 bool auto_precharge = pageMgmt == Enums::close ||
1093 bank.rowAccesses == maxAccessesPerRow;
1094
1095 // if we did not hit the limit, we might still want to
1096 // auto-precharge
1097 if (!auto_precharge &&
1098 (pageMgmt == Enums::open_adaptive ||
1099 pageMgmt == Enums::close_adaptive)) {
1100 // a twist on the open and close page policies:
1101 // 1) open_adaptive page policy does not blindly keep the
1102 // page open, but close it if there are no row hits, and there
1103 // are bank conflicts in the queue
1104 // 2) close_adaptive page policy does not blindly close the
1105 // page, but closes it only if there are no row hits in the queue.
1106 // In this case, only force an auto precharge when there
1107 // are no same page hits in the queue
1108 bool got_more_hits = false;
1109 bool got_bank_conflict = false;
1110
1111 // either look at the read queue or write queue
1112 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1113 writeQueue;
1114 auto p = queue.begin();
1115 // make sure we are not considering the packet that we are
1116 // currently dealing with (which is the head of the queue)
1117 ++p;
1118
1119 // keep on looking until we have found required condition or
1120 // reached the end
1121 while (!(got_more_hits &&
1122 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1123 p != queue.end()) {
1124 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1125 (dram_pkt->bank == (*p)->bank);
1126 bool same_row = dram_pkt->row == (*p)->row;
1127 got_more_hits |= same_rank_bank && same_row;
1128 got_bank_conflict |= same_rank_bank && !same_row;
1129 ++p;
1130 }
1131
1132 // auto pre-charge when either
1133 // 1) open_adaptive policy, we have not got any more hits, and
1134 // have a bank conflict
1135 // 2) close_adaptive policy and we have not got any more hits
1136 auto_precharge = !got_more_hits &&
1137 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1138 }
1139
1140 // DRAMPower trace command to be written
1141 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1142
1143 // if this access should use auto-precharge, then we are
1144 // closing the row
1145 if (auto_precharge) {
1146 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt), false);
1147
1148 mem_cmd.append("A");
1149
1150 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1151 }
1152
1153 // Update bus state
1154 busBusyUntil = dram_pkt->readyTime;
1155
1156 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1157 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1158
1159 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK), mem_cmd,
1160 dram_pkt->bank, dram_pkt->rank);
1161
1162 // Update the minimum timing between the requests, this is a
1163 // conservative estimate of when we have to schedule the next
1164 // request to not introduce any unecessary bubbles. In most cases
1165 // we will wake up sooner than we have to.
1166 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1167
1168 // Update the stats and schedule the next request
1169 if (dram_pkt->isRead) {
1170 ++readsThisTime;
1171 if (row_hit)
1172 readRowHits++;
1173 bytesReadDRAM += burstSize;
1174 perBankRdBursts[dram_pkt->bankId]++;
1175
1176 // Update latency stats
1177 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1178 totBusLat += tBURST;
1179 totQLat += cmd_at - dram_pkt->entryTime;
1180 } else {
1181 ++writesThisTime;
1182 if (row_hit)
1183 writeRowHits++;
1184 bytesWritten += burstSize;
1185 perBankWrBursts[dram_pkt->bankId]++;
1186 }
1187 }
1188
1189 void
1190 DRAMCtrl::processNextReqEvent()
1191 {
1192 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1193 // or WRITE_TO_READ state
1194 bool switched_cmd_type = false;
1195 if (busState == READ_TO_WRITE) {
1196 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1197 "waiting\n", readsThisTime, readQueue.size());
1198
1199 // sample and reset the read-related stats as we are now
1200 // transitioning to writes, and all reads are done
1201 rdPerTurnAround.sample(readsThisTime);
1202 readsThisTime = 0;
1203
1204 // now proceed to do the actual writes
1205 busState = WRITE;
1206 switched_cmd_type = true;
1207 } else if (busState == WRITE_TO_READ) {
1208 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1209 "waiting\n", writesThisTime, writeQueue.size());
1210
1211 wrPerTurnAround.sample(writesThisTime);
1212 writesThisTime = 0;
1213
1214 busState = READ;
1215 switched_cmd_type = true;
1216 }
1217
1218 if (refreshState != REF_IDLE) {
1219 // if a refresh waiting for this event loop to finish, then hand
1220 // over now, and do not schedule a new nextReqEvent
1221 if (refreshState == REF_DRAIN) {
1222 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1223
1224 refreshState = REF_PRE;
1225
1226 // hand control back to the refresh event loop
1227 schedule(refreshEvent, curTick());
1228 }
1229
1230 // let the refresh finish before issuing any further requests
1231 return;
1232 }
1233
1234 // when we get here it is either a read or a write
1235 if (busState == READ) {
1236
1237 // track if we should switch or not
1238 bool switch_to_writes = false;
1239
1240 if (readQueue.empty()) {
1241 // In the case there is no read request to go next,
1242 // trigger writes if we have passed the low threshold (or
1243 // if we are draining)
1244 if (!writeQueue.empty() &&
1245 (drainManager || writeQueue.size() > writeLowThreshold)) {
1246
1247 switch_to_writes = true;
1248 } else {
1249 // check if we are drained
1250 if (respQueue.empty () && drainManager) {
1251 drainManager->signalDrainDone();
1252 drainManager = NULL;
1253 }
1254
1255 // nothing to do, not even any point in scheduling an
1256 // event for the next request
1257 return;
1258 }
1259 } else {
1260 // Figure out which read request goes next, and move it to the
1261 // front of the read queue
1262 chooseNext(readQueue, switched_cmd_type);
1263
1264 DRAMPacket* dram_pkt = readQueue.front();
1265
1266 // here we get a bit creative and shift the bus busy time not
1267 // just the tWTR, but also a CAS latency to capture the fact
1268 // that we are allowed to prepare a new bank, but not issue a
1269 // read command until after tWTR, in essence we capture a
1270 // bubble on the data bus that is tWTR + tCL
1271 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1272 busBusyUntil += tWTR + tCL;
1273 }
1274
1275 doDRAMAccess(dram_pkt);
1276
1277 // At this point we're done dealing with the request
1278 readQueue.pop_front();
1279
1280 // sanity check
1281 assert(dram_pkt->size <= burstSize);
1282 assert(dram_pkt->readyTime >= curTick());
1283
1284 // Insert into response queue. It will be sent back to the
1285 // requestor at its readyTime
1286 if (respQueue.empty()) {
1287 assert(!respondEvent.scheduled());
1288 schedule(respondEvent, dram_pkt->readyTime);
1289 } else {
1290 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1291 assert(respondEvent.scheduled());
1292 }
1293
1294 respQueue.push_back(dram_pkt);
1295
1296 // we have so many writes that we have to transition
1297 if (writeQueue.size() > writeHighThreshold) {
1298 switch_to_writes = true;
1299 }
1300 }
1301
1302 // switching to writes, either because the read queue is empty
1303 // and the writes have passed the low threshold (or we are
1304 // draining), or because the writes hit the hight threshold
1305 if (switch_to_writes) {
1306 // transition to writing
1307 busState = READ_TO_WRITE;
1308 }
1309 } else {
1310 chooseNext(writeQueue, switched_cmd_type);
1311 DRAMPacket* dram_pkt = writeQueue.front();
1312 // sanity check
1313 assert(dram_pkt->size <= burstSize);
1314
1315 // add a bubble to the data bus, as defined by the
1316 // tRTW when access is to the same rank as previous burst
1317 // Different rank timing is handled with tCS, which is
1318 // applied to colAllowedAt
1319 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1320 busBusyUntil += tRTW;
1321 }
1322
1323 doDRAMAccess(dram_pkt);
1324
1325 writeQueue.pop_front();
1326 delete dram_pkt;
1327
1328 // If we emptied the write queue, or got sufficiently below the
1329 // threshold (using the minWritesPerSwitch as the hysteresis) and
1330 // are not draining, or we have reads waiting and have done enough
1331 // writes, then switch to reads.
1332 if (writeQueue.empty() ||
1333 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1334 !drainManager) ||
1335 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1336 // turn the bus back around for reads again
1337 busState = WRITE_TO_READ;
1338
1339 // note that the we switch back to reads also in the idle
1340 // case, which eventually will check for any draining and
1341 // also pause any further scheduling if there is really
1342 // nothing to do
1343 }
1344 }
1345
1346 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1347
1348 // If there is space available and we have writes waiting then let
1349 // them retry. This is done here to ensure that the retry does not
1350 // cause a nextReqEvent to be scheduled before we do so as part of
1351 // the next request processing
1352 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1353 retryWrReq = false;
1354 port.sendRetry();
1355 }
1356 }
1357
1358 uint64_t
1359 DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1360 bool switched_cmd_type) const
1361 {
1362 uint64_t bank_mask = 0;
1363 Tick min_act_at = MaxTick;
1364
1365 uint64_t bank_mask_same_rank = 0;
1366 Tick min_act_at_same_rank = MaxTick;
1367
1368 // Give precedence to commands that access same rank as previous command
1369 bool same_rank_match = false;
1370
1371 // determine if we have queued transactions targetting the
1372 // bank in question
1373 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1374 for (auto p = queue.begin(); p != queue.end(); ++p) {
1375 got_waiting[(*p)->bankId] = true;
1376 }
1377
1378 for (int i = 0; i < ranksPerChannel; i++) {
1379 for (int j = 0; j < banksPerRank; j++) {
1380 uint8_t bank_id = i * banksPerRank + j;
1381
1382 // if we have waiting requests for the bank, and it is
1383 // amongst the first available, update the mask
1384 if (got_waiting[bank_id]) {
1385 // simplistic approximation of when the bank can issue
1386 // an activate, ignoring any rank-to-rank switching
1387 // cost in this calculation
1388 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1389 banks[i][j].actAllowedAt :
1390 std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1391
1392 // prioritize commands that access the
1393 // same rank as previous burst
1394 // Calculate bank mask separately for the case and
1395 // evaluate after loop iterations complete
1396 if (i == activeRank && ranksPerChannel > 1) {
1397 if (act_at <= min_act_at_same_rank) {
1398 // reset same rank bank mask if new minimum is found
1399 // and previous minimum could not immediately send ACT
1400 if (act_at < min_act_at_same_rank &&
1401 min_act_at_same_rank > curTick())
1402 bank_mask_same_rank = 0;
1403
1404 // Set flag indicating that a same rank
1405 // opportunity was found
1406 same_rank_match = true;
1407
1408 // set the bit corresponding to the available bank
1409 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1410 min_act_at_same_rank = act_at;
1411 }
1412 } else {
1413 if (act_at <= min_act_at) {
1414 // reset bank mask if new minimum is found
1415 // and either previous minimum could not immediately send ACT
1416 if (act_at < min_act_at && min_act_at > curTick())
1417 bank_mask = 0;
1418 // set the bit corresponding to the available bank
1419 replaceBits(bank_mask, bank_id, bank_id, 1);
1420 min_act_at = act_at;
1421 }
1422 }
1423 }
1424 }
1425 }
1426
1427 // Determine the earliest time when the next burst can issue based
1428 // on the current busBusyUntil delay.
1429 // Offset by tRCD to correlate with ACT timing variables
1430 Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1431
1432 // Prioritize same rank accesses that can issue B2B
1433 // Only optimize for same ranks when the command type
1434 // does not change; do not want to unnecessarily incur tWTR
1435 //
1436 // Resulting FCFS prioritization Order is:
1437 // 1) Commands that access the same rank as previous burst
1438 // and can prep the bank seamlessly.
1439 // 2) Commands (any rank) with earliest bank prep
1440 if (!switched_cmd_type && same_rank_match &&
1441 min_act_at_same_rank <= min_cmd_at) {
1442 bank_mask = bank_mask_same_rank;
1443 }
1444
1445 return bank_mask;
1446 }
1447
1448 void
1449 DRAMCtrl::processRefreshEvent()
1450 {
1451 // when first preparing the refresh, remember when it was due
1452 if (refreshState == REF_IDLE) {
1453 // remember when the refresh is due
1454 refreshDueAt = curTick();
1455
1456 // proceed to drain
1457 refreshState = REF_DRAIN;
1458
1459 DPRINTF(DRAM, "Refresh due\n");
1460 }
1461
1462 // let any scheduled read or write go ahead, after which it will
1463 // hand control back to this event loop
1464 if (refreshState == REF_DRAIN) {
1465 if (nextReqEvent.scheduled()) {
1466 // hand control over to the request loop until it is
1467 // evaluated next
1468 DPRINTF(DRAM, "Refresh awaiting draining\n");
1469
1470 return;
1471 } else {
1472 refreshState = REF_PRE;
1473 }
1474 }
1475
1476 // at this point, ensure that all banks are precharged
1477 if (refreshState == REF_PRE) {
1478 // precharge any active bank if we are not already in the idle
1479 // state
1480 if (pwrState != PWR_IDLE) {
1481 // at the moment, we use a precharge all even if there is
1482 // only a single bank open
1483 DPRINTF(DRAM, "Precharging all\n");
1484
1485 // first determine when we can precharge
1486 Tick pre_at = curTick();
1487 for (int i = 0; i < ranksPerChannel; i++) {
1488 for (int j = 0; j < banksPerRank; j++) {
1489 // respect both causality and any existing bank
1490 // constraints, some banks could already have a
1491 // (auto) precharge scheduled
1492 pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
1493 }
1494 }
1495
1496 // make sure all banks are precharged, and for those that
1497 // already are, update their availability
1498 Tick act_allowed_at = pre_at + tRP;
1499
1500 for (int i = 0; i < ranksPerChannel; i++) {
1501 for (int j = 0; j < banksPerRank; j++) {
1502 if (banks[i][j].openRow != Bank::NO_ROW) {
1503 prechargeBank(banks[i][j], pre_at, false);
1504 } else {
1505 banks[i][j].actAllowedAt =
1506 std::max(banks[i][j].actAllowedAt, act_allowed_at);
1507 banks[i][j].preAllowedAt =
1508 std::max(banks[i][j].preAllowedAt, pre_at);
1509 }
1510 }
1511
1512 // at the moment this affects all ranks
1513 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK),
1514 i);
1515 }
1516 } else {
1517 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1518
1519 // go ahead and kick the power state machine into gear if
1520 // we are already idle
1521 schedulePowerEvent(PWR_REF, curTick());
1522 }
1523
1524 refreshState = REF_RUN;
1525 assert(numBanksActive == 0);
1526
1527 // wait for all banks to be precharged, at which point the
1528 // power state machine will transition to the idle state, and
1529 // automatically move to a refresh, at that point it will also
1530 // call this method to get the refresh event loop going again
1531 return;
1532 }
1533
1534 // last but not least we perform the actual refresh
1535 if (refreshState == REF_RUN) {
1536 // should never get here with any banks active
1537 assert(numBanksActive == 0);
1538 assert(pwrState == PWR_REF);
1539
1540 Tick ref_done_at = curTick() + tRFC;
1541
1542 for (int i = 0; i < ranksPerChannel; i++) {
1543 for (int j = 0; j < banksPerRank; j++) {
1544 banks[i][j].actAllowedAt = ref_done_at;
1545 }
1546
1547 // at the moment this affects all ranks
1548 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK), i);
1549 }
1550
1551 // make sure we did not wait so long that we cannot make up
1552 // for it
1553 if (refreshDueAt + tREFI < ref_done_at) {
1554 fatal("Refresh was delayed so long we cannot catch up\n");
1555 }
1556
1557 // compensate for the delay in actually performing the refresh
1558 // when scheduling the next one
1559 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1560
1561 assert(!powerEvent.scheduled());
1562
1563 // move to the idle power state once the refresh is done, this
1564 // will also move the refresh state machine to the refresh
1565 // idle state
1566 schedulePowerEvent(PWR_IDLE, ref_done_at);
1567
1568 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1569 ref_done_at, refreshDueAt + tREFI);
1570 }
1571 }
1572
1573 void
1574 DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1575 {
1576 // respect causality
1577 assert(tick >= curTick());
1578
1579 if (!powerEvent.scheduled()) {
1580 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1581 tick, pwr_state);
1582
1583 // insert the new transition
1584 pwrStateTrans = pwr_state;
1585
1586 schedule(powerEvent, tick);
1587 } else {
1588 panic("Scheduled power event at %llu to state %d, "
1589 "with scheduled event at %llu to %d\n", tick, pwr_state,
1590 powerEvent.when(), pwrStateTrans);
1591 }
1592 }
1593
1594 void
1595 DRAMCtrl::processPowerEvent()
1596 {
1597 // remember where we were, and for how long
1598 Tick duration = curTick() - pwrStateTick;
1599 PowerState prev_state = pwrState;
1600
1601 // update the accounting
1602 pwrStateTime[prev_state] += duration;
1603
1604 pwrState = pwrStateTrans;
1605 pwrStateTick = curTick();
1606
1607 if (pwrState == PWR_IDLE) {
1608 DPRINTF(DRAMState, "All banks precharged\n");
1609
1610 // if we were refreshing, make sure we start scheduling requests again
1611 if (prev_state == PWR_REF) {
1612 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1613 assert(pwrState == PWR_IDLE);
1614
1615 // kick things into action again
1616 refreshState = REF_IDLE;
1617 assert(!nextReqEvent.scheduled());
1618 schedule(nextReqEvent, curTick());
1619 } else {
1620 assert(prev_state == PWR_ACT);
1621
1622 // if we have a pending refresh, and are now moving to
1623 // the idle state, direclty transition to a refresh
1624 if (refreshState == REF_RUN) {
1625 // there should be nothing waiting at this point
1626 assert(!powerEvent.scheduled());
1627
1628 // update the state in zero time and proceed below
1629 pwrState = PWR_REF;
1630 }
1631 }
1632 }
1633
1634 // we transition to the refresh state, let the refresh state
1635 // machine know of this state update and let it deal with the
1636 // scheduling of the next power state transition as well as the
1637 // following refresh
1638 if (pwrState == PWR_REF) {
1639 DPRINTF(DRAMState, "Refreshing\n");
1640 // kick the refresh event loop into action again, and that
1641 // in turn will schedule a transition to the idle power
1642 // state once the refresh is done
1643 assert(refreshState == REF_RUN);
1644 processRefreshEvent();
1645 }
1646 }
1647
1648 void
1649 DRAMCtrl::regStats()
1650 {
1651 using namespace Stats;
1652
1653 AbstractMemory::regStats();
1654
1655 readReqs
1656 .name(name() + ".readReqs")
1657 .desc("Number of read requests accepted");
1658
1659 writeReqs
1660 .name(name() + ".writeReqs")
1661 .desc("Number of write requests accepted");
1662
1663 readBursts
1664 .name(name() + ".readBursts")
1665 .desc("Number of DRAM read bursts, "
1666 "including those serviced by the write queue");
1667
1668 writeBursts
1669 .name(name() + ".writeBursts")
1670 .desc("Number of DRAM write bursts, "
1671 "including those merged in the write queue");
1672
1673 servicedByWrQ
1674 .name(name() + ".servicedByWrQ")
1675 .desc("Number of DRAM read bursts serviced by the write queue");
1676
1677 mergedWrBursts
1678 .name(name() + ".mergedWrBursts")
1679 .desc("Number of DRAM write bursts merged with an existing one");
1680
1681 neitherReadNorWrite
1682 .name(name() + ".neitherReadNorWriteReqs")
1683 .desc("Number of requests that are neither read nor write");
1684
1685 perBankRdBursts
1686 .init(banksPerRank * ranksPerChannel)
1687 .name(name() + ".perBankRdBursts")
1688 .desc("Per bank write bursts");
1689
1690 perBankWrBursts
1691 .init(banksPerRank * ranksPerChannel)
1692 .name(name() + ".perBankWrBursts")
1693 .desc("Per bank write bursts");
1694
1695 avgRdQLen
1696 .name(name() + ".avgRdQLen")
1697 .desc("Average read queue length when enqueuing")
1698 .precision(2);
1699
1700 avgWrQLen
1701 .name(name() + ".avgWrQLen")
1702 .desc("Average write queue length when enqueuing")
1703 .precision(2);
1704
1705 totQLat
1706 .name(name() + ".totQLat")
1707 .desc("Total ticks spent queuing");
1708
1709 totBusLat
1710 .name(name() + ".totBusLat")
1711 .desc("Total ticks spent in databus transfers");
1712
1713 totMemAccLat
1714 .name(name() + ".totMemAccLat")
1715 .desc("Total ticks spent from burst creation until serviced "
1716 "by the DRAM");
1717
1718 avgQLat
1719 .name(name() + ".avgQLat")
1720 .desc("Average queueing delay per DRAM burst")
1721 .precision(2);
1722
1723 avgQLat = totQLat / (readBursts - servicedByWrQ);
1724
1725 avgBusLat
1726 .name(name() + ".avgBusLat")
1727 .desc("Average bus latency per DRAM burst")
1728 .precision(2);
1729
1730 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1731
1732 avgMemAccLat
1733 .name(name() + ".avgMemAccLat")
1734 .desc("Average memory access latency per DRAM burst")
1735 .precision(2);
1736
1737 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1738
1739 numRdRetry
1740 .name(name() + ".numRdRetry")
1741 .desc("Number of times read queue was full causing retry");
1742
1743 numWrRetry
1744 .name(name() + ".numWrRetry")
1745 .desc("Number of times write queue was full causing retry");
1746
1747 readRowHits
1748 .name(name() + ".readRowHits")
1749 .desc("Number of row buffer hits during reads");
1750
1751 writeRowHits
1752 .name(name() + ".writeRowHits")
1753 .desc("Number of row buffer hits during writes");
1754
1755 readRowHitRate
1756 .name(name() + ".readRowHitRate")
1757 .desc("Row buffer hit rate for reads")
1758 .precision(2);
1759
1760 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1761
1762 writeRowHitRate
1763 .name(name() + ".writeRowHitRate")
1764 .desc("Row buffer hit rate for writes")
1765 .precision(2);
1766
1767 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1768
1769 readPktSize
1770 .init(ceilLog2(burstSize) + 1)
1771 .name(name() + ".readPktSize")
1772 .desc("Read request sizes (log2)");
1773
1774 writePktSize
1775 .init(ceilLog2(burstSize) + 1)
1776 .name(name() + ".writePktSize")
1777 .desc("Write request sizes (log2)");
1778
1779 rdQLenPdf
1780 .init(readBufferSize)
1781 .name(name() + ".rdQLenPdf")
1782 .desc("What read queue length does an incoming req see");
1783
1784 wrQLenPdf
1785 .init(writeBufferSize)
1786 .name(name() + ".wrQLenPdf")
1787 .desc("What write queue length does an incoming req see");
1788
1789 bytesPerActivate
1790 .init(maxAccessesPerRow)
1791 .name(name() + ".bytesPerActivate")
1792 .desc("Bytes accessed per row activation")
1793 .flags(nozero);
1794
1795 rdPerTurnAround
1796 .init(readBufferSize)
1797 .name(name() + ".rdPerTurnAround")
1798 .desc("Reads before turning the bus around for writes")
1799 .flags(nozero);
1800
1801 wrPerTurnAround
1802 .init(writeBufferSize)
1803 .name(name() + ".wrPerTurnAround")
1804 .desc("Writes before turning the bus around for reads")
1805 .flags(nozero);
1806
1807 bytesReadDRAM
1808 .name(name() + ".bytesReadDRAM")
1809 .desc("Total number of bytes read from DRAM");
1810
1811 bytesReadWrQ
1812 .name(name() + ".bytesReadWrQ")
1813 .desc("Total number of bytes read from write queue");
1814
1815 bytesWritten
1816 .name(name() + ".bytesWritten")
1817 .desc("Total number of bytes written to DRAM");
1818
1819 bytesReadSys
1820 .name(name() + ".bytesReadSys")
1821 .desc("Total read bytes from the system interface side");
1822
1823 bytesWrittenSys
1824 .name(name() + ".bytesWrittenSys")
1825 .desc("Total written bytes from the system interface side");
1826
1827 avgRdBW
1828 .name(name() + ".avgRdBW")
1829 .desc("Average DRAM read bandwidth in MiByte/s")
1830 .precision(2);
1831
1832 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1833
1834 avgWrBW
1835 .name(name() + ".avgWrBW")
1836 .desc("Average achieved write bandwidth in MiByte/s")
1837 .precision(2);
1838
1839 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1840
1841 avgRdBWSys
1842 .name(name() + ".avgRdBWSys")
1843 .desc("Average system read bandwidth in MiByte/s")
1844 .precision(2);
1845
1846 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1847
1848 avgWrBWSys
1849 .name(name() + ".avgWrBWSys")
1850 .desc("Average system write bandwidth in MiByte/s")
1851 .precision(2);
1852
1853 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1854
1855 peakBW
1856 .name(name() + ".peakBW")
1857 .desc("Theoretical peak bandwidth in MiByte/s")
1858 .precision(2);
1859
1860 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1861
1862 busUtil
1863 .name(name() + ".busUtil")
1864 .desc("Data bus utilization in percentage")
1865 .precision(2);
1866
1867 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1868
1869 totGap
1870 .name(name() + ".totGap")
1871 .desc("Total gap between requests");
1872
1873 avgGap
1874 .name(name() + ".avgGap")
1875 .desc("Average gap between requests")
1876 .precision(2);
1877
1878 avgGap = totGap / (readReqs + writeReqs);
1879
1880 // Stats for DRAM Power calculation based on Micron datasheet
1881 busUtilRead
1882 .name(name() + ".busUtilRead")
1883 .desc("Data bus utilization in percentage for reads")
1884 .precision(2);
1885
1886 busUtilRead = avgRdBW / peakBW * 100;
1887
1888 busUtilWrite
1889 .name(name() + ".busUtilWrite")
1890 .desc("Data bus utilization in percentage for writes")
1891 .precision(2);
1892
1893 busUtilWrite = avgWrBW / peakBW * 100;
1894
1895 pageHitRate
1896 .name(name() + ".pageHitRate")
1897 .desc("Row buffer hit rate, read and write combined")
1898 .precision(2);
1899
1900 pageHitRate = (writeRowHits + readRowHits) /
1901 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1902
1903 pwrStateTime
1904 .init(5)
1905 .name(name() + ".memoryStateTime")
1906 .desc("Time in different power states");
1907 pwrStateTime.subname(0, "IDLE");
1908 pwrStateTime.subname(1, "REF");
1909 pwrStateTime.subname(2, "PRE_PDN");
1910 pwrStateTime.subname(3, "ACT");
1911 pwrStateTime.subname(4, "ACT_PDN");
1912 }
1913
1914 void
1915 DRAMCtrl::recvFunctional(PacketPtr pkt)
1916 {
1917 // rely on the abstract memory
1918 functionalAccess(pkt);
1919 }
1920
1921 BaseSlavePort&
1922 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1923 {
1924 if (if_name != "port") {
1925 return MemObject::getSlavePort(if_name, idx);
1926 } else {
1927 return port;
1928 }
1929 }
1930
1931 unsigned int
1932 DRAMCtrl::drain(DrainManager *dm)
1933 {
1934 unsigned int count = port.drain(dm);
1935
1936 // if there is anything in any of our internal queues, keep track
1937 // of that as well
1938 if (!(writeQueue.empty() && readQueue.empty() &&
1939 respQueue.empty())) {
1940 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1941 " resp: %d\n", writeQueue.size(), readQueue.size(),
1942 respQueue.size());
1943 ++count;
1944 drainManager = dm;
1945
1946 // the only part that is not drained automatically over time
1947 // is the write queue, thus kick things into action if needed
1948 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1949 schedule(nextReqEvent, curTick());
1950 }
1951 }
1952
1953 if (count)
1954 setDrainState(Drainable::Draining);
1955 else
1956 setDrainState(Drainable::Drained);
1957 return count;
1958 }
1959
1960 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1961 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1962 memory(_memory)
1963 { }
1964
1965 AddrRangeList
1966 DRAMCtrl::MemoryPort::getAddrRanges() const
1967 {
1968 AddrRangeList ranges;
1969 ranges.push_back(memory.getAddrRange());
1970 return ranges;
1971 }
1972
1973 void
1974 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1975 {
1976 pkt->pushLabel(memory.name());
1977
1978 if (!queue.checkFunctional(pkt)) {
1979 // Default implementation of SimpleTimingPort::recvFunctional()
1980 // calls recvAtomic() and throws away the latency; we can save a
1981 // little here by just not calculating the latency.
1982 memory.recvFunctional(pkt);
1983 }
1984
1985 pkt->popLabel();
1986 }
1987
1988 Tick
1989 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1990 {
1991 return memory.recvAtomic(pkt);
1992 }
1993
1994 bool
1995 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1996 {
1997 // pass it to the memory controller
1998 return memory.recvTimingReq(pkt);
1999 }
2000
2001 DRAMCtrl*
2002 DRAMCtrlParams::create()
2003 {
2004 return new DRAMCtrl(this);
2005 }