mem: Merge DRAM page-management calculations
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45 #include "base/bitfield.hh"
46 #include "base/trace.hh"
47 #include "debug/DRAM.hh"
48 #include "debug/DRAMState.hh"
49 #include "debug/Drain.hh"
50 #include "mem/dram_ctrl.hh"
51 #include "sim/system.hh"
52
53 using namespace std;
54
55 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56 AbstractMemory(p),
57 port(name() + ".port", *this),
58 retryRdReq(false), retryWrReq(false),
59 rowHitFlag(false), busState(READ),
60 nextReqEvent(this), respondEvent(this), activateEvent(this),
61 prechargeEvent(this), refreshEvent(this), powerEvent(this),
62 drainManager(NULL),
63 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
64 deviceRowBufferSize(p->device_rowbuffer_size),
65 devicesPerRank(p->devices_per_rank),
66 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
67 rowBufferSize(devicesPerRank * deviceRowBufferSize),
68 columnsPerRowBuffer(rowBufferSize / burstSize),
69 ranksPerChannel(p->ranks_per_channel),
70 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
71 readBufferSize(p->read_buffer_size),
72 writeBufferSize(p->write_buffer_size),
73 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
74 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
75 minWritesPerSwitch(p->min_writes_per_switch),
76 writesThisTime(0), readsThisTime(0),
77 tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
78 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
79 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
80 tXAW(p->tXAW), activationLimit(p->activation_limit),
81 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
82 pageMgmt(p->page_policy),
83 maxAccessesPerRow(p->max_accesses_per_row),
84 frontendLatency(p->static_frontend_latency),
85 backendLatency(p->static_backend_latency),
86 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
87 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
88 nextReqTime(0), pwrStateTick(0), numBanksActive(0)
89 {
90 // create the bank states based on the dimensions of the ranks and
91 // banks
92 banks.resize(ranksPerChannel);
93 actTicks.resize(ranksPerChannel);
94 for (size_t c = 0; c < ranksPerChannel; ++c) {
95 banks[c].resize(banksPerRank);
96 actTicks[c].resize(activationLimit, 0);
97 }
98
99 // perform a basic check of the write thresholds
100 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
101 fatal("Write buffer low threshold %d must be smaller than the "
102 "high threshold %d\n", p->write_low_thresh_perc,
103 p->write_high_thresh_perc);
104
105 // determine the rows per bank by looking at the total capacity
106 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
107
108 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
109 AbstractMemory::size());
110
111 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
112 rowBufferSize, columnsPerRowBuffer);
113
114 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
115
116 if (range.interleaved()) {
117 if (channels != range.stripes())
118 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
119 name(), range.stripes(), channels);
120
121 if (addrMapping == Enums::RoRaBaChCo) {
122 if (rowBufferSize != range.granularity()) {
123 fatal("Interleaving of %s doesn't match RoRaBaChCo "
124 "address map\n", name());
125 }
126 } else if (addrMapping == Enums::RoRaBaCoCh) {
127 if (system()->cacheLineSize() != range.granularity()) {
128 fatal("Interleaving of %s doesn't match RoRaBaCoCh "
129 "address map\n", name());
130 }
131 } else if (addrMapping == Enums::RoCoRaBaCh) {
132 if (system()->cacheLineSize() != range.granularity())
133 fatal("Interleaving of %s doesn't match RoCoRaBaCh "
134 "address map\n", name());
135 }
136 }
137
138 // some basic sanity checks
139 if (tREFI <= tRP || tREFI <= tRFC) {
140 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
141 tREFI, tRP, tRFC);
142 }
143 }
144
145 void
146 DRAMCtrl::init()
147 {
148 if (!port.isConnected()) {
149 fatal("DRAMCtrl %s is unconnected!\n", name());
150 } else {
151 port.sendRangeChange();
152 }
153 }
154
155 void
156 DRAMCtrl::startup()
157 {
158 // update the start tick for the precharge accounting to the
159 // current tick
160 pwrStateTick = curTick();
161
162 // shift the bus busy time sufficiently far ahead that we never
163 // have to worry about negative values when computing the time for
164 // the next request, this will add an insignificant bubble at the
165 // start of simulation
166 busBusyUntil = curTick() + tRP + tRCD + tCL;
167
168 // print the configuration of the controller
169 printParams();
170
171 // kick off the refresh, and give ourselves enough time to
172 // precharge
173 schedule(refreshEvent, curTick() + tREFI - tRP);
174 }
175
176 Tick
177 DRAMCtrl::recvAtomic(PacketPtr pkt)
178 {
179 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
180
181 // do the actual memory access and turn the packet into a response
182 access(pkt);
183
184 Tick latency = 0;
185 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
186 // this value is not supposed to be accurate, just enough to
187 // keep things going, mimic a closed page
188 latency = tRP + tRCD + tCL;
189 }
190 return latency;
191 }
192
193 bool
194 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
195 {
196 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
197 readBufferSize, readQueue.size() + respQueue.size(),
198 neededEntries);
199
200 return
201 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
202 }
203
204 bool
205 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
206 {
207 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
208 writeBufferSize, writeQueue.size(), neededEntries);
209 return (writeQueue.size() + neededEntries) > writeBufferSize;
210 }
211
212 DRAMCtrl::DRAMPacket*
213 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
214 bool isRead)
215 {
216 // decode the address based on the address mapping scheme, with
217 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
218 // channel, respectively
219 uint8_t rank;
220 uint8_t bank;
221 uint16_t row;
222
223 // truncate the address to the access granularity
224 Addr addr = dramPktAddr / burstSize;
225
226 // we have removed the lowest order address bits that denote the
227 // position within the column
228 if (addrMapping == Enums::RoRaBaChCo) {
229 // the lowest order bits denote the column to ensure that
230 // sequential cache lines occupy the same row
231 addr = addr / columnsPerRowBuffer;
232
233 // take out the channel part of the address
234 addr = addr / channels;
235
236 // after the channel bits, get the bank bits to interleave
237 // over the banks
238 bank = addr % banksPerRank;
239 addr = addr / banksPerRank;
240
241 // after the bank, we get the rank bits which thus interleaves
242 // over the ranks
243 rank = addr % ranksPerChannel;
244 addr = addr / ranksPerChannel;
245
246 // lastly, get the row bits
247 row = addr % rowsPerBank;
248 addr = addr / rowsPerBank;
249 } else if (addrMapping == Enums::RoRaBaCoCh) {
250 // take out the channel part of the address
251 addr = addr / channels;
252
253 // next, the column
254 addr = addr / columnsPerRowBuffer;
255
256 // after the column bits, we get the bank bits to interleave
257 // over the banks
258 bank = addr % banksPerRank;
259 addr = addr / banksPerRank;
260
261 // after the bank, we get the rank bits which thus interleaves
262 // over the ranks
263 rank = addr % ranksPerChannel;
264 addr = addr / ranksPerChannel;
265
266 // lastly, get the row bits
267 row = addr % rowsPerBank;
268 addr = addr / rowsPerBank;
269 } else if (addrMapping == Enums::RoCoRaBaCh) {
270 // optimise for closed page mode and utilise maximum
271 // parallelism of the DRAM (at the cost of power)
272
273 // take out the channel part of the address, not that this has
274 // to match with how accesses are interleaved between the
275 // controllers in the address mapping
276 addr = addr / channels;
277
278 // start with the bank bits, as this provides the maximum
279 // opportunity for parallelism between requests
280 bank = addr % banksPerRank;
281 addr = addr / banksPerRank;
282
283 // next get the rank bits
284 rank = addr % ranksPerChannel;
285 addr = addr / ranksPerChannel;
286
287 // next the column bits which we do not need to keep track of
288 // and simply skip past
289 addr = addr / columnsPerRowBuffer;
290
291 // lastly, get the row bits
292 row = addr % rowsPerBank;
293 addr = addr / rowsPerBank;
294 } else
295 panic("Unknown address mapping policy chosen!");
296
297 assert(rank < ranksPerChannel);
298 assert(bank < banksPerRank);
299 assert(row < rowsPerBank);
300
301 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
302 dramPktAddr, rank, bank, row);
303
304 // create the corresponding DRAM packet with the entry time and
305 // ready time set to the current tick, the latter will be updated
306 // later
307 uint16_t bank_id = banksPerRank * rank + bank;
308 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
309 size, banks[rank][bank]);
310 }
311
312 void
313 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
314 {
315 // only add to the read queue here. whenever the request is
316 // eventually done, set the readyTime, and call schedule()
317 assert(!pkt->isWrite());
318
319 assert(pktCount != 0);
320
321 // if the request size is larger than burst size, the pkt is split into
322 // multiple DRAM packets
323 // Note if the pkt starting address is not aligened to burst size, the
324 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
325 // are aligned to burst size boundaries. This is to ensure we accurately
326 // check read packets against packets in write queue.
327 Addr addr = pkt->getAddr();
328 unsigned pktsServicedByWrQ = 0;
329 BurstHelper* burst_helper = NULL;
330 for (int cnt = 0; cnt < pktCount; ++cnt) {
331 unsigned size = std::min((addr | (burstSize - 1)) + 1,
332 pkt->getAddr() + pkt->getSize()) - addr;
333 readPktSize[ceilLog2(size)]++;
334 readBursts++;
335
336 // First check write buffer to see if the data is already at
337 // the controller
338 bool foundInWrQ = false;
339 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
340 // check if the read is subsumed in the write entry we are
341 // looking at
342 if ((*i)->addr <= addr &&
343 (addr + size) <= ((*i)->addr + (*i)->size)) {
344 foundInWrQ = true;
345 servicedByWrQ++;
346 pktsServicedByWrQ++;
347 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
348 "write queue\n", addr, size);
349 bytesReadWrQ += burstSize;
350 break;
351 }
352 }
353
354 // If not found in the write q, make a DRAM packet and
355 // push it onto the read queue
356 if (!foundInWrQ) {
357
358 // Make the burst helper for split packets
359 if (pktCount > 1 && burst_helper == NULL) {
360 DPRINTF(DRAM, "Read to addr %lld translates to %d "
361 "dram requests\n", pkt->getAddr(), pktCount);
362 burst_helper = new BurstHelper(pktCount);
363 }
364
365 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
366 dram_pkt->burstHelper = burst_helper;
367
368 assert(!readQueueFull(1));
369 rdQLenPdf[readQueue.size() + respQueue.size()]++;
370
371 DPRINTF(DRAM, "Adding to read queue\n");
372
373 readQueue.push_back(dram_pkt);
374
375 // Update stats
376 avgRdQLen = readQueue.size() + respQueue.size();
377 }
378
379 // Starting address of next dram pkt (aligend to burstSize boundary)
380 addr = (addr | (burstSize - 1)) + 1;
381 }
382
383 // If all packets are serviced by write queue, we send the repsonse back
384 if (pktsServicedByWrQ == pktCount) {
385 accessAndRespond(pkt, frontendLatency);
386 return;
387 }
388
389 // Update how many split packets are serviced by write queue
390 if (burst_helper != NULL)
391 burst_helper->burstsServiced = pktsServicedByWrQ;
392
393 // If we are not already scheduled to get a request out of the
394 // queue, do so now
395 if (!nextReqEvent.scheduled()) {
396 DPRINTF(DRAM, "Request scheduled immediately\n");
397 schedule(nextReqEvent, curTick());
398 }
399 }
400
401 void
402 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
403 {
404 // only add to the write queue here. whenever the request is
405 // eventually done, set the readyTime, and call schedule()
406 assert(pkt->isWrite());
407
408 // if the request size is larger than burst size, the pkt is split into
409 // multiple DRAM packets
410 Addr addr = pkt->getAddr();
411 for (int cnt = 0; cnt < pktCount; ++cnt) {
412 unsigned size = std::min((addr | (burstSize - 1)) + 1,
413 pkt->getAddr() + pkt->getSize()) - addr;
414 writePktSize[ceilLog2(size)]++;
415 writeBursts++;
416
417 // see if we can merge with an existing item in the write
418 // queue and keep track of whether we have merged or not so we
419 // can stop at that point and also avoid enqueueing a new
420 // request
421 bool merged = false;
422 auto w = writeQueue.begin();
423
424 while(!merged && w != writeQueue.end()) {
425 // either of the two could be first, if they are the same
426 // it does not matter which way we go
427 if ((*w)->addr >= addr) {
428 // the existing one starts after the new one, figure
429 // out where the new one ends with respect to the
430 // existing one
431 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
432 // check if the existing one is completely
433 // subsumed in the new one
434 DPRINTF(DRAM, "Merging write covering existing burst\n");
435 merged = true;
436 // update both the address and the size
437 (*w)->addr = addr;
438 (*w)->size = size;
439 } else if ((addr + size) >= (*w)->addr &&
440 ((*w)->addr + (*w)->size - addr) <= burstSize) {
441 // the new one is just before or partially
442 // overlapping with the existing one, and together
443 // they fit within a burst
444 DPRINTF(DRAM, "Merging write before existing burst\n");
445 merged = true;
446 // the existing queue item needs to be adjusted with
447 // respect to both address and size
448 (*w)->size = (*w)->addr + (*w)->size - addr;
449 (*w)->addr = addr;
450 }
451 } else {
452 // the new one starts after the current one, figure
453 // out where the existing one ends with respect to the
454 // new one
455 if (((*w)->addr + (*w)->size) >= (addr + size)) {
456 // check if the new one is completely subsumed in the
457 // existing one
458 DPRINTF(DRAM, "Merging write into existing burst\n");
459 merged = true;
460 // no adjustments necessary
461 } else if (((*w)->addr + (*w)->size) >= addr &&
462 (addr + size - (*w)->addr) <= burstSize) {
463 // the existing one is just before or partially
464 // overlapping with the new one, and together
465 // they fit within a burst
466 DPRINTF(DRAM, "Merging write after existing burst\n");
467 merged = true;
468 // the address is right, and only the size has
469 // to be adjusted
470 (*w)->size = addr + size - (*w)->addr;
471 }
472 }
473 ++w;
474 }
475
476 // if the item was not merged we need to create a new write
477 // and enqueue it
478 if (!merged) {
479 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
480
481 assert(writeQueue.size() < writeBufferSize);
482 wrQLenPdf[writeQueue.size()]++;
483
484 DPRINTF(DRAM, "Adding to write queue\n");
485
486 writeQueue.push_back(dram_pkt);
487
488 // Update stats
489 avgWrQLen = writeQueue.size();
490 } else {
491 // keep track of the fact that this burst effectively
492 // disappeared as it was merged with an existing one
493 mergedWrBursts++;
494 }
495
496 // Starting address of next dram pkt (aligend to burstSize boundary)
497 addr = (addr | (burstSize - 1)) + 1;
498 }
499
500 // we do not wait for the writes to be send to the actual memory,
501 // but instead take responsibility for the consistency here and
502 // snoop the write queue for any upcoming reads
503 // @todo, if a pkt size is larger than burst size, we might need a
504 // different front end latency
505 accessAndRespond(pkt, frontendLatency);
506
507 // If we are not already scheduled to get a request out of the
508 // queue, do so now
509 if (!nextReqEvent.scheduled()) {
510 DPRINTF(DRAM, "Request scheduled immediately\n");
511 schedule(nextReqEvent, curTick());
512 }
513 }
514
515 void
516 DRAMCtrl::printParams() const
517 {
518 // Sanity check print of important parameters
519 DPRINTF(DRAM,
520 "Memory controller %s physical organization\n" \
521 "Number of devices per rank %d\n" \
522 "Device bus width (in bits) %d\n" \
523 "DRAM data bus burst (bytes) %d\n" \
524 "Row buffer size (bytes) %d\n" \
525 "Columns per row buffer %d\n" \
526 "Rows per bank %d\n" \
527 "Banks per rank %d\n" \
528 "Ranks per channel %d\n" \
529 "Total mem capacity (bytes) %u\n",
530 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
531 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
532 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
533
534 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
535 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
536 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
537 string page_policy = pageMgmt == Enums::open ? "OPEN" :
538 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
539 (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
540
541 DPRINTF(DRAM,
542 "Memory controller %s characteristics\n" \
543 "Read buffer size %d\n" \
544 "Write buffer size %d\n" \
545 "Write high thresh %d\n" \
546 "Write low thresh %d\n" \
547 "Scheduler %s\n" \
548 "Address mapping %s\n" \
549 "Page policy %s\n",
550 name(), readBufferSize, writeBufferSize, writeHighThreshold,
551 writeLowThreshold, scheduler, address_mapping, page_policy);
552
553 DPRINTF(DRAM, "Memory controller %s timing specs\n" \
554 "tRCD %d ticks\n" \
555 "tCL %d ticks\n" \
556 "tRP %d ticks\n" \
557 "tBURST %d ticks\n" \
558 "tRFC %d ticks\n" \
559 "tREFI %d ticks\n" \
560 "tWTR %d ticks\n" \
561 "tRTW %d ticks\n" \
562 "tXAW (%d) %d ticks\n",
563 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
564 tRTW, activationLimit, tXAW);
565 }
566
567 void
568 DRAMCtrl::printQs() const {
569 DPRINTF(DRAM, "===READ QUEUE===\n\n");
570 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
571 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
572 }
573 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
574 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
575 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
576 }
577 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
578 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
579 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
580 }
581 }
582
583 bool
584 DRAMCtrl::recvTimingReq(PacketPtr pkt)
585 {
586 /// @todo temporary hack to deal with memory corruption issues until
587 /// 4-phase transactions are complete
588 for (int x = 0; x < pendingDelete.size(); x++)
589 delete pendingDelete[x];
590 pendingDelete.clear();
591
592 // This is where we enter from the outside world
593 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
594 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
595
596 // simply drop inhibited packets for now
597 if (pkt->memInhibitAsserted()) {
598 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
599 pendingDelete.push_back(pkt);
600 return true;
601 }
602
603 // Calc avg gap between requests
604 if (prevArrival != 0) {
605 totGap += curTick() - prevArrival;
606 }
607 prevArrival = curTick();
608
609
610 // Find out how many dram packets a pkt translates to
611 // If the burst size is equal or larger than the pkt size, then a pkt
612 // translates to only one dram packet. Otherwise, a pkt translates to
613 // multiple dram packets
614 unsigned size = pkt->getSize();
615 unsigned offset = pkt->getAddr() & (burstSize - 1);
616 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
617
618 // check local buffers and do not accept if full
619 if (pkt->isRead()) {
620 assert(size != 0);
621 if (readQueueFull(dram_pkt_count)) {
622 DPRINTF(DRAM, "Read queue full, not accepting\n");
623 // remember that we have to retry this port
624 retryRdReq = true;
625 numRdRetry++;
626 return false;
627 } else {
628 addToReadQueue(pkt, dram_pkt_count);
629 readReqs++;
630 bytesReadSys += size;
631 }
632 } else if (pkt->isWrite()) {
633 assert(size != 0);
634 if (writeQueueFull(dram_pkt_count)) {
635 DPRINTF(DRAM, "Write queue full, not accepting\n");
636 // remember that we have to retry this port
637 retryWrReq = true;
638 numWrRetry++;
639 return false;
640 } else {
641 addToWriteQueue(pkt, dram_pkt_count);
642 writeReqs++;
643 bytesWrittenSys += size;
644 }
645 } else {
646 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
647 neitherReadNorWrite++;
648 accessAndRespond(pkt, 1);
649 }
650
651 return true;
652 }
653
654 void
655 DRAMCtrl::processRespondEvent()
656 {
657 DPRINTF(DRAM,
658 "processRespondEvent(): Some req has reached its readyTime\n");
659
660 DRAMPacket* dram_pkt = respQueue.front();
661
662 if (dram_pkt->burstHelper) {
663 // it is a split packet
664 dram_pkt->burstHelper->burstsServiced++;
665 if (dram_pkt->burstHelper->burstsServiced ==
666 dram_pkt->burstHelper->burstCount) {
667 // we have now serviced all children packets of a system packet
668 // so we can now respond to the requester
669 // @todo we probably want to have a different front end and back
670 // end latency for split packets
671 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
672 delete dram_pkt->burstHelper;
673 dram_pkt->burstHelper = NULL;
674 }
675 } else {
676 // it is not a split packet
677 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
678 }
679
680 delete respQueue.front();
681 respQueue.pop_front();
682
683 if (!respQueue.empty()) {
684 assert(respQueue.front()->readyTime >= curTick());
685 assert(!respondEvent.scheduled());
686 schedule(respondEvent, respQueue.front()->readyTime);
687 } else {
688 // if there is nothing left in any queue, signal a drain
689 if (writeQueue.empty() && readQueue.empty() &&
690 drainManager) {
691 drainManager->signalDrainDone();
692 drainManager = NULL;
693 }
694 }
695
696 // We have made a location in the queue available at this point,
697 // so if there is a read that was forced to wait, retry now
698 if (retryRdReq) {
699 retryRdReq = false;
700 port.sendRetry();
701 }
702 }
703
704 void
705 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
706 {
707 // This method does the arbitration between requests. The chosen
708 // packet is simply moved to the head of the queue. The other
709 // methods know that this is the place to look. For example, with
710 // FCFS, this method does nothing
711 assert(!queue.empty());
712
713 if (queue.size() == 1) {
714 DPRINTF(DRAM, "Single request, nothing to do\n");
715 return;
716 }
717
718 if (memSchedPolicy == Enums::fcfs) {
719 // Do nothing, since the correct request is already head
720 } else if (memSchedPolicy == Enums::frfcfs) {
721 reorderQueue(queue);
722 } else
723 panic("No scheduling policy chosen\n");
724 }
725
726 void
727 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
728 {
729 // Only determine this when needed
730 uint64_t earliest_banks = 0;
731
732 // Search for row hits first, if no row hit is found then schedule the
733 // packet to one of the earliest banks available
734 bool found_earliest_pkt = false;
735 auto selected_pkt_it = queue.begin();
736
737 for (auto i = queue.begin(); i != queue.end() ; ++i) {
738 DRAMPacket* dram_pkt = *i;
739 const Bank& bank = dram_pkt->bankRef;
740 // Check if it is a row hit
741 if (bank.openRow == dram_pkt->row) {
742 DPRINTF(DRAM, "Row buffer hit\n");
743 selected_pkt_it = i;
744 break;
745 } else if (!found_earliest_pkt) {
746 // No row hit, go for first ready
747 if (earliest_banks == 0)
748 earliest_banks = minBankFreeAt(queue);
749
750 // Bank is ready or is the first available bank
751 if (bank.freeAt <= curTick() ||
752 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
753 // Remember the packet to be scheduled to one of the earliest
754 // banks available
755 selected_pkt_it = i;
756 found_earliest_pkt = true;
757 }
758 }
759 }
760
761 DRAMPacket* selected_pkt = *selected_pkt_it;
762 queue.erase(selected_pkt_it);
763 queue.push_front(selected_pkt);
764 }
765
766 void
767 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
768 {
769 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
770
771 bool needsResponse = pkt->needsResponse();
772 // do the actual memory access which also turns the packet into a
773 // response
774 access(pkt);
775
776 // turn packet around to go back to requester if response expected
777 if (needsResponse) {
778 // access already turned the packet into a response
779 assert(pkt->isResponse());
780
781 // @todo someone should pay for this
782 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
783
784 // queue the packet in the response queue to be sent out after
785 // the static latency has passed
786 port.schedTimingResp(pkt, curTick() + static_latency);
787 } else {
788 // @todo the packet is going to be deleted, and the DRAMPacket
789 // is still having a pointer to it
790 pendingDelete.push_back(pkt);
791 }
792
793 DPRINTF(DRAM, "Done\n");
794
795 return;
796 }
797
798 pair<Tick, Tick>
799 DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
800 {
801 // If a request reaches a bank at tick 'inTime', how much time
802 // *after* that does it take to finish the request, depending
803 // on bank status and page open policy. Note that this method
804 // considers only the time taken for the actual read or write
805 // to complete, NOT any additional time thereafter for tRAS or
806 // tRP.
807 Tick accLat = 0;
808 Tick bankLat = 0;
809 rowHitFlag = false;
810 Tick potentialActTick;
811
812 const Bank& bank = dram_pkt->bankRef;
813
814 if (bank.openRow == dram_pkt->row) {
815 // When we have a row-buffer hit,
816 // we don't care about tRAS having expired or not,
817 // but do care about bank being free for access
818 rowHitFlag = true;
819
820 // When a series of requests arrive to the same row,
821 // DDR systems are capable of streaming data continuously
822 // at maximum bandwidth (subject to tCCD). Here, we approximate
823 // this condition, and assume that if whenever a bank is already
824 // busy and a new request comes in, it can be completed with no
825 // penalty beyond waiting for the existing read to complete.
826 if (bank.freeAt > inTime) {
827 accLat += bank.freeAt - inTime;
828 bankLat += 0;
829 } else {
830 // CAS latency only
831 accLat += tCL;
832 bankLat += tCL;
833 }
834 } else {
835 // Row-buffer miss, need to close existing row
836 // once tRAS has expired, then open the new one,
837 // then add cas latency.
838 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
839
840 if (freeTime > inTime)
841 accLat += freeTime - inTime;
842
843 // If the there is no open row, then there is no precharge
844 // delay, otherwise go with tRP
845 Tick precharge_delay = bank.openRow == Bank::NO_ROW ? 0 : tRP;
846
847 //The bank is free, and you may be able to activate
848 potentialActTick = inTime + accLat + precharge_delay;
849 if (potentialActTick < bank.actAllowedAt)
850 accLat += bank.actAllowedAt - potentialActTick;
851
852 accLat += precharge_delay + tRCD + tCL;
853 bankLat += precharge_delay + tRCD + tCL;
854 }
855
856 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
857 bankLat, accLat);
858
859 return make_pair(bankLat, accLat);
860 }
861
862 void
863 DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank,
864 uint16_t row)
865 {
866 assert(0 <= rank && rank < ranksPerChannel);
867 assert(actTicks[rank].size() == activationLimit);
868
869 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
870
871 // update the open row
872 assert(banks[rank][bank].openRow == Bank::NO_ROW);
873 banks[rank][bank].openRow = row;
874
875 // start counting anew, this covers both the case when we
876 // auto-precharged, and when this access is forced to
877 // precharge
878 banks[rank][bank].bytesAccessed = 0;
879 banks[rank][bank].rowAccesses = 0;
880
881 ++numBanksActive;
882 assert(numBanksActive <= banksPerRank * ranksPerChannel);
883
884 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
885 act_tick, numBanksActive);
886
887 // start by enforcing tRRD
888 for(int i = 0; i < banksPerRank; i++) {
889 // next activate must not happen before tRRD
890 banks[rank][i].actAllowedAt = act_tick + tRRD;
891 }
892
893 // tRC should be added to activation tick of the bank currently accessed,
894 // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
895 // bank is already captured by bank.freeAt and bank.tRASDoneAt
896 banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
897
898 // next, we deal with tXAW, if the activation limit is disabled
899 // then we are done
900 if (actTicks[rank].empty())
901 return;
902
903 // sanity check
904 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
905 // @todo For now, stick with a warning
906 warn("Got %d activates in window %d (%d - %d) which is smaller "
907 "than %d\n", activationLimit, act_tick - actTicks[rank].back(),
908 act_tick, actTicks[rank].back(), tXAW);
909 }
910
911 // shift the times used for the book keeping, the last element
912 // (highest index) is the oldest one and hence the lowest value
913 actTicks[rank].pop_back();
914
915 // record an new activation (in the future)
916 actTicks[rank].push_front(act_tick);
917
918 // cannot activate more than X times in time window tXAW, push the
919 // next one (the X + 1'st activate) to be tXAW away from the
920 // oldest in our window of X
921 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
922 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
923 "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
924 for(int j = 0; j < banksPerRank; j++)
925 // next activate must not happen before end of window
926 banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
927 }
928
929 // at the point when this activate takes place, make sure we
930 // transition to the active power state
931 if (!activateEvent.scheduled())
932 schedule(activateEvent, act_tick);
933 else if (activateEvent.when() > act_tick)
934 // move it sooner in time
935 reschedule(activateEvent, act_tick);
936 }
937
938 void
939 DRAMCtrl::processActivateEvent()
940 {
941 // we should transition to the active state as soon as any bank is active
942 if (pwrState != PWR_ACT)
943 // note that at this point numBanksActive could be back at
944 // zero again due to a precharge scheduled in the future
945 schedulePowerEvent(PWR_ACT, curTick());
946 }
947
948 void
949 DRAMCtrl::prechargeBank(Bank& bank, Tick free_at)
950 {
951 // make sure the bank has an open row
952 assert(bank.openRow != Bank::NO_ROW);
953
954 // sample the bytes per activate here since we are closing
955 // the page
956 bytesPerActivate.sample(bank.bytesAccessed);
957
958 bank.openRow = Bank::NO_ROW;
959
960 bank.freeAt = free_at;
961
962 assert(numBanksActive != 0);
963 --numBanksActive;
964
965 DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n",
966 bank.freeAt, numBanksActive);
967
968 // if we look at the current number of active banks we might be
969 // tempted to think the DRAM is now idle, however this can be
970 // undone by an activate that is scheduled to happen before we
971 // would have reached the idle state, so schedule an event and
972 // rather check once we actually make it to the point in time when
973 // the (last) precharge takes place
974 if (!prechargeEvent.scheduled())
975 schedule(prechargeEvent, free_at);
976 else if (prechargeEvent.when() < free_at)
977 reschedule(prechargeEvent, free_at);
978 }
979
980 void
981 DRAMCtrl::processPrechargeEvent()
982 {
983 // if we reached zero, then special conditions apply as we track
984 // if all banks are precharged for the power models
985 if (numBanksActive == 0) {
986 // we should transition to the idle state when the last bank
987 // is precharged
988 schedulePowerEvent(PWR_IDLE, curTick());
989 }
990 }
991
992 void
993 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
994 {
995
996 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
997 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
998
999 // estimate the bank and access latency
1000 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
1001 Tick bankLat = lat.first;
1002 Tick accessLat = lat.second;
1003 Tick actTick;
1004
1005 // This request was woken up at this time based on a prior call
1006 // to estimateLatency(). However, between then and now, both the
1007 // accessLatency and/or busBusyUntil may have changed. We need
1008 // to correct for that.
1009
1010 Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
1011 busBusyUntil - (curTick() + accessLat) : 0;
1012
1013 Bank& bank = dram_pkt->bankRef;
1014
1015 // Update bank state
1016 if (rowHitFlag) {
1017 bank.freeAt = curTick() + addDelay + accessLat;
1018 } else {
1019 // If there is a page open, precharge it.
1020 if (bank.openRow != Bank::NO_ROW) {
1021 prechargeBank(bank, std::max(std::max(bank.freeAt,
1022 bank.tRASDoneAt),
1023 curTick()) + tRP);
1024 }
1025
1026 // Any precharge is already part of the latency
1027 // estimation, so update the bank free time
1028 bank.freeAt = curTick() + addDelay + accessLat;
1029
1030 // any waiting for banks account for in freeAt
1031 actTick = bank.freeAt - tCL - tRCD;
1032
1033 // If you activated a new row do to this access, the next access
1034 // will have to respect tRAS for this bank
1035 bank.tRASDoneAt = actTick + tRAS;
1036
1037 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank,
1038 dram_pkt->row);
1039 }
1040
1041 // increment the bytes accessed and the accesses per row
1042 bank.bytesAccessed += burstSize;
1043 ++bank.rowAccesses;
1044
1045 // if we reached the max, then issue with an auto-precharge
1046 bool auto_precharge = pageMgmt == Enums::close ||
1047 bank.rowAccesses == maxAccessesPerRow;
1048
1049 // if we did not hit the limit, we might still want to
1050 // auto-precharge
1051 if (!auto_precharge &&
1052 (pageMgmt == Enums::open_adaptive ||
1053 pageMgmt == Enums::close_adaptive)) {
1054 // a twist on the open and close page policies:
1055 // 1) open_adaptive page policy does not blindly keep the
1056 // page open, but close it if there are no row hits, and there
1057 // are bank conflicts in the queue
1058 // 2) close_adaptive page policy does not blindly close the
1059 // page, but closes it only if there are no row hits in the queue.
1060 // In this case, only force an auto precharge when there
1061 // are no same page hits in the queue
1062 bool got_more_hits = false;
1063 bool got_bank_conflict = false;
1064
1065 // either look at the read queue or write queue
1066 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1067 writeQueue;
1068 auto p = queue.begin();
1069 // make sure we are not considering the packet that we are
1070 // currently dealing with (which is the head of the queue)
1071 ++p;
1072
1073 // keep on looking until we have found required condition or
1074 // reached the end
1075 while (!(got_more_hits &&
1076 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1077 p != queue.end()) {
1078 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1079 (dram_pkt->bank == (*p)->bank);
1080 bool same_row = dram_pkt->row == (*p)->row;
1081 got_more_hits |= same_rank_bank && same_row;
1082 got_bank_conflict |= same_rank_bank && !same_row;
1083 ++p;
1084 }
1085
1086 // auto pre-charge when either
1087 // 1) open_adaptive policy, we have not got any more hits, and
1088 // have a bank conflict
1089 // 2) close_adaptive policy and we have not got any more hits
1090 auto_precharge = !got_more_hits &&
1091 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1092 }
1093
1094 // if this access should use auto-precharge, then we are
1095 // closing the row
1096 if (auto_precharge) {
1097 prechargeBank(bank, std::max(bank.freeAt, bank.tRASDoneAt) + tRP);
1098
1099 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1100 }
1101
1102 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1103
1104 // Update request parameters
1105 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
1106
1107 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
1108 "readytime is %lld busbusyuntil is %lld. " \
1109 "Scheduling at readyTime\n", dram_pkt->addr,
1110 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
1111
1112 // Make sure requests are not overlapping on the databus
1113 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1114
1115 // Update bus state
1116 busBusyUntil = dram_pkt->readyTime;
1117
1118 DPRINTF(DRAM,"Access time is %lld\n",
1119 dram_pkt->readyTime - dram_pkt->entryTime);
1120
1121 // Update the minimum timing between the requests, this is a
1122 // conservative estimate of when we have to schedule the next
1123 // request to not introduce any unecessary bubbles. In most cases
1124 // we will wake up sooner than we have to.
1125 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1126
1127 // Update the stats and schedule the next request
1128 if (dram_pkt->isRead) {
1129 ++readsThisTime;
1130 if (rowHitFlag)
1131 readRowHits++;
1132 bytesReadDRAM += burstSize;
1133 perBankRdBursts[dram_pkt->bankId]++;
1134
1135 // Update latency stats
1136 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1137 totBankLat += bankLat;
1138 totBusLat += tBURST;
1139 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat -
1140 tBURST;
1141 } else {
1142 ++writesThisTime;
1143 if (rowHitFlag)
1144 writeRowHits++;
1145 bytesWritten += burstSize;
1146 perBankWrBursts[dram_pkt->bankId]++;
1147 }
1148 }
1149
1150 void
1151 DRAMCtrl::moveToRespQ()
1152 {
1153 // Remove from read queue
1154 DRAMPacket* dram_pkt = readQueue.front();
1155 readQueue.pop_front();
1156
1157 // sanity check
1158 assert(dram_pkt->size <= burstSize);
1159
1160 // Insert into response queue sorted by readyTime
1161 // It will be sent back to the requestor at its
1162 // readyTime
1163 if (respQueue.empty()) {
1164 respQueue.push_front(dram_pkt);
1165 assert(!respondEvent.scheduled());
1166 assert(dram_pkt->readyTime >= curTick());
1167 schedule(respondEvent, dram_pkt->readyTime);
1168 } else {
1169 bool done = false;
1170 auto i = respQueue.begin();
1171 while (!done && i != respQueue.end()) {
1172 if ((*i)->readyTime > dram_pkt->readyTime) {
1173 respQueue.insert(i, dram_pkt);
1174 done = true;
1175 }
1176 ++i;
1177 }
1178
1179 if (!done)
1180 respQueue.push_back(dram_pkt);
1181
1182 assert(respondEvent.scheduled());
1183
1184 if (respQueue.front()->readyTime < respondEvent.when()) {
1185 assert(respQueue.front()->readyTime >= curTick());
1186 reschedule(respondEvent, respQueue.front()->readyTime);
1187 }
1188 }
1189 }
1190
1191 void
1192 DRAMCtrl::processNextReqEvent()
1193 {
1194 if (busState == READ_TO_WRITE) {
1195 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1196 "waiting\n", readsThisTime, readQueue.size());
1197
1198 // sample and reset the read-related stats as we are now
1199 // transitioning to writes, and all reads are done
1200 rdPerTurnAround.sample(readsThisTime);
1201 readsThisTime = 0;
1202
1203 // now proceed to do the actual writes
1204 busState = WRITE;
1205 } else if (busState == WRITE_TO_READ) {
1206 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1207 "waiting\n", writesThisTime, writeQueue.size());
1208
1209 wrPerTurnAround.sample(writesThisTime);
1210 writesThisTime = 0;
1211
1212 busState = READ;
1213 }
1214
1215 if (refreshState != REF_IDLE) {
1216 // if a refresh waiting for this event loop to finish, then hand
1217 // over now, and do not schedule a new nextReqEvent
1218 if (refreshState == REF_DRAIN) {
1219 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1220
1221 refreshState = REF_PRE;
1222
1223 // hand control back to the refresh event loop
1224 schedule(refreshEvent, curTick());
1225 }
1226
1227 // let the refresh finish before issuing any further requests
1228 return;
1229 }
1230
1231 // when we get here it is either a read or a write
1232 if (busState == READ) {
1233
1234 // track if we should switch or not
1235 bool switch_to_writes = false;
1236
1237 if (readQueue.empty()) {
1238 // In the case there is no read request to go next,
1239 // trigger writes if we have passed the low threshold (or
1240 // if we are draining)
1241 if (!writeQueue.empty() &&
1242 (drainManager || writeQueue.size() > writeLowThreshold)) {
1243
1244 switch_to_writes = true;
1245 } else {
1246 // check if we are drained
1247 if (respQueue.empty () && drainManager) {
1248 drainManager->signalDrainDone();
1249 drainManager = NULL;
1250 }
1251
1252 // nothing to do, not even any point in scheduling an
1253 // event for the next request
1254 return;
1255 }
1256 } else {
1257 // Figure out which read request goes next, and move it to the
1258 // front of the read queue
1259 chooseNext(readQueue);
1260
1261 doDRAMAccess(readQueue.front());
1262
1263 // At this point we're done dealing with the request
1264 // It will be moved to a separate response queue with a
1265 // correct readyTime, and eventually be sent back at that
1266 // time
1267 moveToRespQ();
1268
1269 // we have so many writes that we have to transition
1270 if (writeQueue.size() > writeHighThreshold) {
1271 switch_to_writes = true;
1272 }
1273 }
1274
1275 // switching to writes, either because the read queue is empty
1276 // and the writes have passed the low threshold (or we are
1277 // draining), or because the writes hit the hight threshold
1278 if (switch_to_writes) {
1279 // transition to writing
1280 busState = READ_TO_WRITE;
1281
1282 // add a bubble to the data bus, as defined by the
1283 // tRTW parameter
1284 busBusyUntil += tRTW;
1285
1286 // update the minimum timing between the requests,
1287 // this shifts us back in time far enough to do any
1288 // bank preparation
1289 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1290 }
1291 } else {
1292 chooseNext(writeQueue);
1293 DRAMPacket* dram_pkt = writeQueue.front();
1294 // sanity check
1295 assert(dram_pkt->size <= burstSize);
1296 doDRAMAccess(dram_pkt);
1297
1298 writeQueue.pop_front();
1299 delete dram_pkt;
1300
1301 // If we emptied the write queue, or got sufficiently below the
1302 // threshold (using the minWritesPerSwitch as the hysteresis) and
1303 // are not draining, or we have reads waiting and have done enough
1304 // writes, then switch to reads.
1305 if (writeQueue.empty() ||
1306 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1307 !drainManager) ||
1308 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1309 // turn the bus back around for reads again
1310 busState = WRITE_TO_READ;
1311
1312 // note that the we switch back to reads also in the idle
1313 // case, which eventually will check for any draining and
1314 // also pause any further scheduling if there is really
1315 // nothing to do
1316
1317 // here we get a bit creative and shift the bus busy time not
1318 // just the tWTR, but also a CAS latency to capture the fact
1319 // that we are allowed to prepare a new bank, but not issue a
1320 // read command until after tWTR, in essence we capture a
1321 // bubble on the data bus that is tWTR + tCL
1322 busBusyUntil += tWTR + tCL;
1323
1324 // update the minimum timing between the requests, this shifts
1325 // us back in time far enough to do any bank preparation
1326 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1327 }
1328 }
1329
1330 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1331
1332 // If there is space available and we have writes waiting then let
1333 // them retry. This is done here to ensure that the retry does not
1334 // cause a nextReqEvent to be scheduled before we do so as part of
1335 // the next request processing
1336 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1337 retryWrReq = false;
1338 port.sendRetry();
1339 }
1340 }
1341
1342 uint64_t
1343 DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
1344 {
1345 uint64_t bank_mask = 0;
1346 Tick freeAt = MaxTick;
1347
1348 // detemrine if we have queued transactions targetting the
1349 // bank in question
1350 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1351 for (auto p = queue.begin(); p != queue.end(); ++p) {
1352 got_waiting[(*p)->bankId] = true;
1353 }
1354
1355 for (int i = 0; i < ranksPerChannel; i++) {
1356 for (int j = 0; j < banksPerRank; j++) {
1357 // if we have waiting requests for the bank, and it is
1358 // amongst the first available, update the mask
1359 if (got_waiting[i * banksPerRank + j] &&
1360 banks[i][j].freeAt <= freeAt) {
1361 // reset bank mask if new minimum is found
1362 if (banks[i][j].freeAt < freeAt)
1363 bank_mask = 0;
1364 // set the bit corresponding to the available bank
1365 uint8_t bit_index = i * ranksPerChannel + j;
1366 replaceBits(bank_mask, bit_index, bit_index, 1);
1367 freeAt = banks[i][j].freeAt;
1368 }
1369 }
1370 }
1371 return bank_mask;
1372 }
1373
1374 void
1375 DRAMCtrl::processRefreshEvent()
1376 {
1377 // when first preparing the refresh, remember when it was due
1378 if (refreshState == REF_IDLE) {
1379 // remember when the refresh is due
1380 refreshDueAt = curTick();
1381
1382 // proceed to drain
1383 refreshState = REF_DRAIN;
1384
1385 DPRINTF(DRAM, "Refresh due\n");
1386 }
1387
1388 // let any scheduled read or write go ahead, after which it will
1389 // hand control back to this event loop
1390 if (refreshState == REF_DRAIN) {
1391 if (nextReqEvent.scheduled()) {
1392 // hand control over to the request loop until it is
1393 // evaluated next
1394 DPRINTF(DRAM, "Refresh awaiting draining\n");
1395
1396 return;
1397 } else {
1398 refreshState = REF_PRE;
1399 }
1400 }
1401
1402 // at this point, ensure that all banks are precharged
1403 if (refreshState == REF_PRE) {
1404 // precharge any active bank if we are not already in the idle
1405 // state
1406 if (pwrState != PWR_IDLE) {
1407 DPRINTF(DRAM, "Precharging all\n");
1408 for (int i = 0; i < ranksPerChannel; i++) {
1409 for (int j = 0; j < banksPerRank; j++) {
1410 if (banks[i][j].openRow != Bank::NO_ROW) {
1411 // respect both causality and any existing bank
1412 // constraints
1413 Tick free_at =
1414 std::max(std::max(banks[i][j].freeAt,
1415 banks[i][j].tRASDoneAt),
1416 curTick()) + tRP;
1417
1418 prechargeBank(banks[i][j], free_at);
1419 }
1420 }
1421 }
1422 } else {
1423 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1424
1425 // go ahead and kick the power state machine into gear if
1426 // we are already idle
1427 schedulePowerEvent(PWR_REF, curTick());
1428 }
1429
1430 refreshState = REF_RUN;
1431 assert(numBanksActive == 0);
1432
1433 // wait for all banks to be precharged, at which point the
1434 // power state machine will transition to the idle state, and
1435 // automatically move to a refresh, at that point it will also
1436 // call this method to get the refresh event loop going again
1437 return;
1438 }
1439
1440 // last but not least we perform the actual refresh
1441 if (refreshState == REF_RUN) {
1442 // should never get here with any banks active
1443 assert(numBanksActive == 0);
1444 assert(pwrState == PWR_REF);
1445
1446 Tick banksFree = curTick() + tRFC;
1447
1448 for (int i = 0; i < ranksPerChannel; i++) {
1449 for (int j = 0; j < banksPerRank; j++) {
1450 banks[i][j].freeAt = banksFree;
1451 }
1452 }
1453
1454 // make sure we did not wait so long that we cannot make up
1455 // for it
1456 if (refreshDueAt + tREFI < banksFree) {
1457 fatal("Refresh was delayed so long we cannot catch up\n");
1458 }
1459
1460 // compensate for the delay in actually performing the refresh
1461 // when scheduling the next one
1462 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1463
1464 assert(!powerEvent.scheduled());
1465
1466 // move to the idle power state once the refresh is done, this
1467 // will also move the refresh state machine to the refresh
1468 // idle state
1469 schedulePowerEvent(PWR_IDLE, banksFree);
1470
1471 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1472 banksFree, refreshDueAt + tREFI);
1473 }
1474 }
1475
1476 void
1477 DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1478 {
1479 // respect causality
1480 assert(tick >= curTick());
1481
1482 if (!powerEvent.scheduled()) {
1483 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1484 tick, pwr_state);
1485
1486 // insert the new transition
1487 pwrStateTrans = pwr_state;
1488
1489 schedule(powerEvent, tick);
1490 } else {
1491 panic("Scheduled power event at %llu to state %d, "
1492 "with scheduled event at %llu to %d\n", tick, pwr_state,
1493 powerEvent.when(), pwrStateTrans);
1494 }
1495 }
1496
1497 void
1498 DRAMCtrl::processPowerEvent()
1499 {
1500 // remember where we were, and for how long
1501 Tick duration = curTick() - pwrStateTick;
1502 PowerState prev_state = pwrState;
1503
1504 // update the accounting
1505 pwrStateTime[prev_state] += duration;
1506
1507 pwrState = pwrStateTrans;
1508 pwrStateTick = curTick();
1509
1510 if (pwrState == PWR_IDLE) {
1511 DPRINTF(DRAMState, "All banks precharged\n");
1512
1513 // if we were refreshing, make sure we start scheduling requests again
1514 if (prev_state == PWR_REF) {
1515 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1516 assert(pwrState == PWR_IDLE);
1517
1518 // kick things into action again
1519 refreshState = REF_IDLE;
1520 assert(!nextReqEvent.scheduled());
1521 schedule(nextReqEvent, curTick());
1522 } else {
1523 assert(prev_state == PWR_ACT);
1524
1525 // if we have a pending refresh, and are now moving to
1526 // the idle state, direclty transition to a refresh
1527 if (refreshState == REF_RUN) {
1528 // there should be nothing waiting at this point
1529 assert(!powerEvent.scheduled());
1530
1531 // update the state in zero time and proceed below
1532 pwrState = PWR_REF;
1533 }
1534 }
1535 }
1536
1537 // we transition to the refresh state, let the refresh state
1538 // machine know of this state update and let it deal with the
1539 // scheduling of the next power state transition as well as the
1540 // following refresh
1541 if (pwrState == PWR_REF) {
1542 DPRINTF(DRAMState, "Refreshing\n");
1543 // kick the refresh event loop into action again, and that
1544 // in turn will schedule a transition to the idle power
1545 // state once the refresh is done
1546 assert(refreshState == REF_RUN);
1547 processRefreshEvent();
1548 }
1549 }
1550
1551 void
1552 DRAMCtrl::regStats()
1553 {
1554 using namespace Stats;
1555
1556 AbstractMemory::regStats();
1557
1558 readReqs
1559 .name(name() + ".readReqs")
1560 .desc("Number of read requests accepted");
1561
1562 writeReqs
1563 .name(name() + ".writeReqs")
1564 .desc("Number of write requests accepted");
1565
1566 readBursts
1567 .name(name() + ".readBursts")
1568 .desc("Number of DRAM read bursts, "
1569 "including those serviced by the write queue");
1570
1571 writeBursts
1572 .name(name() + ".writeBursts")
1573 .desc("Number of DRAM write bursts, "
1574 "including those merged in the write queue");
1575
1576 servicedByWrQ
1577 .name(name() + ".servicedByWrQ")
1578 .desc("Number of DRAM read bursts serviced by the write queue");
1579
1580 mergedWrBursts
1581 .name(name() + ".mergedWrBursts")
1582 .desc("Number of DRAM write bursts merged with an existing one");
1583
1584 neitherReadNorWrite
1585 .name(name() + ".neitherReadNorWriteReqs")
1586 .desc("Number of requests that are neither read nor write");
1587
1588 perBankRdBursts
1589 .init(banksPerRank * ranksPerChannel)
1590 .name(name() + ".perBankRdBursts")
1591 .desc("Per bank write bursts");
1592
1593 perBankWrBursts
1594 .init(banksPerRank * ranksPerChannel)
1595 .name(name() + ".perBankWrBursts")
1596 .desc("Per bank write bursts");
1597
1598 avgRdQLen
1599 .name(name() + ".avgRdQLen")
1600 .desc("Average read queue length when enqueuing")
1601 .precision(2);
1602
1603 avgWrQLen
1604 .name(name() + ".avgWrQLen")
1605 .desc("Average write queue length when enqueuing")
1606 .precision(2);
1607
1608 totQLat
1609 .name(name() + ".totQLat")
1610 .desc("Total ticks spent queuing");
1611
1612 totBankLat
1613 .name(name() + ".totBankLat")
1614 .desc("Total ticks spent accessing banks");
1615
1616 totBusLat
1617 .name(name() + ".totBusLat")
1618 .desc("Total ticks spent in databus transfers");
1619
1620 totMemAccLat
1621 .name(name() + ".totMemAccLat")
1622 .desc("Total ticks spent from burst creation until serviced "
1623 "by the DRAM");
1624
1625 avgQLat
1626 .name(name() + ".avgQLat")
1627 .desc("Average queueing delay per DRAM burst")
1628 .precision(2);
1629
1630 avgQLat = totQLat / (readBursts - servicedByWrQ);
1631
1632 avgBankLat
1633 .name(name() + ".avgBankLat")
1634 .desc("Average bank access latency per DRAM burst")
1635 .precision(2);
1636
1637 avgBankLat = totBankLat / (readBursts - servicedByWrQ);
1638
1639 avgBusLat
1640 .name(name() + ".avgBusLat")
1641 .desc("Average bus latency per DRAM burst")
1642 .precision(2);
1643
1644 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1645
1646 avgMemAccLat
1647 .name(name() + ".avgMemAccLat")
1648 .desc("Average memory access latency per DRAM burst")
1649 .precision(2);
1650
1651 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1652
1653 numRdRetry
1654 .name(name() + ".numRdRetry")
1655 .desc("Number of times read queue was full causing retry");
1656
1657 numWrRetry
1658 .name(name() + ".numWrRetry")
1659 .desc("Number of times write queue was full causing retry");
1660
1661 readRowHits
1662 .name(name() + ".readRowHits")
1663 .desc("Number of row buffer hits during reads");
1664
1665 writeRowHits
1666 .name(name() + ".writeRowHits")
1667 .desc("Number of row buffer hits during writes");
1668
1669 readRowHitRate
1670 .name(name() + ".readRowHitRate")
1671 .desc("Row buffer hit rate for reads")
1672 .precision(2);
1673
1674 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1675
1676 writeRowHitRate
1677 .name(name() + ".writeRowHitRate")
1678 .desc("Row buffer hit rate for writes")
1679 .precision(2);
1680
1681 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1682
1683 readPktSize
1684 .init(ceilLog2(burstSize) + 1)
1685 .name(name() + ".readPktSize")
1686 .desc("Read request sizes (log2)");
1687
1688 writePktSize
1689 .init(ceilLog2(burstSize) + 1)
1690 .name(name() + ".writePktSize")
1691 .desc("Write request sizes (log2)");
1692
1693 rdQLenPdf
1694 .init(readBufferSize)
1695 .name(name() + ".rdQLenPdf")
1696 .desc("What read queue length does an incoming req see");
1697
1698 wrQLenPdf
1699 .init(writeBufferSize)
1700 .name(name() + ".wrQLenPdf")
1701 .desc("What write queue length does an incoming req see");
1702
1703 bytesPerActivate
1704 .init(maxAccessesPerRow)
1705 .name(name() + ".bytesPerActivate")
1706 .desc("Bytes accessed per row activation")
1707 .flags(nozero);
1708
1709 rdPerTurnAround
1710 .init(readBufferSize)
1711 .name(name() + ".rdPerTurnAround")
1712 .desc("Reads before turning the bus around for writes")
1713 .flags(nozero);
1714
1715 wrPerTurnAround
1716 .init(writeBufferSize)
1717 .name(name() + ".wrPerTurnAround")
1718 .desc("Writes before turning the bus around for reads")
1719 .flags(nozero);
1720
1721 bytesReadDRAM
1722 .name(name() + ".bytesReadDRAM")
1723 .desc("Total number of bytes read from DRAM");
1724
1725 bytesReadWrQ
1726 .name(name() + ".bytesReadWrQ")
1727 .desc("Total number of bytes read from write queue");
1728
1729 bytesWritten
1730 .name(name() + ".bytesWritten")
1731 .desc("Total number of bytes written to DRAM");
1732
1733 bytesReadSys
1734 .name(name() + ".bytesReadSys")
1735 .desc("Total read bytes from the system interface side");
1736
1737 bytesWrittenSys
1738 .name(name() + ".bytesWrittenSys")
1739 .desc("Total written bytes from the system interface side");
1740
1741 avgRdBW
1742 .name(name() + ".avgRdBW")
1743 .desc("Average DRAM read bandwidth in MiByte/s")
1744 .precision(2);
1745
1746 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1747
1748 avgWrBW
1749 .name(name() + ".avgWrBW")
1750 .desc("Average achieved write bandwidth in MiByte/s")
1751 .precision(2);
1752
1753 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1754
1755 avgRdBWSys
1756 .name(name() + ".avgRdBWSys")
1757 .desc("Average system read bandwidth in MiByte/s")
1758 .precision(2);
1759
1760 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1761
1762 avgWrBWSys
1763 .name(name() + ".avgWrBWSys")
1764 .desc("Average system write bandwidth in MiByte/s")
1765 .precision(2);
1766
1767 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1768
1769 peakBW
1770 .name(name() + ".peakBW")
1771 .desc("Theoretical peak bandwidth in MiByte/s")
1772 .precision(2);
1773
1774 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1775
1776 busUtil
1777 .name(name() + ".busUtil")
1778 .desc("Data bus utilization in percentage")
1779 .precision(2);
1780
1781 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1782
1783 totGap
1784 .name(name() + ".totGap")
1785 .desc("Total gap between requests");
1786
1787 avgGap
1788 .name(name() + ".avgGap")
1789 .desc("Average gap between requests")
1790 .precision(2);
1791
1792 avgGap = totGap / (readReqs + writeReqs);
1793
1794 // Stats for DRAM Power calculation based on Micron datasheet
1795 busUtilRead
1796 .name(name() + ".busUtilRead")
1797 .desc("Data bus utilization in percentage for reads")
1798 .precision(2);
1799
1800 busUtilRead = avgRdBW / peakBW * 100;
1801
1802 busUtilWrite
1803 .name(name() + ".busUtilWrite")
1804 .desc("Data bus utilization in percentage for writes")
1805 .precision(2);
1806
1807 busUtilWrite = avgWrBW / peakBW * 100;
1808
1809 pageHitRate
1810 .name(name() + ".pageHitRate")
1811 .desc("Row buffer hit rate, read and write combined")
1812 .precision(2);
1813
1814 pageHitRate = (writeRowHits + readRowHits) /
1815 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1816
1817 pwrStateTime
1818 .init(5)
1819 .name(name() + ".memoryStateTime")
1820 .desc("Time in different power states");
1821 pwrStateTime.subname(0, "IDLE");
1822 pwrStateTime.subname(1, "REF");
1823 pwrStateTime.subname(2, "PRE_PDN");
1824 pwrStateTime.subname(3, "ACT");
1825 pwrStateTime.subname(4, "ACT_PDN");
1826 }
1827
1828 void
1829 DRAMCtrl::recvFunctional(PacketPtr pkt)
1830 {
1831 // rely on the abstract memory
1832 functionalAccess(pkt);
1833 }
1834
1835 BaseSlavePort&
1836 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1837 {
1838 if (if_name != "port") {
1839 return MemObject::getSlavePort(if_name, idx);
1840 } else {
1841 return port;
1842 }
1843 }
1844
1845 unsigned int
1846 DRAMCtrl::drain(DrainManager *dm)
1847 {
1848 unsigned int count = port.drain(dm);
1849
1850 // if there is anything in any of our internal queues, keep track
1851 // of that as well
1852 if (!(writeQueue.empty() && readQueue.empty() &&
1853 respQueue.empty())) {
1854 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1855 " resp: %d\n", writeQueue.size(), readQueue.size(),
1856 respQueue.size());
1857 ++count;
1858 drainManager = dm;
1859
1860 // the only part that is not drained automatically over time
1861 // is the write queue, thus kick things into action if needed
1862 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1863 schedule(nextReqEvent, curTick());
1864 }
1865 }
1866
1867 if (count)
1868 setDrainState(Drainable::Draining);
1869 else
1870 setDrainState(Drainable::Drained);
1871 return count;
1872 }
1873
1874 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1875 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1876 memory(_memory)
1877 { }
1878
1879 AddrRangeList
1880 DRAMCtrl::MemoryPort::getAddrRanges() const
1881 {
1882 AddrRangeList ranges;
1883 ranges.push_back(memory.getAddrRange());
1884 return ranges;
1885 }
1886
1887 void
1888 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1889 {
1890 pkt->pushLabel(memory.name());
1891
1892 if (!queue.checkFunctional(pkt)) {
1893 // Default implementation of SimpleTimingPort::recvFunctional()
1894 // calls recvAtomic() and throws away the latency; we can save a
1895 // little here by just not calculating the latency.
1896 memory.recvFunctional(pkt);
1897 }
1898
1899 pkt->popLabel();
1900 }
1901
1902 Tick
1903 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1904 {
1905 return memory.recvAtomic(pkt);
1906 }
1907
1908 bool
1909 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1910 {
1911 // pass it to the memory controller
1912 return memory.recvTimingReq(pkt);
1913 }
1914
1915 DRAMCtrl*
1916 DRAMCtrlParams::create()
1917 {
1918 return new DRAMCtrl(this);
1919 }