mem: Remove the unused asid field from the CacheBlk class
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 * Wendy Elsasser
45 */
46
47 #include "mem/dram_ctrl.hh"
48
49 #include "base/bitfield.hh"
50 #include "base/trace.hh"
51 #include "debug/DRAM.hh"
52 #include "debug/DRAMPower.hh"
53 #include "debug/DRAMState.hh"
54 #include "debug/Drain.hh"
55 #include "sim/system.hh"
56
57 using namespace std;
58 using namespace Data;
59
60 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
61 AbstractMemory(p),
62 port(name() + ".port", *this), isTimingMode(false),
63 retryRdReq(false), retryWrReq(false),
64 busState(READ),
65 busStateNext(READ),
66 nextReqEvent(this), respondEvent(this),
67 deviceSize(p->device_size),
68 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
69 deviceRowBufferSize(p->device_rowbuffer_size),
70 devicesPerRank(p->devices_per_rank),
71 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
72 rowBufferSize(devicesPerRank * deviceRowBufferSize),
73 columnsPerRowBuffer(rowBufferSize / burstSize),
74 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
75 ranksPerChannel(p->ranks_per_channel),
76 bankGroupsPerRank(p->bank_groups_per_rank),
77 bankGroupArch(p->bank_groups_per_rank > 0),
78 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
79 readBufferSize(p->read_buffer_size),
80 writeBufferSize(p->write_buffer_size),
81 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
82 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
83 minWritesPerSwitch(p->min_writes_per_switch),
84 writesThisTime(0), readsThisTime(0),
85 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
86 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
87 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
88 tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
89 activationLimit(p->activation_limit),
90 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
91 pageMgmt(p->page_policy),
92 maxAccessesPerRow(p->max_accesses_per_row),
93 frontendLatency(p->static_frontend_latency),
94 backendLatency(p->static_backend_latency),
95 busBusyUntil(0), prevArrival(0),
96 nextReqTime(0), activeRank(0), timeStampOffset(0)
97 {
98 // sanity check the ranks since we rely on bit slicing for the
99 // address decoding
100 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
101 "allowed, must be a power of two\n", ranksPerChannel);
102
103 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
104 "must be a power of two\n", burstSize);
105
106 for (int i = 0; i < ranksPerChannel; i++) {
107 Rank* rank = new Rank(*this, p);
108 ranks.push_back(rank);
109
110 rank->actTicks.resize(activationLimit, 0);
111 rank->banks.resize(banksPerRank);
112 rank->rank = i;
113
114 for (int b = 0; b < banksPerRank; b++) {
115 rank->banks[b].bank = b;
116 // GDDR addressing of banks to BG is linear.
117 // Here we assume that all DRAM generations address bank groups as
118 // follows:
119 if (bankGroupArch) {
120 // Simply assign lower bits to bank group in order to
121 // rotate across bank groups as banks are incremented
122 // e.g. with 4 banks per bank group and 16 banks total:
123 // banks 0,4,8,12 are in bank group 0
124 // banks 1,5,9,13 are in bank group 1
125 // banks 2,6,10,14 are in bank group 2
126 // banks 3,7,11,15 are in bank group 3
127 rank->banks[b].bankgr = b % bankGroupsPerRank;
128 } else {
129 // No bank groups; simply assign to bank number
130 rank->banks[b].bankgr = b;
131 }
132 }
133 }
134
135 // perform a basic check of the write thresholds
136 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
137 fatal("Write buffer low threshold %d must be smaller than the "
138 "high threshold %d\n", p->write_low_thresh_perc,
139 p->write_high_thresh_perc);
140
141 // determine the rows per bank by looking at the total capacity
142 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
143
144 // determine the dram actual capacity from the DRAM config in Mbytes
145 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
146 ranksPerChannel;
147
148 // if actual DRAM size does not match memory capacity in system warn!
149 if (deviceCapacity != capacity / (1024 * 1024))
150 warn("DRAM device capacity (%d Mbytes) does not match the "
151 "address range assigned (%d Mbytes)\n", deviceCapacity,
152 capacity / (1024 * 1024));
153
154 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
155 AbstractMemory::size());
156
157 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
158 rowBufferSize, columnsPerRowBuffer);
159
160 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
161
162 // some basic sanity checks
163 if (tREFI <= tRP || tREFI <= tRFC) {
164 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
165 tREFI, tRP, tRFC);
166 }
167
168 // basic bank group architecture checks ->
169 if (bankGroupArch) {
170 // must have at least one bank per bank group
171 if (bankGroupsPerRank > banksPerRank) {
172 fatal("banks per rank (%d) must be equal to or larger than "
173 "banks groups per rank (%d)\n",
174 banksPerRank, bankGroupsPerRank);
175 }
176 // must have same number of banks in each bank group
177 if ((banksPerRank % bankGroupsPerRank) != 0) {
178 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
179 "per rank (%d) for equal banks per bank group\n",
180 banksPerRank, bankGroupsPerRank);
181 }
182 // tCCD_L should be greater than minimal, back-to-back burst delay
183 if (tCCD_L <= tBURST) {
184 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
185 "bank groups per rank (%d) is greater than 1\n",
186 tCCD_L, tBURST, bankGroupsPerRank);
187 }
188 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
189 // some datasheets might specify it equal to tRRD
190 if (tRRD_L < tRRD) {
191 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
192 "bank groups per rank (%d) is greater than 1\n",
193 tRRD_L, tRRD, bankGroupsPerRank);
194 }
195 }
196
197 }
198
199 void
200 DRAMCtrl::init()
201 {
202 AbstractMemory::init();
203
204 if (!port.isConnected()) {
205 fatal("DRAMCtrl %s is unconnected!\n", name());
206 } else {
207 port.sendRangeChange();
208 }
209
210 // a bit of sanity checks on the interleaving, save it for here to
211 // ensure that the system pointer is initialised
212 if (range.interleaved()) {
213 if (channels != range.stripes())
214 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
215 name(), range.stripes(), channels);
216
217 if (addrMapping == Enums::RoRaBaChCo) {
218 if (rowBufferSize != range.granularity()) {
219 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
220 "address map\n", name());
221 }
222 } else if (addrMapping == Enums::RoRaBaCoCh ||
223 addrMapping == Enums::RoCoRaBaCh) {
224 // for the interleavings with channel bits in the bottom,
225 // if the system uses a channel striping granularity that
226 // is larger than the DRAM burst size, then map the
227 // sequential accesses within a stripe to a number of
228 // columns in the DRAM, effectively placing some of the
229 // lower-order column bits as the least-significant bits
230 // of the address (above the ones denoting the burst size)
231 assert(columnsPerStripe >= 1);
232
233 // channel striping has to be done at a granularity that
234 // is equal or larger to a cache line
235 if (system()->cacheLineSize() > range.granularity()) {
236 fatal("Channel interleaving of %s must be at least as large "
237 "as the cache line size\n", name());
238 }
239
240 // ...and equal or smaller than the row-buffer size
241 if (rowBufferSize < range.granularity()) {
242 fatal("Channel interleaving of %s must be at most as large "
243 "as the row-buffer size\n", name());
244 }
245 // this is essentially the check above, so just to be sure
246 assert(columnsPerStripe <= columnsPerRowBuffer);
247 }
248 }
249 }
250
251 void
252 DRAMCtrl::startup()
253 {
254 // remember the memory system mode of operation
255 isTimingMode = system()->isTimingMode();
256
257 if (isTimingMode) {
258 // timestamp offset should be in clock cycles for DRAMPower
259 timeStampOffset = divCeil(curTick(), tCK);
260
261 // update the start tick for the precharge accounting to the
262 // current tick
263 for (auto r : ranks) {
264 r->startup(curTick() + tREFI - tRP);
265 }
266
267 // shift the bus busy time sufficiently far ahead that we never
268 // have to worry about negative values when computing the time for
269 // the next request, this will add an insignificant bubble at the
270 // start of simulation
271 busBusyUntil = curTick() + tRP + tRCD + tCL;
272 }
273 }
274
275 Tick
276 DRAMCtrl::recvAtomic(PacketPtr pkt)
277 {
278 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
279
280 panic_if(pkt->cacheResponding(), "Should not see packets where cache "
281 "is responding");
282
283 // do the actual memory access and turn the packet into a response
284 access(pkt);
285
286 Tick latency = 0;
287 if (pkt->hasData()) {
288 // this value is not supposed to be accurate, just enough to
289 // keep things going, mimic a closed page
290 latency = tRP + tRCD + tCL;
291 }
292 return latency;
293 }
294
295 bool
296 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
297 {
298 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
299 readBufferSize, readQueue.size() + respQueue.size(),
300 neededEntries);
301
302 return
303 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
304 }
305
306 bool
307 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
308 {
309 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
310 writeBufferSize, writeQueue.size(), neededEntries);
311 return (writeQueue.size() + neededEntries) > writeBufferSize;
312 }
313
314 DRAMCtrl::DRAMPacket*
315 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
316 bool isRead)
317 {
318 // decode the address based on the address mapping scheme, with
319 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
320 // channel, respectively
321 uint8_t rank;
322 uint8_t bank;
323 // use a 64-bit unsigned during the computations as the row is
324 // always the top bits, and check before creating the DRAMPacket
325 uint64_t row;
326
327 // truncate the address to a DRAM burst, which makes it unique to
328 // a specific column, row, bank, rank and channel
329 Addr addr = dramPktAddr / burstSize;
330
331 // we have removed the lowest order address bits that denote the
332 // position within the column
333 if (addrMapping == Enums::RoRaBaChCo) {
334 // the lowest order bits denote the column to ensure that
335 // sequential cache lines occupy the same row
336 addr = addr / columnsPerRowBuffer;
337
338 // take out the channel part of the address
339 addr = addr / channels;
340
341 // after the channel bits, get the bank bits to interleave
342 // over the banks
343 bank = addr % banksPerRank;
344 addr = addr / banksPerRank;
345
346 // after the bank, we get the rank bits which thus interleaves
347 // over the ranks
348 rank = addr % ranksPerChannel;
349 addr = addr / ranksPerChannel;
350
351 // lastly, get the row bits, no need to remove them from addr
352 row = addr % rowsPerBank;
353 } else if (addrMapping == Enums::RoRaBaCoCh) {
354 // take out the lower-order column bits
355 addr = addr / columnsPerStripe;
356
357 // take out the channel part of the address
358 addr = addr / channels;
359
360 // next, the higher-order column bites
361 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
362
363 // after the column bits, we get the bank bits to interleave
364 // over the banks
365 bank = addr % banksPerRank;
366 addr = addr / banksPerRank;
367
368 // after the bank, we get the rank bits which thus interleaves
369 // over the ranks
370 rank = addr % ranksPerChannel;
371 addr = addr / ranksPerChannel;
372
373 // lastly, get the row bits, no need to remove them from addr
374 row = addr % rowsPerBank;
375 } else if (addrMapping == Enums::RoCoRaBaCh) {
376 // optimise for closed page mode and utilise maximum
377 // parallelism of the DRAM (at the cost of power)
378
379 // take out the lower-order column bits
380 addr = addr / columnsPerStripe;
381
382 // take out the channel part of the address, not that this has
383 // to match with how accesses are interleaved between the
384 // controllers in the address mapping
385 addr = addr / channels;
386
387 // start with the bank bits, as this provides the maximum
388 // opportunity for parallelism between requests
389 bank = addr % banksPerRank;
390 addr = addr / banksPerRank;
391
392 // next get the rank bits
393 rank = addr % ranksPerChannel;
394 addr = addr / ranksPerChannel;
395
396 // next, the higher-order column bites
397 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
398
399 // lastly, get the row bits, no need to remove them from addr
400 row = addr % rowsPerBank;
401 } else
402 panic("Unknown address mapping policy chosen!");
403
404 assert(rank < ranksPerChannel);
405 assert(bank < banksPerRank);
406 assert(row < rowsPerBank);
407 assert(row < Bank::NO_ROW);
408
409 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
410 dramPktAddr, rank, bank, row);
411
412 // create the corresponding DRAM packet with the entry time and
413 // ready time set to the current tick, the latter will be updated
414 // later
415 uint16_t bank_id = banksPerRank * rank + bank;
416 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
417 size, ranks[rank]->banks[bank], *ranks[rank]);
418 }
419
420 void
421 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
422 {
423 // only add to the read queue here. whenever the request is
424 // eventually done, set the readyTime, and call schedule()
425 assert(!pkt->isWrite());
426
427 assert(pktCount != 0);
428
429 // if the request size is larger than burst size, the pkt is split into
430 // multiple DRAM packets
431 // Note if the pkt starting address is not aligened to burst size, the
432 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
433 // are aligned to burst size boundaries. This is to ensure we accurately
434 // check read packets against packets in write queue.
435 Addr addr = pkt->getAddr();
436 unsigned pktsServicedByWrQ = 0;
437 BurstHelper* burst_helper = NULL;
438 for (int cnt = 0; cnt < pktCount; ++cnt) {
439 unsigned size = std::min((addr | (burstSize - 1)) + 1,
440 pkt->getAddr() + pkt->getSize()) - addr;
441 readPktSize[ceilLog2(size)]++;
442 readBursts++;
443
444 // First check write buffer to see if the data is already at
445 // the controller
446 bool foundInWrQ = false;
447 Addr burst_addr = burstAlign(addr);
448 // if the burst address is not present then there is no need
449 // looking any further
450 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
451 for (const auto& p : writeQueue) {
452 // check if the read is subsumed in the write queue
453 // packet we are looking at
454 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
455 foundInWrQ = true;
456 servicedByWrQ++;
457 pktsServicedByWrQ++;
458 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
459 "write queue\n", addr, size);
460 bytesReadWrQ += burstSize;
461 break;
462 }
463 }
464 }
465
466 // If not found in the write q, make a DRAM packet and
467 // push it onto the read queue
468 if (!foundInWrQ) {
469
470 // Make the burst helper for split packets
471 if (pktCount > 1 && burst_helper == NULL) {
472 DPRINTF(DRAM, "Read to addr %lld translates to %d "
473 "dram requests\n", pkt->getAddr(), pktCount);
474 burst_helper = new BurstHelper(pktCount);
475 }
476
477 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
478 dram_pkt->burstHelper = burst_helper;
479
480 assert(!readQueueFull(1));
481 rdQLenPdf[readQueue.size() + respQueue.size()]++;
482
483 DPRINTF(DRAM, "Adding to read queue\n");
484
485 readQueue.push_back(dram_pkt);
486
487 // increment read entries of the rank
488 ++dram_pkt->rankRef.readEntries;
489
490 // Update stats
491 avgRdQLen = readQueue.size() + respQueue.size();
492 }
493
494 // Starting address of next dram pkt (aligend to burstSize boundary)
495 addr = (addr | (burstSize - 1)) + 1;
496 }
497
498 // If all packets are serviced by write queue, we send the repsonse back
499 if (pktsServicedByWrQ == pktCount) {
500 accessAndRespond(pkt, frontendLatency);
501 return;
502 }
503
504 // Update how many split packets are serviced by write queue
505 if (burst_helper != NULL)
506 burst_helper->burstsServiced = pktsServicedByWrQ;
507
508 // If we are not already scheduled to get a request out of the
509 // queue, do so now
510 if (!nextReqEvent.scheduled()) {
511 DPRINTF(DRAM, "Request scheduled immediately\n");
512 schedule(nextReqEvent, curTick());
513 }
514 }
515
516 void
517 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
518 {
519 // only add to the write queue here. whenever the request is
520 // eventually done, set the readyTime, and call schedule()
521 assert(pkt->isWrite());
522
523 // if the request size is larger than burst size, the pkt is split into
524 // multiple DRAM packets
525 Addr addr = pkt->getAddr();
526 for (int cnt = 0; cnt < pktCount; ++cnt) {
527 unsigned size = std::min((addr | (burstSize - 1)) + 1,
528 pkt->getAddr() + pkt->getSize()) - addr;
529 writePktSize[ceilLog2(size)]++;
530 writeBursts++;
531
532 // see if we can merge with an existing item in the write
533 // queue and keep track of whether we have merged or not
534 bool merged = isInWriteQueue.find(burstAlign(addr)) !=
535 isInWriteQueue.end();
536
537 // if the item was not merged we need to create a new write
538 // and enqueue it
539 if (!merged) {
540 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
541
542 assert(writeQueue.size() < writeBufferSize);
543 wrQLenPdf[writeQueue.size()]++;
544
545 DPRINTF(DRAM, "Adding to write queue\n");
546
547 writeQueue.push_back(dram_pkt);
548 isInWriteQueue.insert(burstAlign(addr));
549 assert(writeQueue.size() == isInWriteQueue.size());
550
551 // Update stats
552 avgWrQLen = writeQueue.size();
553
554 // increment write entries of the rank
555 ++dram_pkt->rankRef.writeEntries;
556 } else {
557 DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
558
559 // keep track of the fact that this burst effectively
560 // disappeared as it was merged with an existing one
561 mergedWrBursts++;
562 }
563
564 // Starting address of next dram pkt (aligend to burstSize boundary)
565 addr = (addr | (burstSize - 1)) + 1;
566 }
567
568 // we do not wait for the writes to be send to the actual memory,
569 // but instead take responsibility for the consistency here and
570 // snoop the write queue for any upcoming reads
571 // @todo, if a pkt size is larger than burst size, we might need a
572 // different front end latency
573 accessAndRespond(pkt, frontendLatency);
574
575 // If we are not already scheduled to get a request out of the
576 // queue, do so now
577 if (!nextReqEvent.scheduled()) {
578 DPRINTF(DRAM, "Request scheduled immediately\n");
579 schedule(nextReqEvent, curTick());
580 }
581 }
582
583 void
584 DRAMCtrl::printQs() const {
585 DPRINTF(DRAM, "===READ QUEUE===\n\n");
586 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
587 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
588 }
589 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
590 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
591 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
592 }
593 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
594 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
595 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
596 }
597 }
598
599 bool
600 DRAMCtrl::recvTimingReq(PacketPtr pkt)
601 {
602 // This is where we enter from the outside world
603 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
604 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
605
606 panic_if(pkt->cacheResponding(), "Should not see packets where cache "
607 "is responding");
608
609 panic_if(!(pkt->isRead() || pkt->isWrite()),
610 "Should only see read and writes at memory controller\n");
611
612 // Calc avg gap between requests
613 if (prevArrival != 0) {
614 totGap += curTick() - prevArrival;
615 }
616 prevArrival = curTick();
617
618
619 // Find out how many dram packets a pkt translates to
620 // If the burst size is equal or larger than the pkt size, then a pkt
621 // translates to only one dram packet. Otherwise, a pkt translates to
622 // multiple dram packets
623 unsigned size = pkt->getSize();
624 unsigned offset = pkt->getAddr() & (burstSize - 1);
625 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
626
627 // check local buffers and do not accept if full
628 if (pkt->isRead()) {
629 assert(size != 0);
630 if (readQueueFull(dram_pkt_count)) {
631 DPRINTF(DRAM, "Read queue full, not accepting\n");
632 // remember that we have to retry this port
633 retryRdReq = true;
634 numRdRetry++;
635 return false;
636 } else {
637 addToReadQueue(pkt, dram_pkt_count);
638 readReqs++;
639 bytesReadSys += size;
640 }
641 } else {
642 assert(pkt->isWrite());
643 assert(size != 0);
644 if (writeQueueFull(dram_pkt_count)) {
645 DPRINTF(DRAM, "Write queue full, not accepting\n");
646 // remember that we have to retry this port
647 retryWrReq = true;
648 numWrRetry++;
649 return false;
650 } else {
651 addToWriteQueue(pkt, dram_pkt_count);
652 writeReqs++;
653 bytesWrittenSys += size;
654 }
655 }
656
657 return true;
658 }
659
660 void
661 DRAMCtrl::processRespondEvent()
662 {
663 DPRINTF(DRAM,
664 "processRespondEvent(): Some req has reached its readyTime\n");
665
666 DRAMPacket* dram_pkt = respQueue.front();
667
668 // if a read has reached its ready-time, decrement the number of reads
669 // At this point the packet has been handled and there is a possibility
670 // to switch to low-power mode if no other packet is available
671 --dram_pkt->rankRef.readEntries;
672 DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
673 dram_pkt->rank, dram_pkt->rankRef.readEntries);
674
675 // counter should at least indicate one outstanding request
676 // for this read
677 assert(dram_pkt->rankRef.outstandingEvents > 0);
678 // read response received, decrement count
679 --dram_pkt->rankRef.outstandingEvents;
680
681 // at this moment should not have transitioned to a low-power state
682 assert((dram_pkt->rankRef.pwrState != PWR_SREF) &&
683 (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) &&
684 (dram_pkt->rankRef.pwrState != PWR_ACT_PDN));
685
686 // track if this is the last packet before idling
687 // and that there are no outstanding commands to this rank
688 // if REF in progress, transition to LP state should not occur
689 // until REF completes
690 if ((dram_pkt->rankRef.refreshState == REF_IDLE) &&
691 (dram_pkt->rankRef.lowPowerEntryReady())) {
692 // verify that there are no events scheduled
693 assert(!dram_pkt->rankRef.activateEvent.scheduled());
694 assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
695
696 // if coming from active state, schedule power event to
697 // active power-down else go to precharge power-down
698 DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
699 "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
700
701 // default to ACT power-down unless already in IDLE state
702 // could be in IDLE if PRE issued before data returned
703 PowerState next_pwr_state = PWR_ACT_PDN;
704 if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
705 next_pwr_state = PWR_PRE_PDN;
706 }
707
708 dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
709 }
710
711 if (dram_pkt->burstHelper) {
712 // it is a split packet
713 dram_pkt->burstHelper->burstsServiced++;
714 if (dram_pkt->burstHelper->burstsServiced ==
715 dram_pkt->burstHelper->burstCount) {
716 // we have now serviced all children packets of a system packet
717 // so we can now respond to the requester
718 // @todo we probably want to have a different front end and back
719 // end latency for split packets
720 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
721 delete dram_pkt->burstHelper;
722 dram_pkt->burstHelper = NULL;
723 }
724 } else {
725 // it is not a split packet
726 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
727 }
728
729 delete respQueue.front();
730 respQueue.pop_front();
731
732 if (!respQueue.empty()) {
733 assert(respQueue.front()->readyTime >= curTick());
734 assert(!respondEvent.scheduled());
735 schedule(respondEvent, respQueue.front()->readyTime);
736 } else {
737 // if there is nothing left in any queue, signal a drain
738 if (drainState() == DrainState::Draining &&
739 writeQueue.empty() && readQueue.empty() && allRanksDrained()) {
740
741 DPRINTF(Drain, "DRAM controller done draining\n");
742 signalDrainDone();
743 }
744 }
745
746 // We have made a location in the queue available at this point,
747 // so if there is a read that was forced to wait, retry now
748 if (retryRdReq) {
749 retryRdReq = false;
750 port.sendRetryReq();
751 }
752 }
753
754 bool
755 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
756 {
757 // This method does the arbitration between requests. The chosen
758 // packet is simply moved to the head of the queue. The other
759 // methods know that this is the place to look. For example, with
760 // FCFS, this method does nothing
761 assert(!queue.empty());
762
763 // bool to indicate if a packet to an available rank is found
764 bool found_packet = false;
765 if (queue.size() == 1) {
766 DRAMPacket* dram_pkt = queue.front();
767 // available rank corresponds to state refresh idle
768 if (ranks[dram_pkt->rank]->isAvailable()) {
769 found_packet = true;
770 DPRINTF(DRAM, "Single request, going to a free rank\n");
771 } else {
772 DPRINTF(DRAM, "Single request, going to a busy rank\n");
773 }
774 return found_packet;
775 }
776
777 if (memSchedPolicy == Enums::fcfs) {
778 // check if there is a packet going to a free rank
779 for (auto i = queue.begin(); i != queue.end() ; ++i) {
780 DRAMPacket* dram_pkt = *i;
781 if (ranks[dram_pkt->rank]->isAvailable()) {
782 queue.erase(i);
783 queue.push_front(dram_pkt);
784 found_packet = true;
785 break;
786 }
787 }
788 } else if (memSchedPolicy == Enums::frfcfs) {
789 found_packet = reorderQueue(queue, extra_col_delay);
790 } else
791 panic("No scheduling policy chosen\n");
792 return found_packet;
793 }
794
795 bool
796 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
797 {
798 // Only determine this if needed
799 uint64_t earliest_banks = 0;
800 bool hidden_bank_prep = false;
801
802 // search for seamless row hits first, if no seamless row hit is
803 // found then determine if there are other packets that can be issued
804 // without incurring additional bus delay due to bank timing
805 // Will select closed rows first to enable more open row possibilies
806 // in future selections
807 bool found_hidden_bank = false;
808
809 // remember if we found a row hit, not seamless, but bank prepped
810 // and ready
811 bool found_prepped_pkt = false;
812
813 // if we have no row hit, prepped or not, and no seamless packet,
814 // just go for the earliest possible
815 bool found_earliest_pkt = false;
816
817 auto selected_pkt_it = queue.end();
818
819 // time we need to issue a column command to be seamless
820 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
821 curTick());
822
823 for (auto i = queue.begin(); i != queue.end() ; ++i) {
824 DRAMPacket* dram_pkt = *i;
825 const Bank& bank = dram_pkt->bankRef;
826
827 // check if rank is available, if not, jump to the next packet
828 if (dram_pkt->rankRef.isAvailable()) {
829 // check if it is a row hit
830 if (bank.openRow == dram_pkt->row) {
831 // no additional rank-to-rank or same bank-group
832 // delays, or we switched read/write and might as well
833 // go for the row hit
834 if (bank.colAllowedAt <= min_col_at) {
835 // FCFS within the hits, giving priority to
836 // commands that can issue seamlessly, without
837 // additional delay, such as same rank accesses
838 // and/or different bank-group accesses
839 DPRINTF(DRAM, "Seamless row buffer hit\n");
840 selected_pkt_it = i;
841 // no need to look through the remaining queue entries
842 break;
843 } else if (!found_hidden_bank && !found_prepped_pkt) {
844 // if we did not find a packet to a closed row that can
845 // issue the bank commands without incurring delay, and
846 // did not yet find a packet to a prepped row, remember
847 // the current one
848 selected_pkt_it = i;
849 found_prepped_pkt = true;
850 DPRINTF(DRAM, "Prepped row buffer hit\n");
851 }
852 } else if (!found_earliest_pkt) {
853 // if we have not initialised the bank status, do it
854 // now, and only once per scheduling decisions
855 if (earliest_banks == 0) {
856 // determine entries with earliest bank delay
857 pair<uint64_t, bool> bankStatus =
858 minBankPrep(queue, min_col_at);
859 earliest_banks = bankStatus.first;
860 hidden_bank_prep = bankStatus.second;
861 }
862
863 // bank is amongst first available banks
864 // minBankPrep will give priority to packets that can
865 // issue seamlessly
866 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
867 found_earliest_pkt = true;
868 found_hidden_bank = hidden_bank_prep;
869
870 // give priority to packets that can issue
871 // bank commands 'behind the scenes'
872 // any additional delay if any will be due to
873 // col-to-col command requirements
874 if (hidden_bank_prep || !found_prepped_pkt)
875 selected_pkt_it = i;
876 }
877 }
878 }
879 }
880
881 if (selected_pkt_it != queue.end()) {
882 DRAMPacket* selected_pkt = *selected_pkt_it;
883 queue.erase(selected_pkt_it);
884 queue.push_front(selected_pkt);
885 return true;
886 }
887
888 return false;
889 }
890
891 void
892 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
893 {
894 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
895
896 bool needsResponse = pkt->needsResponse();
897 // do the actual memory access which also turns the packet into a
898 // response
899 access(pkt);
900
901 // turn packet around to go back to requester if response expected
902 if (needsResponse) {
903 // access already turned the packet into a response
904 assert(pkt->isResponse());
905 // response_time consumes the static latency and is charged also
906 // with headerDelay that takes into account the delay provided by
907 // the xbar and also the payloadDelay that takes into account the
908 // number of data beats.
909 Tick response_time = curTick() + static_latency + pkt->headerDelay +
910 pkt->payloadDelay;
911 // Here we reset the timing of the packet before sending it out.
912 pkt->headerDelay = pkt->payloadDelay = 0;
913
914 // queue the packet in the response queue to be sent out after
915 // the static latency has passed
916 port.schedTimingResp(pkt, response_time, true);
917 } else {
918 // @todo the packet is going to be deleted, and the DRAMPacket
919 // is still having a pointer to it
920 pendingDelete.reset(pkt);
921 }
922
923 DPRINTF(DRAM, "Done\n");
924
925 return;
926 }
927
928 void
929 DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
930 Tick act_tick, uint32_t row)
931 {
932 assert(rank_ref.actTicks.size() == activationLimit);
933
934 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
935
936 // update the open row
937 assert(bank_ref.openRow == Bank::NO_ROW);
938 bank_ref.openRow = row;
939
940 // start counting anew, this covers both the case when we
941 // auto-precharged, and when this access is forced to
942 // precharge
943 bank_ref.bytesAccessed = 0;
944 bank_ref.rowAccesses = 0;
945
946 ++rank_ref.numBanksActive;
947 assert(rank_ref.numBanksActive <= banksPerRank);
948
949 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
950 bank_ref.bank, rank_ref.rank, act_tick,
951 ranks[rank_ref.rank]->numBanksActive);
952
953 rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
954 act_tick));
955
956 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
957 timeStampOffset, bank_ref.bank, rank_ref.rank);
958
959 // The next access has to respect tRAS for this bank
960 bank_ref.preAllowedAt = act_tick + tRAS;
961
962 // Respect the row-to-column command delay
963 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
964
965 // start by enforcing tRRD
966 for (int i = 0; i < banksPerRank; i++) {
967 // next activate to any bank in this rank must not happen
968 // before tRRD
969 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
970 // bank group architecture requires longer delays between
971 // ACT commands within the same bank group. Use tRRD_L
972 // in this case
973 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
974 rank_ref.banks[i].actAllowedAt);
975 } else {
976 // use shorter tRRD value when either
977 // 1) bank group architecture is not supportted
978 // 2) bank is in a different bank group
979 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
980 rank_ref.banks[i].actAllowedAt);
981 }
982 }
983
984 // next, we deal with tXAW, if the activation limit is disabled
985 // then we directly schedule an activate power event
986 if (!rank_ref.actTicks.empty()) {
987 // sanity check
988 if (rank_ref.actTicks.back() &&
989 (act_tick - rank_ref.actTicks.back()) < tXAW) {
990 panic("Got %d activates in window %d (%llu - %llu) which "
991 "is smaller than %llu\n", activationLimit, act_tick -
992 rank_ref.actTicks.back(), act_tick,
993 rank_ref.actTicks.back(), tXAW);
994 }
995
996 // shift the times used for the book keeping, the last element
997 // (highest index) is the oldest one and hence the lowest value
998 rank_ref.actTicks.pop_back();
999
1000 // record an new activation (in the future)
1001 rank_ref.actTicks.push_front(act_tick);
1002
1003 // cannot activate more than X times in time window tXAW, push the
1004 // next one (the X + 1'st activate) to be tXAW away from the
1005 // oldest in our window of X
1006 if (rank_ref.actTicks.back() &&
1007 (act_tick - rank_ref.actTicks.back()) < tXAW) {
1008 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
1009 "no earlier than %llu\n", activationLimit,
1010 rank_ref.actTicks.back() + tXAW);
1011 for (int j = 0; j < banksPerRank; j++)
1012 // next activate must not happen before end of window
1013 rank_ref.banks[j].actAllowedAt =
1014 std::max(rank_ref.actTicks.back() + tXAW,
1015 rank_ref.banks[j].actAllowedAt);
1016 }
1017 }
1018
1019 // at the point when this activate takes place, make sure we
1020 // transition to the active power state
1021 if (!rank_ref.activateEvent.scheduled())
1022 schedule(rank_ref.activateEvent, act_tick);
1023 else if (rank_ref.activateEvent.when() > act_tick)
1024 // move it sooner in time
1025 reschedule(rank_ref.activateEvent, act_tick);
1026 }
1027
1028 void
1029 DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1030 {
1031 // make sure the bank has an open row
1032 assert(bank.openRow != Bank::NO_ROW);
1033
1034 // sample the bytes per activate here since we are closing
1035 // the page
1036 bytesPerActivate.sample(bank.bytesAccessed);
1037
1038 bank.openRow = Bank::NO_ROW;
1039
1040 // no precharge allowed before this one
1041 bank.preAllowedAt = pre_at;
1042
1043 Tick pre_done_at = pre_at + tRP;
1044
1045 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1046
1047 assert(rank_ref.numBanksActive != 0);
1048 --rank_ref.numBanksActive;
1049
1050 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1051 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1052 rank_ref.numBanksActive);
1053
1054 if (trace) {
1055
1056 rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
1057 pre_at));
1058 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1059 timeStampOffset, bank.bank, rank_ref.rank);
1060 }
1061 // if we look at the current number of active banks we might be
1062 // tempted to think the DRAM is now idle, however this can be
1063 // undone by an activate that is scheduled to happen before we
1064 // would have reached the idle state, so schedule an event and
1065 // rather check once we actually make it to the point in time when
1066 // the (last) precharge takes place
1067 if (!rank_ref.prechargeEvent.scheduled()) {
1068 schedule(rank_ref.prechargeEvent, pre_done_at);
1069 // New event, increment count
1070 ++rank_ref.outstandingEvents;
1071 } else if (rank_ref.prechargeEvent.when() < pre_done_at) {
1072 reschedule(rank_ref.prechargeEvent, pre_done_at);
1073 }
1074 }
1075
1076 void
1077 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1078 {
1079 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1080 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1081
1082 // get the rank
1083 Rank& rank = dram_pkt->rankRef;
1084
1085 // are we in or transitioning to a low-power state and have not scheduled
1086 // a power-up event?
1087 // if so, wake up from power down to issue RD/WR burst
1088 if (rank.inLowPowerState) {
1089 assert(rank.pwrState != PWR_SREF);
1090 rank.scheduleWakeUpEvent(tXP);
1091 }
1092
1093 // get the bank
1094 Bank& bank = dram_pkt->bankRef;
1095
1096 // for the state we need to track if it is a row hit or not
1097 bool row_hit = true;
1098
1099 // respect any constraints on the command (e.g. tRCD or tCCD)
1100 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1101
1102 // Determine the access latency and update the bank state
1103 if (bank.openRow == dram_pkt->row) {
1104 // nothing to do
1105 } else {
1106 row_hit = false;
1107
1108 // If there is a page open, precharge it.
1109 if (bank.openRow != Bank::NO_ROW) {
1110 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1111 }
1112
1113 // next we need to account for the delay in activating the
1114 // page
1115 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1116
1117 // Record the activation and deal with all the global timing
1118 // constraints caused be a new activation (tRRD and tXAW)
1119 activateBank(rank, bank, act_tick, dram_pkt->row);
1120
1121 // issue the command as early as possible
1122 cmd_at = bank.colAllowedAt;
1123 }
1124
1125 // we need to wait until the bus is available before we can issue
1126 // the command
1127 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1128
1129 // update the packet ready time
1130 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1131
1132 // only one burst can use the bus at any one point in time
1133 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1134
1135 // update the time for the next read/write burst for each
1136 // bank (add a max with tCCD/tCCD_L here)
1137 Tick cmd_dly;
1138 for (int j = 0; j < ranksPerChannel; j++) {
1139 for (int i = 0; i < banksPerRank; i++) {
1140 // next burst to same bank group in this rank must not happen
1141 // before tCCD_L. Different bank group timing requirement is
1142 // tBURST; Add tCS for different ranks
1143 if (dram_pkt->rank == j) {
1144 if (bankGroupArch &&
1145 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1146 // bank group architecture requires longer delays between
1147 // RD/WR burst commands to the same bank group.
1148 // Use tCCD_L in this case
1149 cmd_dly = tCCD_L;
1150 } else {
1151 // use tBURST (equivalent to tCCD_S), the shorter
1152 // cas-to-cas delay value, when either:
1153 // 1) bank group architecture is not supportted
1154 // 2) bank is in a different bank group
1155 cmd_dly = tBURST;
1156 }
1157 } else {
1158 // different rank is by default in a different bank group
1159 // use tBURST (equivalent to tCCD_S), which is the shorter
1160 // cas-to-cas delay in this case
1161 // Add tCS to account for rank-to-rank bus delay requirements
1162 cmd_dly = tBURST + tCS;
1163 }
1164 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1165 ranks[j]->banks[i].colAllowedAt);
1166 }
1167 }
1168
1169 // Save rank of current access
1170 activeRank = dram_pkt->rank;
1171
1172 // If this is a write, we also need to respect the write recovery
1173 // time before a precharge, in the case of a read, respect the
1174 // read to precharge constraint
1175 bank.preAllowedAt = std::max(bank.preAllowedAt,
1176 dram_pkt->isRead ? cmd_at + tRTP :
1177 dram_pkt->readyTime + tWR);
1178
1179 // increment the bytes accessed and the accesses per row
1180 bank.bytesAccessed += burstSize;
1181 ++bank.rowAccesses;
1182
1183 // if we reached the max, then issue with an auto-precharge
1184 bool auto_precharge = pageMgmt == Enums::close ||
1185 bank.rowAccesses == maxAccessesPerRow;
1186
1187 // if we did not hit the limit, we might still want to
1188 // auto-precharge
1189 if (!auto_precharge &&
1190 (pageMgmt == Enums::open_adaptive ||
1191 pageMgmt == Enums::close_adaptive)) {
1192 // a twist on the open and close page policies:
1193 // 1) open_adaptive page policy does not blindly keep the
1194 // page open, but close it if there are no row hits, and there
1195 // are bank conflicts in the queue
1196 // 2) close_adaptive page policy does not blindly close the
1197 // page, but closes it only if there are no row hits in the queue.
1198 // In this case, only force an auto precharge when there
1199 // are no same page hits in the queue
1200 bool got_more_hits = false;
1201 bool got_bank_conflict = false;
1202
1203 // either look at the read queue or write queue
1204 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1205 writeQueue;
1206 auto p = queue.begin();
1207 // make sure we are not considering the packet that we are
1208 // currently dealing with (which is the head of the queue)
1209 ++p;
1210
1211 // keep on looking until we find a hit or reach the end of the queue
1212 // 1) if a hit is found, then both open and close adaptive policies keep
1213 // the page open
1214 // 2) if no hit is found, got_bank_conflict is set to true if a bank
1215 // conflict request is waiting in the queue
1216 while (!got_more_hits && p != queue.end()) {
1217 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1218 (dram_pkt->bank == (*p)->bank);
1219 bool same_row = dram_pkt->row == (*p)->row;
1220 got_more_hits |= same_rank_bank && same_row;
1221 got_bank_conflict |= same_rank_bank && !same_row;
1222 ++p;
1223 }
1224
1225 // auto pre-charge when either
1226 // 1) open_adaptive policy, we have not got any more hits, and
1227 // have a bank conflict
1228 // 2) close_adaptive policy and we have not got any more hits
1229 auto_precharge = !got_more_hits &&
1230 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1231 }
1232
1233 // DRAMPower trace command to be written
1234 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1235
1236 // MemCommand required for DRAMPower library
1237 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1238 MemCommand::WR;
1239
1240 // Update bus state
1241 busBusyUntil = dram_pkt->readyTime;
1242
1243 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1244 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1245
1246 dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
1247 cmd_at));
1248
1249 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1250 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1251
1252 // if this access should use auto-precharge, then we are
1253 // closing the row after the read/write burst
1254 if (auto_precharge) {
1255 // if auto-precharge push a PRE command at the correct tick to the
1256 // list used by DRAMPower library to calculate power
1257 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1258
1259 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1260 }
1261
1262 // Update the minimum timing between the requests, this is a
1263 // conservative estimate of when we have to schedule the next
1264 // request to not introduce any unecessary bubbles. In most cases
1265 // we will wake up sooner than we have to.
1266 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1267
1268 // Update the stats and schedule the next request
1269 if (dram_pkt->isRead) {
1270 ++readsThisTime;
1271 if (row_hit)
1272 readRowHits++;
1273 bytesReadDRAM += burstSize;
1274 perBankRdBursts[dram_pkt->bankId]++;
1275
1276 // Update latency stats
1277 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1278 totBusLat += tBURST;
1279 totQLat += cmd_at - dram_pkt->entryTime;
1280 } else {
1281 ++writesThisTime;
1282 if (row_hit)
1283 writeRowHits++;
1284 bytesWritten += burstSize;
1285 perBankWrBursts[dram_pkt->bankId]++;
1286 }
1287 }
1288
1289 void
1290 DRAMCtrl::processNextReqEvent()
1291 {
1292 int busyRanks = 0;
1293 for (auto r : ranks) {
1294 if (!r->isAvailable()) {
1295 if (r->pwrState != PWR_SREF) {
1296 // rank is busy refreshing
1297 DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
1298 busyRanks++;
1299
1300 // let the rank know that if it was waiting to drain, it
1301 // is now done and ready to proceed
1302 r->checkDrainDone();
1303 }
1304
1305 // check if we were in self-refresh and haven't started
1306 // to transition out
1307 if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
1308 DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
1309 // if we have commands queued to this rank and we don't have
1310 // a minimum number of active commands enqueued,
1311 // exit self-refresh
1312 if (r->forceSelfRefreshExit()) {
1313 DPRINTF(DRAMState, "rank %d was in self refresh and"
1314 " should wake up\n", r->rank);
1315 //wake up from self-refresh
1316 r->scheduleWakeUpEvent(tXS);
1317 // things are brought back into action once a refresh is
1318 // performed after self-refresh
1319 // continue with selection for other ranks
1320 }
1321 }
1322 }
1323 }
1324
1325 if (busyRanks == ranksPerChannel) {
1326 // if all ranks are refreshing wait for them to finish
1327 // and stall this state machine without taking any further
1328 // action, and do not schedule a new nextReqEvent
1329 return;
1330 }
1331
1332 // pre-emptively set to false. Overwrite if in transitioning to
1333 // a new state
1334 bool switched_cmd_type = false;
1335 if (busState != busStateNext) {
1336 if (busState == READ) {
1337 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1338 "waiting\n", readsThisTime, readQueue.size());
1339
1340 // sample and reset the read-related stats as we are now
1341 // transitioning to writes, and all reads are done
1342 rdPerTurnAround.sample(readsThisTime);
1343 readsThisTime = 0;
1344
1345 // now proceed to do the actual writes
1346 switched_cmd_type = true;
1347 } else {
1348 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1349 "waiting\n", writesThisTime, writeQueue.size());
1350
1351 wrPerTurnAround.sample(writesThisTime);
1352 writesThisTime = 0;
1353
1354 switched_cmd_type = true;
1355 }
1356 // update busState to match next state until next transition
1357 busState = busStateNext;
1358 }
1359
1360 // when we get here it is either a read or a write
1361 if (busState == READ) {
1362
1363 // track if we should switch or not
1364 bool switch_to_writes = false;
1365
1366 if (readQueue.empty()) {
1367 // In the case there is no read request to go next,
1368 // trigger writes if we have passed the low threshold (or
1369 // if we are draining)
1370 if (!writeQueue.empty() &&
1371 (drainState() == DrainState::Draining ||
1372 writeQueue.size() > writeLowThreshold)) {
1373
1374 switch_to_writes = true;
1375 } else {
1376 // check if we are drained
1377 // not done draining until in PWR_IDLE state
1378 // ensuring all banks are closed and
1379 // have exited low power states
1380 if (drainState() == DrainState::Draining &&
1381 respQueue.empty() && allRanksDrained()) {
1382
1383 DPRINTF(Drain, "DRAM controller done draining\n");
1384 signalDrainDone();
1385 }
1386
1387 // nothing to do, not even any point in scheduling an
1388 // event for the next request
1389 return;
1390 }
1391 } else {
1392 // bool to check if there is a read to a free rank
1393 bool found_read = false;
1394
1395 // Figure out which read request goes next, and move it to the
1396 // front of the read queue
1397 // If we are changing command type, incorporate the minimum
1398 // bus turnaround delay which will be tCS (different rank) case
1399 found_read = chooseNext(readQueue,
1400 switched_cmd_type ? tCS : 0);
1401
1402 // if no read to an available rank is found then return
1403 // at this point. There could be writes to the available ranks
1404 // which are above the required threshold. However, to
1405 // avoid adding more complexity to the code, return and wait
1406 // for a refresh event to kick things into action again.
1407 if (!found_read)
1408 return;
1409
1410 DRAMPacket* dram_pkt = readQueue.front();
1411 assert(dram_pkt->rankRef.isAvailable());
1412
1413 // here we get a bit creative and shift the bus busy time not
1414 // just the tWTR, but also a CAS latency to capture the fact
1415 // that we are allowed to prepare a new bank, but not issue a
1416 // read command until after tWTR, in essence we capture a
1417 // bubble on the data bus that is tWTR + tCL
1418 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1419 busBusyUntil += tWTR + tCL;
1420 }
1421
1422 doDRAMAccess(dram_pkt);
1423
1424 // At this point we're done dealing with the request
1425 readQueue.pop_front();
1426
1427 // Every respQueue which will generate an event, increment count
1428 ++dram_pkt->rankRef.outstandingEvents;
1429
1430 // sanity check
1431 assert(dram_pkt->size <= burstSize);
1432 assert(dram_pkt->readyTime >= curTick());
1433
1434 // Insert into response queue. It will be sent back to the
1435 // requestor at its readyTime
1436 if (respQueue.empty()) {
1437 assert(!respondEvent.scheduled());
1438 schedule(respondEvent, dram_pkt->readyTime);
1439 } else {
1440 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1441 assert(respondEvent.scheduled());
1442 }
1443
1444 respQueue.push_back(dram_pkt);
1445
1446 // we have so many writes that we have to transition
1447 if (writeQueue.size() > writeHighThreshold) {
1448 switch_to_writes = true;
1449 }
1450 }
1451
1452 // switching to writes, either because the read queue is empty
1453 // and the writes have passed the low threshold (or we are
1454 // draining), or because the writes hit the hight threshold
1455 if (switch_to_writes) {
1456 // transition to writing
1457 busStateNext = WRITE;
1458 }
1459 } else {
1460 // bool to check if write to free rank is found
1461 bool found_write = false;
1462
1463 // If we are changing command type, incorporate the minimum
1464 // bus turnaround delay
1465 found_write = chooseNext(writeQueue,
1466 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1467
1468 // if no writes to an available rank are found then return.
1469 // There could be reads to the available ranks. However, to avoid
1470 // adding more complexity to the code, return at this point and wait
1471 // for a refresh event to kick things into action again.
1472 if (!found_write)
1473 return;
1474
1475 DRAMPacket* dram_pkt = writeQueue.front();
1476 assert(dram_pkt->rankRef.isAvailable());
1477 // sanity check
1478 assert(dram_pkt->size <= burstSize);
1479
1480 // add a bubble to the data bus, as defined by the
1481 // tRTW when access is to the same rank as previous burst
1482 // Different rank timing is handled with tCS, which is
1483 // applied to colAllowedAt
1484 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1485 busBusyUntil += tRTW;
1486 }
1487
1488 doDRAMAccess(dram_pkt);
1489
1490 writeQueue.pop_front();
1491
1492 // removed write from queue, decrement count
1493 --dram_pkt->rankRef.writeEntries;
1494
1495 // Schedule write done event to decrement event count
1496 // after the readyTime has been reached
1497 // Only schedule latest write event to minimize events
1498 // required; only need to ensure that final event scheduled covers
1499 // the time that writes are outstanding and bus is active
1500 // to holdoff power-down entry events
1501 if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
1502 schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1503 // New event, increment count
1504 ++dram_pkt->rankRef.outstandingEvents;
1505
1506 } else if (dram_pkt->rankRef.writeDoneEvent.when() <
1507 dram_pkt-> readyTime) {
1508 reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1509 }
1510
1511 isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1512 delete dram_pkt;
1513
1514 // If we emptied the write queue, or got sufficiently below the
1515 // threshold (using the minWritesPerSwitch as the hysteresis) and
1516 // are not draining, or we have reads waiting and have done enough
1517 // writes, then switch to reads.
1518 if (writeQueue.empty() ||
1519 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1520 drainState() != DrainState::Draining) ||
1521 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1522 // turn the bus back around for reads again
1523 busStateNext = READ;
1524
1525 // note that the we switch back to reads also in the idle
1526 // case, which eventually will check for any draining and
1527 // also pause any further scheduling if there is really
1528 // nothing to do
1529 }
1530 }
1531 // It is possible that a refresh to another rank kicks things back into
1532 // action before reaching this point.
1533 if (!nextReqEvent.scheduled())
1534 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1535
1536 // If there is space available and we have writes waiting then let
1537 // them retry. This is done here to ensure that the retry does not
1538 // cause a nextReqEvent to be scheduled before we do so as part of
1539 // the next request processing
1540 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1541 retryWrReq = false;
1542 port.sendRetryReq();
1543 }
1544 }
1545
1546 pair<uint64_t, bool>
1547 DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1548 Tick min_col_at) const
1549 {
1550 uint64_t bank_mask = 0;
1551 Tick min_act_at = MaxTick;
1552
1553 // latest Tick for which ACT can occur without incurring additoinal
1554 // delay on the data bus
1555 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1556
1557 // Flag condition when burst can issue back-to-back with previous burst
1558 bool found_seamless_bank = false;
1559
1560 // Flag condition when bank can be opened without incurring additional
1561 // delay on the data bus
1562 bool hidden_bank_prep = false;
1563
1564 // determine if we have queued transactions targetting the
1565 // bank in question
1566 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1567 for (const auto& p : queue) {
1568 if (p->rankRef.isAvailable())
1569 got_waiting[p->bankId] = true;
1570 }
1571
1572 // Find command with optimal bank timing
1573 // Will prioritize commands that can issue seamlessly.
1574 for (int i = 0; i < ranksPerChannel; i++) {
1575 for (int j = 0; j < banksPerRank; j++) {
1576 uint16_t bank_id = i * banksPerRank + j;
1577
1578 // if we have waiting requests for the bank, and it is
1579 // amongst the first available, update the mask
1580 if (got_waiting[bank_id]) {
1581 // make sure this rank is not currently refreshing.
1582 assert(ranks[i]->isAvailable());
1583 // simplistic approximation of when the bank can issue
1584 // an activate, ignoring any rank-to-rank switching
1585 // cost in this calculation
1586 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1587 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1588 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1589
1590 // When is the earliest the R/W burst can issue?
1591 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1592 act_at + tRCD);
1593
1594 // bank can issue burst back-to-back (seamlessly) with
1595 // previous burst
1596 bool new_seamless_bank = col_at <= min_col_at;
1597
1598 // if we found a new seamless bank or we have no
1599 // seamless banks, and got a bank with an earlier
1600 // activate time, it should be added to the bit mask
1601 if (new_seamless_bank ||
1602 (!found_seamless_bank && act_at <= min_act_at)) {
1603 // if we did not have a seamless bank before, and
1604 // we do now, reset the bank mask, also reset it
1605 // if we have not yet found a seamless bank and
1606 // the activate time is smaller than what we have
1607 // seen so far
1608 if (!found_seamless_bank &&
1609 (new_seamless_bank || act_at < min_act_at)) {
1610 bank_mask = 0;
1611 }
1612
1613 found_seamless_bank |= new_seamless_bank;
1614
1615 // ACT can occur 'behind the scenes'
1616 hidden_bank_prep = act_at <= hidden_act_max;
1617
1618 // set the bit corresponding to the available bank
1619 replaceBits(bank_mask, bank_id, bank_id, 1);
1620 min_act_at = act_at;
1621 }
1622 }
1623 }
1624 }
1625
1626 return make_pair(bank_mask, hidden_bank_prep);
1627 }
1628
1629 DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1630 : EventManager(&_memory), memory(_memory),
1631 pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
1632 pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
1633 refreshState(REF_IDLE), inLowPowerState(false), rank(0),
1634 readEntries(0), writeEntries(0), outstandingEvents(0),
1635 wakeUpAllowedAt(0), power(_p, false), numBanksActive(0),
1636 writeDoneEvent(*this), activateEvent(*this), prechargeEvent(*this),
1637 refreshEvent(*this), powerEvent(*this), wakeUpEvent(*this)
1638 { }
1639
1640 void
1641 DRAMCtrl::Rank::startup(Tick ref_tick)
1642 {
1643 assert(ref_tick > curTick());
1644
1645 pwrStateTick = curTick();
1646
1647 // kick off the refresh, and give ourselves enough time to
1648 // precharge
1649 schedule(refreshEvent, ref_tick);
1650 }
1651
1652 void
1653 DRAMCtrl::Rank::suspend()
1654 {
1655 deschedule(refreshEvent);
1656
1657 // Update the stats
1658 updatePowerStats();
1659
1660 // don't automatically transition back to LP state after next REF
1661 pwrStatePostRefresh = PWR_IDLE;
1662 }
1663
1664 bool
1665 DRAMCtrl::Rank::lowPowerEntryReady() const
1666 {
1667 bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
1668 || ((memory.busStateNext == WRITE) &&
1669 (writeEntries == 0));
1670
1671 if (refreshState == REF_RUN) {
1672 // have not decremented outstandingEvents for refresh command
1673 // still check if there are no commands queued to force PD
1674 // entry after refresh completes
1675 return no_queued_cmds;
1676 } else {
1677 // ensure no commands in Q and no commands scheduled
1678 return (no_queued_cmds && (outstandingEvents == 0));
1679 }
1680 }
1681
1682 void
1683 DRAMCtrl::Rank::checkDrainDone()
1684 {
1685 // if this rank was waiting to drain it is now able to proceed to
1686 // precharge
1687 if (refreshState == REF_DRAIN) {
1688 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1689
1690 refreshState = REF_PD_EXIT;
1691
1692 // hand control back to the refresh event loop
1693 schedule(refreshEvent, curTick());
1694 }
1695 }
1696
1697 void
1698 DRAMCtrl::Rank::flushCmdList()
1699 {
1700 // at the moment sort the list of commands and update the counters
1701 // for DRAMPower libray when doing a refresh
1702 sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
1703
1704 auto next_iter = cmdList.begin();
1705 // push to commands to DRAMPower
1706 for ( ; next_iter != cmdList.end() ; ++next_iter) {
1707 Command cmd = *next_iter;
1708 if (cmd.timeStamp <= curTick()) {
1709 // Move all commands at or before curTick to DRAMPower
1710 power.powerlib.doCommand(cmd.type, cmd.bank,
1711 divCeil(cmd.timeStamp, memory.tCK) -
1712 memory.timeStampOffset);
1713 } else {
1714 // done - found all commands at or before curTick()
1715 // next_iter references the 1st command after curTick
1716 break;
1717 }
1718 }
1719 // reset cmdList to only contain commands after curTick
1720 // if there are no commands after curTick, updated cmdList will be empty
1721 // in this case, next_iter is cmdList.end()
1722 cmdList.assign(next_iter, cmdList.end());
1723 }
1724
1725 void
1726 DRAMCtrl::Rank::processActivateEvent()
1727 {
1728 // we should transition to the active state as soon as any bank is active
1729 if (pwrState != PWR_ACT)
1730 // note that at this point numBanksActive could be back at
1731 // zero again due to a precharge scheduled in the future
1732 schedulePowerEvent(PWR_ACT, curTick());
1733 }
1734
1735 void
1736 DRAMCtrl::Rank::processPrechargeEvent()
1737 {
1738 // counter should at least indicate one outstanding request
1739 // for this precharge
1740 assert(outstandingEvents > 0);
1741 // precharge complete, decrement count
1742 --outstandingEvents;
1743
1744 // if we reached zero, then special conditions apply as we track
1745 // if all banks are precharged for the power models
1746 if (numBanksActive == 0) {
1747 // no reads to this rank in the Q and no pending
1748 // RD/WR or refresh commands
1749 if (lowPowerEntryReady()) {
1750 // should still be in ACT state since bank still open
1751 assert(pwrState == PWR_ACT);
1752
1753 // All banks closed - switch to precharge power down state.
1754 DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
1755 rank, curTick());
1756 powerDownSleep(PWR_PRE_PDN, curTick());
1757 } else {
1758 // we should transition to the idle state when the last bank
1759 // is precharged
1760 schedulePowerEvent(PWR_IDLE, curTick());
1761 }
1762 }
1763 }
1764
1765 void
1766 DRAMCtrl::Rank::processWriteDoneEvent()
1767 {
1768 // counter should at least indicate one outstanding request
1769 // for this write
1770 assert(outstandingEvents > 0);
1771 // Write transfer on bus has completed
1772 // decrement per rank counter
1773 --outstandingEvents;
1774 }
1775
1776 void
1777 DRAMCtrl::Rank::processRefreshEvent()
1778 {
1779 // when first preparing the refresh, remember when it was due
1780 if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
1781 // remember when the refresh is due
1782 refreshDueAt = curTick();
1783
1784 // proceed to drain
1785 refreshState = REF_DRAIN;
1786
1787 // make nonzero while refresh is pending to ensure
1788 // power down and self-refresh are not entered
1789 ++outstandingEvents;
1790
1791 DPRINTF(DRAM, "Refresh due\n");
1792 }
1793
1794 // let any scheduled read or write to the same rank go ahead,
1795 // after which it will
1796 // hand control back to this event loop
1797 if (refreshState == REF_DRAIN) {
1798 // if a request is at the moment being handled and this request is
1799 // accessing the current rank then wait for it to finish
1800 if ((rank == memory.activeRank)
1801 && (memory.nextReqEvent.scheduled())) {
1802 // hand control over to the request loop until it is
1803 // evaluated next
1804 DPRINTF(DRAM, "Refresh awaiting draining\n");
1805
1806 return;
1807 } else {
1808 refreshState = REF_PD_EXIT;
1809 }
1810 }
1811
1812 // at this point, ensure that rank is not in a power-down state
1813 if (refreshState == REF_PD_EXIT) {
1814 // if rank was sleeping and we have't started exit process,
1815 // wake-up for refresh
1816 if (inLowPowerState) {
1817 DPRINTF(DRAM, "Wake Up for refresh\n");
1818 // save state and return after refresh completes
1819 scheduleWakeUpEvent(memory.tXP);
1820 return;
1821 } else {
1822 refreshState = REF_PRE;
1823 }
1824 }
1825
1826 // at this point, ensure that all banks are precharged
1827 if (refreshState == REF_PRE) {
1828 // precharge any active bank
1829 if (numBanksActive != 0) {
1830 // at the moment, we use a precharge all even if there is
1831 // only a single bank open
1832 DPRINTF(DRAM, "Precharging all\n");
1833
1834 // first determine when we can precharge
1835 Tick pre_at = curTick();
1836
1837 for (auto &b : banks) {
1838 // respect both causality and any existing bank
1839 // constraints, some banks could already have a
1840 // (auto) precharge scheduled
1841 pre_at = std::max(b.preAllowedAt, pre_at);
1842 }
1843
1844 // make sure all banks per rank are precharged, and for those that
1845 // already are, update their availability
1846 Tick act_allowed_at = pre_at + memory.tRP;
1847
1848 for (auto &b : banks) {
1849 if (b.openRow != Bank::NO_ROW) {
1850 memory.prechargeBank(*this, b, pre_at, false);
1851 } else {
1852 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1853 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1854 }
1855 }
1856
1857 // precharge all banks in rank
1858 cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
1859
1860 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1861 divCeil(pre_at, memory.tCK) -
1862 memory.timeStampOffset, rank);
1863 } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1)) {
1864 // Banks are closed, have transitioned to IDLE state, and
1865 // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1866 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1867
1868 // go ahead and kick the power state machine into gear since
1869 // we are already idle
1870 schedulePowerEvent(PWR_REF, curTick());
1871 } else {
1872 // banks state is closed but haven't transitioned pwrState to IDLE
1873 // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1874 // should have outstanding precharge event in this case
1875 assert(prechargeEvent.scheduled());
1876 // will start refresh when pwrState transitions to IDLE
1877 }
1878
1879 assert(numBanksActive == 0);
1880
1881 // wait for all banks to be precharged, at which point the
1882 // power state machine will transition to the idle state, and
1883 // automatically move to a refresh, at that point it will also
1884 // call this method to get the refresh event loop going again
1885 return;
1886 }
1887
1888 // last but not least we perform the actual refresh
1889 if (refreshState == REF_START) {
1890 // should never get here with any banks active
1891 assert(numBanksActive == 0);
1892 assert(pwrState == PWR_REF);
1893
1894 Tick ref_done_at = curTick() + memory.tRFC;
1895
1896 for (auto &b : banks) {
1897 b.actAllowedAt = ref_done_at;
1898 }
1899
1900 // at the moment this affects all ranks
1901 cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
1902
1903 // Update the stats
1904 updatePowerStats();
1905
1906 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1907 memory.timeStampOffset, rank);
1908
1909 // Update for next refresh
1910 refreshDueAt += memory.tREFI;
1911
1912 // make sure we did not wait so long that we cannot make up
1913 // for it
1914 if (refreshDueAt < ref_done_at) {
1915 fatal("Refresh was delayed so long we cannot catch up\n");
1916 }
1917
1918 // Run the refresh and schedule event to transition power states
1919 // when refresh completes
1920 refreshState = REF_RUN;
1921 schedule(refreshEvent, ref_done_at);
1922 return;
1923 }
1924
1925 if (refreshState == REF_RUN) {
1926 // should never get here with any banks active
1927 assert(numBanksActive == 0);
1928 assert(pwrState == PWR_REF);
1929
1930 assert(!powerEvent.scheduled());
1931
1932 if ((memory.drainState() == DrainState::Draining) ||
1933 (memory.drainState() == DrainState::Drained)) {
1934 // if draining, do not re-enter low-power mode.
1935 // simply go to IDLE and wait
1936 schedulePowerEvent(PWR_IDLE, curTick());
1937 } else {
1938 // At the moment, we sleep when the refresh ends and wait to be
1939 // woken up again if previously in a low-power state.
1940 if (pwrStatePostRefresh != PWR_IDLE) {
1941 // power State should be power Refresh
1942 assert(pwrState == PWR_REF);
1943 DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
1944 "power state %d before refreshing\n", rank,
1945 pwrStatePostRefresh);
1946 powerDownSleep(pwrState, curTick());
1947
1948 // Force PRE power-down if there are no outstanding commands
1949 // in Q after refresh.
1950 } else if (lowPowerEntryReady()) {
1951 DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
1952 " in a low power state before refreshing\n", rank);
1953 powerDownSleep(PWR_PRE_PDN, curTick());
1954
1955 } else {
1956 // move to the idle power state once the refresh is done, this
1957 // will also move the refresh state machine to the refresh
1958 // idle state
1959 schedulePowerEvent(PWR_IDLE, curTick());
1960 }
1961 }
1962
1963 // if transitioning to self refresh do not schedule a new refresh;
1964 // when waking from self refresh, a refresh is scheduled again.
1965 if (pwrStateTrans != PWR_SREF) {
1966 // compensate for the delay in actually performing the refresh
1967 // when scheduling the next one
1968 schedule(refreshEvent, refreshDueAt - memory.tRP);
1969
1970 DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
1971 " at %llu\n", curTick(), refreshDueAt);
1972 }
1973 }
1974 }
1975
1976 void
1977 DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1978 {
1979 // respect causality
1980 assert(tick >= curTick());
1981
1982 if (!powerEvent.scheduled()) {
1983 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1984 tick, pwr_state);
1985
1986 // insert the new transition
1987 pwrStateTrans = pwr_state;
1988
1989 schedule(powerEvent, tick);
1990 } else {
1991 panic("Scheduled power event at %llu to state %d, "
1992 "with scheduled event at %llu to %d\n", tick, pwr_state,
1993 powerEvent.when(), pwrStateTrans);
1994 }
1995 }
1996
1997 void
1998 DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick)
1999 {
2000 // if low power state is active low, schedule to active low power state.
2001 // in reality tCKE is needed to enter active low power. This is neglected
2002 // here and could be added in the future.
2003 if (pwr_state == PWR_ACT_PDN) {
2004 schedulePowerEvent(pwr_state, tick);
2005 // push command to DRAMPower
2006 cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
2007 DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
2008 memory.tCK) - memory.timeStampOffset, rank);
2009 } else if (pwr_state == PWR_PRE_PDN) {
2010 // if low power state is precharge low, schedule to precharge low
2011 // power state. In reality tCKE is needed to enter active low power.
2012 // This is neglected here.
2013 schedulePowerEvent(pwr_state, tick);
2014 //push Command to DRAMPower
2015 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2016 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2017 memory.tCK) - memory.timeStampOffset, rank);
2018 } else if (pwr_state == PWR_REF) {
2019 // if a refresh just occured
2020 // transition to PRE_PDN now that all banks are closed
2021 // do not transition to SREF if commands are in Q; stay in PRE_PDN
2022 if (pwrStatePostRefresh == PWR_ACT_PDN || !lowPowerEntryReady()) {
2023 // prechage power down requires tCKE to enter. For simplicity
2024 // this is not considered.
2025 schedulePowerEvent(PWR_PRE_PDN, tick);
2026 //push Command to DRAMPower
2027 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2028 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2029 memory.tCK) - memory.timeStampOffset, rank);
2030 } else {
2031 // last low power State was power precharge
2032 assert(pwrStatePostRefresh == PWR_PRE_PDN);
2033 // self refresh requires time tCKESR to enter. For simplicity,
2034 // this is not considered.
2035 schedulePowerEvent(PWR_SREF, tick);
2036 // push Command to DRAMPower
2037 cmdList.push_back(Command(MemCommand::SREN, 0, tick));
2038 DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
2039 memory.tCK) - memory.timeStampOffset, rank);
2040 }
2041 }
2042 // Ensure that we don't power-down and back up in same tick
2043 // Once we commit to PD entry, do it and wait for at least 1tCK
2044 // This could be replaced with tCKE if/when that is added to the model
2045 wakeUpAllowedAt = tick + memory.tCK;
2046
2047 // Transitioning to a low power state, set flag
2048 inLowPowerState = true;
2049 }
2050
2051 void
2052 DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay)
2053 {
2054 Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
2055
2056 DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
2057 rank, wake_up_tick);
2058
2059 // if waking for refresh, hold previous state
2060 // else reset state back to IDLE
2061 if (refreshState == REF_PD_EXIT) {
2062 pwrStatePostRefresh = pwrState;
2063 } else {
2064 // don't automatically transition back to LP state after next REF
2065 pwrStatePostRefresh = PWR_IDLE;
2066 }
2067
2068 // schedule wake-up with event to ensure entry has completed before
2069 // we try to wake-up
2070 schedule(wakeUpEvent, wake_up_tick);
2071
2072 for (auto &b : banks) {
2073 // respect both causality and any existing bank
2074 // constraints, some banks could already have a
2075 // (auto) precharge scheduled
2076 b.colAllowedAt = std::max(wake_up_tick + exit_delay, b.colAllowedAt);
2077 b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
2078 b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
2079 }
2080 // Transitioning out of low power state, clear flag
2081 inLowPowerState = false;
2082
2083 // push to DRAMPower
2084 // use pwrStateTrans for cases where we have a power event scheduled
2085 // to enter low power that has not yet been processed
2086 if (pwrStateTrans == PWR_ACT_PDN) {
2087 cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
2088 DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
2089 memory.tCK) - memory.timeStampOffset, rank);
2090
2091 } else if (pwrStateTrans == PWR_PRE_PDN) {
2092 cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
2093 DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
2094 memory.tCK) - memory.timeStampOffset, rank);
2095 } else if (pwrStateTrans == PWR_SREF) {
2096 cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
2097 DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
2098 memory.tCK) - memory.timeStampOffset, rank);
2099 }
2100 }
2101
2102 void
2103 DRAMCtrl::Rank::processWakeUpEvent()
2104 {
2105 // Should be in a power-down or self-refresh state
2106 assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
2107 (pwrState == PWR_SREF));
2108
2109 // Check current state to determine transition state
2110 if (pwrState == PWR_ACT_PDN) {
2111 // banks still open, transition to PWR_ACT
2112 schedulePowerEvent(PWR_ACT, curTick());
2113 } else {
2114 // transitioning from a precharge power-down or self-refresh state
2115 // banks are closed - transition to PWR_IDLE
2116 schedulePowerEvent(PWR_IDLE, curTick());
2117 }
2118 }
2119
2120 void
2121 DRAMCtrl::Rank::processPowerEvent()
2122 {
2123 assert(curTick() >= pwrStateTick);
2124 // remember where we were, and for how long
2125 Tick duration = curTick() - pwrStateTick;
2126 PowerState prev_state = pwrState;
2127
2128 // update the accounting
2129 pwrStateTime[prev_state] += duration;
2130
2131 // track to total idle time
2132 if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
2133 (prev_state == PWR_SREF)) {
2134 totalIdleTime += duration;
2135 }
2136
2137 pwrState = pwrStateTrans;
2138 pwrStateTick = curTick();
2139
2140 // if rank was refreshing, make sure to start scheduling requests again
2141 if (prev_state == PWR_REF) {
2142 // bus IDLED prior to REF
2143 // counter should be one for refresh command only
2144 assert(outstandingEvents == 1);
2145 // REF complete, decrement count
2146 --outstandingEvents;
2147
2148 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
2149 // if sleeping after refresh
2150 if (pwrState != PWR_IDLE) {
2151 assert((pwrState == PWR_PRE_PDN) || (pwrState == PWR_SREF));
2152 DPRINTF(DRAMState, "Switching to power down state after refreshing"
2153 " rank %d at %llu tick\n", rank, curTick());
2154 }
2155 if (pwrState != PWR_SREF) {
2156 // rank is not available in SREF
2157 // don't transition to IDLE in this case
2158 refreshState = REF_IDLE;
2159 }
2160 // a request event could be already scheduled by the state
2161 // machine of the other rank
2162 if (!memory.nextReqEvent.scheduled()) {
2163 DPRINTF(DRAM, "Scheduling next request after refreshing rank %d\n",
2164 rank);
2165 schedule(memory.nextReqEvent, curTick());
2166 }
2167 } else if (pwrState == PWR_ACT) {
2168 if (refreshState == REF_PD_EXIT) {
2169 // kick the refresh event loop into action again
2170 assert(prev_state == PWR_ACT_PDN);
2171
2172 // go back to REF event and close banks
2173 refreshState = REF_PRE;
2174 schedule(refreshEvent, curTick());
2175 }
2176 } else if (pwrState == PWR_IDLE) {
2177 DPRINTF(DRAMState, "All banks precharged\n");
2178 if (prev_state == PWR_SREF) {
2179 // set refresh state to REF_SREF_EXIT, ensuring isAvailable
2180 // continues to return false during tXS after SREF exit
2181 // Schedule a refresh which kicks things back into action
2182 // when it finishes
2183 refreshState = REF_SREF_EXIT;
2184 schedule(refreshEvent, curTick() + memory.tXS);
2185 } else {
2186 // if we have a pending refresh, and are now moving to
2187 // the idle state, directly transition to a refresh
2188 if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
2189 // ensure refresh is restarted only after final PRE command.
2190 // do not restart refresh if controller is in an intermediate
2191 // state, after PRE_PDN exit, when banks are IDLE but an
2192 // ACT is scheduled.
2193 if (!activateEvent.scheduled()) {
2194 // there should be nothing waiting at this point
2195 assert(!powerEvent.scheduled());
2196 // update the state in zero time and proceed below
2197 pwrState = PWR_REF;
2198 } else {
2199 // must have PRE scheduled to transition back to IDLE
2200 // and re-kick off refresh
2201 assert(prechargeEvent.scheduled());
2202 }
2203 }
2204 }
2205 }
2206
2207 // we transition to the refresh state, let the refresh state
2208 // machine know of this state update and let it deal with the
2209 // scheduling of the next power state transition as well as the
2210 // following refresh
2211 if (pwrState == PWR_REF) {
2212 assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
2213 DPRINTF(DRAMState, "Refreshing\n");
2214
2215 // kick the refresh event loop into action again, and that
2216 // in turn will schedule a transition to the idle power
2217 // state once the refresh is done
2218 if (refreshState == REF_PD_EXIT) {
2219 // Wait for PD exit timing to complete before issuing REF
2220 schedule(refreshEvent, curTick() + memory.tXP);
2221 } else {
2222 schedule(refreshEvent, curTick());
2223 }
2224 // Banks transitioned to IDLE, start REF
2225 refreshState = REF_START;
2226 }
2227 }
2228
2229 void
2230 DRAMCtrl::Rank::updatePowerStats()
2231 {
2232 // All commands up to refresh have completed
2233 // flush cmdList to DRAMPower
2234 flushCmdList();
2235
2236 // update the counters for DRAMPower, passing false to
2237 // indicate that this is not the last command in the
2238 // list. DRAMPower requires this information for the
2239 // correct calculation of the background energy at the end
2240 // of the simulation. Ideally we would want to call this
2241 // function with true once at the end of the
2242 // simulation. However, the discarded energy is extremly
2243 // small and does not effect the final results.
2244 power.powerlib.updateCounters(false);
2245
2246 // call the energy function
2247 power.powerlib.calcEnergy();
2248
2249 // Get the energy and power from DRAMPower
2250 Data::MemoryPowerModel::Energy energy =
2251 power.powerlib.getEnergy();
2252 Data::MemoryPowerModel::Power rank_power =
2253 power.powerlib.getPower();
2254
2255 actEnergy = energy.act_energy * memory.devicesPerRank;
2256 preEnergy = energy.pre_energy * memory.devicesPerRank;
2257 readEnergy = energy.read_energy * memory.devicesPerRank;
2258 writeEnergy = energy.write_energy * memory.devicesPerRank;
2259 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
2260 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
2261 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
2262 actPowerDownEnergy = energy.f_act_pd_energy * memory.devicesPerRank;
2263 prePowerDownEnergy = energy.f_pre_pd_energy * memory.devicesPerRank;
2264 selfRefreshEnergy = energy.sref_energy * memory.devicesPerRank;
2265 totalEnergy = energy.total_energy * memory.devicesPerRank;
2266 averagePower = rank_power.average_power * memory.devicesPerRank;
2267 }
2268
2269 void
2270 DRAMCtrl::Rank::computeStats()
2271 {
2272 DPRINTF(DRAM,"Computing final stats\n");
2273
2274 // Force DRAM power to update counters based on time spent in
2275 // current state up to curTick()
2276 cmdList.push_back(Command(MemCommand::NOP, 0, curTick()));
2277
2278 // Update the stats
2279 updatePowerStats();
2280
2281 // final update of power state times
2282 pwrStateTime[pwrState] += (curTick() - pwrStateTick);
2283 pwrStateTick = curTick();
2284
2285 }
2286
2287 void
2288 DRAMCtrl::Rank::regStats()
2289 {
2290 using namespace Stats;
2291
2292 pwrStateTime
2293 .init(6)
2294 .name(name() + ".memoryStateTime")
2295 .desc("Time in different power states");
2296 pwrStateTime.subname(0, "IDLE");
2297 pwrStateTime.subname(1, "REF");
2298 pwrStateTime.subname(2, "SREF");
2299 pwrStateTime.subname(3, "PRE_PDN");
2300 pwrStateTime.subname(4, "ACT");
2301 pwrStateTime.subname(5, "ACT_PDN");
2302
2303 actEnergy
2304 .name(name() + ".actEnergy")
2305 .desc("Energy for activate commands per rank (pJ)");
2306
2307 preEnergy
2308 .name(name() + ".preEnergy")
2309 .desc("Energy for precharge commands per rank (pJ)");
2310
2311 readEnergy
2312 .name(name() + ".readEnergy")
2313 .desc("Energy for read commands per rank (pJ)");
2314
2315 writeEnergy
2316 .name(name() + ".writeEnergy")
2317 .desc("Energy for write commands per rank (pJ)");
2318
2319 refreshEnergy
2320 .name(name() + ".refreshEnergy")
2321 .desc("Energy for refresh commands per rank (pJ)");
2322
2323 actBackEnergy
2324 .name(name() + ".actBackEnergy")
2325 .desc("Energy for active background per rank (pJ)");
2326
2327 preBackEnergy
2328 .name(name() + ".preBackEnergy")
2329 .desc("Energy for precharge background per rank (pJ)");
2330
2331 actPowerDownEnergy
2332 .name(name() + ".actPowerDownEnergy")
2333 .desc("Energy for active power-down per rank (pJ)");
2334
2335 prePowerDownEnergy
2336 .name(name() + ".prePowerDownEnergy")
2337 .desc("Energy for precharge power-down per rank (pJ)");
2338
2339 selfRefreshEnergy
2340 .name(name() + ".selfRefreshEnergy")
2341 .desc("Energy for self refresh per rank (pJ)");
2342
2343 totalEnergy
2344 .name(name() + ".totalEnergy")
2345 .desc("Total energy per rank (pJ)");
2346
2347 averagePower
2348 .name(name() + ".averagePower")
2349 .desc("Core power per rank (mW)");
2350
2351 totalIdleTime
2352 .name(name() + ".totalIdleTime")
2353 .desc("Total Idle time Per DRAM Rank");
2354
2355 registerDumpCallback(new RankDumpCallback(this));
2356 }
2357 void
2358 DRAMCtrl::regStats()
2359 {
2360 using namespace Stats;
2361
2362 AbstractMemory::regStats();
2363
2364 for (auto r : ranks) {
2365 r->regStats();
2366 }
2367
2368 readReqs
2369 .name(name() + ".readReqs")
2370 .desc("Number of read requests accepted");
2371
2372 writeReqs
2373 .name(name() + ".writeReqs")
2374 .desc("Number of write requests accepted");
2375
2376 readBursts
2377 .name(name() + ".readBursts")
2378 .desc("Number of DRAM read bursts, "
2379 "including those serviced by the write queue");
2380
2381 writeBursts
2382 .name(name() + ".writeBursts")
2383 .desc("Number of DRAM write bursts, "
2384 "including those merged in the write queue");
2385
2386 servicedByWrQ
2387 .name(name() + ".servicedByWrQ")
2388 .desc("Number of DRAM read bursts serviced by the write queue");
2389
2390 mergedWrBursts
2391 .name(name() + ".mergedWrBursts")
2392 .desc("Number of DRAM write bursts merged with an existing one");
2393
2394 neitherReadNorWrite
2395 .name(name() + ".neitherReadNorWriteReqs")
2396 .desc("Number of requests that are neither read nor write");
2397
2398 perBankRdBursts
2399 .init(banksPerRank * ranksPerChannel)
2400 .name(name() + ".perBankRdBursts")
2401 .desc("Per bank write bursts");
2402
2403 perBankWrBursts
2404 .init(banksPerRank * ranksPerChannel)
2405 .name(name() + ".perBankWrBursts")
2406 .desc("Per bank write bursts");
2407
2408 avgRdQLen
2409 .name(name() + ".avgRdQLen")
2410 .desc("Average read queue length when enqueuing")
2411 .precision(2);
2412
2413 avgWrQLen
2414 .name(name() + ".avgWrQLen")
2415 .desc("Average write queue length when enqueuing")
2416 .precision(2);
2417
2418 totQLat
2419 .name(name() + ".totQLat")
2420 .desc("Total ticks spent queuing");
2421
2422 totBusLat
2423 .name(name() + ".totBusLat")
2424 .desc("Total ticks spent in databus transfers");
2425
2426 totMemAccLat
2427 .name(name() + ".totMemAccLat")
2428 .desc("Total ticks spent from burst creation until serviced "
2429 "by the DRAM");
2430
2431 avgQLat
2432 .name(name() + ".avgQLat")
2433 .desc("Average queueing delay per DRAM burst")
2434 .precision(2);
2435
2436 avgQLat = totQLat / (readBursts - servicedByWrQ);
2437
2438 avgBusLat
2439 .name(name() + ".avgBusLat")
2440 .desc("Average bus latency per DRAM burst")
2441 .precision(2);
2442
2443 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
2444
2445 avgMemAccLat
2446 .name(name() + ".avgMemAccLat")
2447 .desc("Average memory access latency per DRAM burst")
2448 .precision(2);
2449
2450 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2451
2452 numRdRetry
2453 .name(name() + ".numRdRetry")
2454 .desc("Number of times read queue was full causing retry");
2455
2456 numWrRetry
2457 .name(name() + ".numWrRetry")
2458 .desc("Number of times write queue was full causing retry");
2459
2460 readRowHits
2461 .name(name() + ".readRowHits")
2462 .desc("Number of row buffer hits during reads");
2463
2464 writeRowHits
2465 .name(name() + ".writeRowHits")
2466 .desc("Number of row buffer hits during writes");
2467
2468 readRowHitRate
2469 .name(name() + ".readRowHitRate")
2470 .desc("Row buffer hit rate for reads")
2471 .precision(2);
2472
2473 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2474
2475 writeRowHitRate
2476 .name(name() + ".writeRowHitRate")
2477 .desc("Row buffer hit rate for writes")
2478 .precision(2);
2479
2480 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2481
2482 readPktSize
2483 .init(ceilLog2(burstSize) + 1)
2484 .name(name() + ".readPktSize")
2485 .desc("Read request sizes (log2)");
2486
2487 writePktSize
2488 .init(ceilLog2(burstSize) + 1)
2489 .name(name() + ".writePktSize")
2490 .desc("Write request sizes (log2)");
2491
2492 rdQLenPdf
2493 .init(readBufferSize)
2494 .name(name() + ".rdQLenPdf")
2495 .desc("What read queue length does an incoming req see");
2496
2497 wrQLenPdf
2498 .init(writeBufferSize)
2499 .name(name() + ".wrQLenPdf")
2500 .desc("What write queue length does an incoming req see");
2501
2502 bytesPerActivate
2503 .init(maxAccessesPerRow)
2504 .name(name() + ".bytesPerActivate")
2505 .desc("Bytes accessed per row activation")
2506 .flags(nozero);
2507
2508 rdPerTurnAround
2509 .init(readBufferSize)
2510 .name(name() + ".rdPerTurnAround")
2511 .desc("Reads before turning the bus around for writes")
2512 .flags(nozero);
2513
2514 wrPerTurnAround
2515 .init(writeBufferSize)
2516 .name(name() + ".wrPerTurnAround")
2517 .desc("Writes before turning the bus around for reads")
2518 .flags(nozero);
2519
2520 bytesReadDRAM
2521 .name(name() + ".bytesReadDRAM")
2522 .desc("Total number of bytes read from DRAM");
2523
2524 bytesReadWrQ
2525 .name(name() + ".bytesReadWrQ")
2526 .desc("Total number of bytes read from write queue");
2527
2528 bytesWritten
2529 .name(name() + ".bytesWritten")
2530 .desc("Total number of bytes written to DRAM");
2531
2532 bytesReadSys
2533 .name(name() + ".bytesReadSys")
2534 .desc("Total read bytes from the system interface side");
2535
2536 bytesWrittenSys
2537 .name(name() + ".bytesWrittenSys")
2538 .desc("Total written bytes from the system interface side");
2539
2540 avgRdBW
2541 .name(name() + ".avgRdBW")
2542 .desc("Average DRAM read bandwidth in MiByte/s")
2543 .precision(2);
2544
2545 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2546
2547 avgWrBW
2548 .name(name() + ".avgWrBW")
2549 .desc("Average achieved write bandwidth in MiByte/s")
2550 .precision(2);
2551
2552 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2553
2554 avgRdBWSys
2555 .name(name() + ".avgRdBWSys")
2556 .desc("Average system read bandwidth in MiByte/s")
2557 .precision(2);
2558
2559 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2560
2561 avgWrBWSys
2562 .name(name() + ".avgWrBWSys")
2563 .desc("Average system write bandwidth in MiByte/s")
2564 .precision(2);
2565
2566 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2567
2568 peakBW
2569 .name(name() + ".peakBW")
2570 .desc("Theoretical peak bandwidth in MiByte/s")
2571 .precision(2);
2572
2573 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2574
2575 busUtil
2576 .name(name() + ".busUtil")
2577 .desc("Data bus utilization in percentage")
2578 .precision(2);
2579 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2580
2581 totGap
2582 .name(name() + ".totGap")
2583 .desc("Total gap between requests");
2584
2585 avgGap
2586 .name(name() + ".avgGap")
2587 .desc("Average gap between requests")
2588 .precision(2);
2589
2590 avgGap = totGap / (readReqs + writeReqs);
2591
2592 // Stats for DRAM Power calculation based on Micron datasheet
2593 busUtilRead
2594 .name(name() + ".busUtilRead")
2595 .desc("Data bus utilization in percentage for reads")
2596 .precision(2);
2597
2598 busUtilRead = avgRdBW / peakBW * 100;
2599
2600 busUtilWrite
2601 .name(name() + ".busUtilWrite")
2602 .desc("Data bus utilization in percentage for writes")
2603 .precision(2);
2604
2605 busUtilWrite = avgWrBW / peakBW * 100;
2606
2607 pageHitRate
2608 .name(name() + ".pageHitRate")
2609 .desc("Row buffer hit rate, read and write combined")
2610 .precision(2);
2611
2612 pageHitRate = (writeRowHits + readRowHits) /
2613 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2614 }
2615
2616 void
2617 DRAMCtrl::recvFunctional(PacketPtr pkt)
2618 {
2619 // rely on the abstract memory
2620 functionalAccess(pkt);
2621 }
2622
2623 BaseSlavePort&
2624 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2625 {
2626 if (if_name != "port") {
2627 return MemObject::getSlavePort(if_name, idx);
2628 } else {
2629 return port;
2630 }
2631 }
2632
2633 DrainState
2634 DRAMCtrl::drain()
2635 {
2636 // if there is anything in any of our internal queues, keep track
2637 // of that as well
2638 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() &&
2639 allRanksDrained())) {
2640
2641 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2642 " resp: %d\n", writeQueue.size(), readQueue.size(),
2643 respQueue.size());
2644
2645 // the only queue that is not drained automatically over time
2646 // is the write queue, thus kick things into action if needed
2647 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2648 schedule(nextReqEvent, curTick());
2649 }
2650
2651 // also need to kick off events to exit self-refresh
2652 for (auto r : ranks) {
2653 // force self-refresh exit, which in turn will issue auto-refresh
2654 if (r->pwrState == PWR_SREF) {
2655 DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
2656 r->rank);
2657 r->scheduleWakeUpEvent(tXS);
2658 }
2659 }
2660
2661 return DrainState::Draining;
2662 } else {
2663 return DrainState::Drained;
2664 }
2665 }
2666
2667 bool
2668 DRAMCtrl::allRanksDrained() const
2669 {
2670 // true until proven false
2671 bool all_ranks_drained = true;
2672 for (auto r : ranks) {
2673 // then verify that the power state is IDLE
2674 // ensuring all banks are closed and rank is not in a low power state
2675 all_ranks_drained = r->inPwrIdleState() && all_ranks_drained;
2676 }
2677 return all_ranks_drained;
2678 }
2679
2680 void
2681 DRAMCtrl::drainResume()
2682 {
2683 if (!isTimingMode && system()->isTimingMode()) {
2684 // if we switched to timing mode, kick things into action,
2685 // and behave as if we restored from a checkpoint
2686 startup();
2687 } else if (isTimingMode && !system()->isTimingMode()) {
2688 // if we switch from timing mode, stop the refresh events to
2689 // not cause issues with KVM
2690 for (auto r : ranks) {
2691 r->suspend();
2692 }
2693 }
2694
2695 // update the mode
2696 isTimingMode = system()->isTimingMode();
2697 }
2698
2699 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2700 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2701 memory(_memory)
2702 { }
2703
2704 AddrRangeList
2705 DRAMCtrl::MemoryPort::getAddrRanges() const
2706 {
2707 AddrRangeList ranges;
2708 ranges.push_back(memory.getAddrRange());
2709 return ranges;
2710 }
2711
2712 void
2713 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2714 {
2715 pkt->pushLabel(memory.name());
2716
2717 if (!queue.checkFunctional(pkt)) {
2718 // Default implementation of SimpleTimingPort::recvFunctional()
2719 // calls recvAtomic() and throws away the latency; we can save a
2720 // little here by just not calculating the latency.
2721 memory.recvFunctional(pkt);
2722 }
2723
2724 pkt->popLabel();
2725 }
2726
2727 Tick
2728 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2729 {
2730 return memory.recvAtomic(pkt);
2731 }
2732
2733 bool
2734 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2735 {
2736 // pass it to the memory controller
2737 return memory.recvTimingReq(pkt);
2738 }
2739
2740 DRAMCtrl*
2741 DRAMCtrlParams::create()
2742 {
2743 return new DRAMCtrl(this);
2744 }