ruby: slicc: remove nextLineHack from Type.py
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46 #include "base/bitfield.hh"
47 #include "base/trace.hh"
48 #include "debug/DRAM.hh"
49 #include "debug/DRAMPower.hh"
50 #include "debug/DRAMState.hh"
51 #include "debug/Drain.hh"
52 #include "mem/dram_ctrl.hh"
53 #include "sim/system.hh"
54
55 using namespace std;
56 using namespace Data;
57
58 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
63 nextReqEvent(this), respondEvent(this),
64 deviceSize(p->device_size),
65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66 deviceRowBufferSize(p->device_rowbuffer_size),
67 devicesPerRank(p->devices_per_rank),
68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69 rowBufferSize(devicesPerRank * deviceRowBufferSize),
70 columnsPerRowBuffer(rowBufferSize / burstSize),
71 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
72 ranksPerChannel(p->ranks_per_channel),
73 bankGroupsPerRank(p->bank_groups_per_rank),
74 bankGroupArch(p->bank_groups_per_rank > 0),
75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
76 readBufferSize(p->read_buffer_size),
77 writeBufferSize(p->write_buffer_size),
78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80 minWritesPerSwitch(p->min_writes_per_switch),
81 writesThisTime(0), readsThisTime(0),
82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
87 pageMgmt(p->page_policy),
88 maxAccessesPerRow(p->max_accesses_per_row),
89 frontendLatency(p->static_frontend_latency),
90 backendLatency(p->static_backend_latency),
91 busBusyUntil(0), prevArrival(0),
92 nextReqTime(0), activeRank(0), timeStampOffset(0)
93 {
94 // sanity check the ranks since we rely on bit slicing for the
95 // address decoding
96 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
97 "allowed, must be a power of two\n", ranksPerChannel);
98
99 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
100 "must be a power of two\n", burstSize);
101
102 for (int i = 0; i < ranksPerChannel; i++) {
103 Rank* rank = new Rank(*this, p);
104 ranks.push_back(rank);
105
106 rank->actTicks.resize(activationLimit, 0);
107 rank->banks.resize(banksPerRank);
108 rank->rank = i;
109
110 for (int b = 0; b < banksPerRank; b++) {
111 rank->banks[b].bank = b;
112 // GDDR addressing of banks to BG is linear.
113 // Here we assume that all DRAM generations address bank groups as
114 // follows:
115 if (bankGroupArch) {
116 // Simply assign lower bits to bank group in order to
117 // rotate across bank groups as banks are incremented
118 // e.g. with 4 banks per bank group and 16 banks total:
119 // banks 0,4,8,12 are in bank group 0
120 // banks 1,5,9,13 are in bank group 1
121 // banks 2,6,10,14 are in bank group 2
122 // banks 3,7,11,15 are in bank group 3
123 rank->banks[b].bankgr = b % bankGroupsPerRank;
124 } else {
125 // No bank groups; simply assign to bank number
126 rank->banks[b].bankgr = b;
127 }
128 }
129 }
130
131 // perform a basic check of the write thresholds
132 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
133 fatal("Write buffer low threshold %d must be smaller than the "
134 "high threshold %d\n", p->write_low_thresh_perc,
135 p->write_high_thresh_perc);
136
137 // determine the rows per bank by looking at the total capacity
138 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
139
140 // determine the dram actual capacity from the DRAM config in Mbytes
141 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
142 ranksPerChannel;
143
144 // if actual DRAM size does not match memory capacity in system warn!
145 if (deviceCapacity != capacity / (1024 * 1024))
146 warn("DRAM device capacity (%d Mbytes) does not match the "
147 "address range assigned (%d Mbytes)\n", deviceCapacity,
148 capacity / (1024 * 1024));
149
150 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
151 AbstractMemory::size());
152
153 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
154 rowBufferSize, columnsPerRowBuffer);
155
156 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
157
158 // some basic sanity checks
159 if (tREFI <= tRP || tREFI <= tRFC) {
160 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
161 tREFI, tRP, tRFC);
162 }
163
164 // basic bank group architecture checks ->
165 if (bankGroupArch) {
166 // must have at least one bank per bank group
167 if (bankGroupsPerRank > banksPerRank) {
168 fatal("banks per rank (%d) must be equal to or larger than "
169 "banks groups per rank (%d)\n",
170 banksPerRank, bankGroupsPerRank);
171 }
172 // must have same number of banks in each bank group
173 if ((banksPerRank % bankGroupsPerRank) != 0) {
174 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
175 "per rank (%d) for equal banks per bank group\n",
176 banksPerRank, bankGroupsPerRank);
177 }
178 // tCCD_L should be greater than minimal, back-to-back burst delay
179 if (tCCD_L <= tBURST) {
180 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
181 "bank groups per rank (%d) is greater than 1\n",
182 tCCD_L, tBURST, bankGroupsPerRank);
183 }
184 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
185 // some datasheets might specify it equal to tRRD
186 if (tRRD_L < tRRD) {
187 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
188 "bank groups per rank (%d) is greater than 1\n",
189 tRRD_L, tRRD, bankGroupsPerRank);
190 }
191 }
192
193 }
194
195 void
196 DRAMCtrl::init()
197 {
198 AbstractMemory::init();
199
200 if (!port.isConnected()) {
201 fatal("DRAMCtrl %s is unconnected!\n", name());
202 } else {
203 port.sendRangeChange();
204 }
205
206 // a bit of sanity checks on the interleaving, save it for here to
207 // ensure that the system pointer is initialised
208 if (range.interleaved()) {
209 if (channels != range.stripes())
210 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
211 name(), range.stripes(), channels);
212
213 if (addrMapping == Enums::RoRaBaChCo) {
214 if (rowBufferSize != range.granularity()) {
215 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
216 "address map\n", name());
217 }
218 } else if (addrMapping == Enums::RoRaBaCoCh ||
219 addrMapping == Enums::RoCoRaBaCh) {
220 // for the interleavings with channel bits in the bottom,
221 // if the system uses a channel striping granularity that
222 // is larger than the DRAM burst size, then map the
223 // sequential accesses within a stripe to a number of
224 // columns in the DRAM, effectively placing some of the
225 // lower-order column bits as the least-significant bits
226 // of the address (above the ones denoting the burst size)
227 assert(columnsPerStripe >= 1);
228
229 // channel striping has to be done at a granularity that
230 // is equal or larger to a cache line
231 if (system()->cacheLineSize() > range.granularity()) {
232 fatal("Channel interleaving of %s must be at least as large "
233 "as the cache line size\n", name());
234 }
235
236 // ...and equal or smaller than the row-buffer size
237 if (rowBufferSize < range.granularity()) {
238 fatal("Channel interleaving of %s must be at most as large "
239 "as the row-buffer size\n", name());
240 }
241 // this is essentially the check above, so just to be sure
242 assert(columnsPerStripe <= columnsPerRowBuffer);
243 }
244 }
245 }
246
247 void
248 DRAMCtrl::startup()
249 {
250 // remember the memory system mode of operation
251 isTimingMode = system()->isTimingMode();
252
253 if (isTimingMode) {
254 // timestamp offset should be in clock cycles for DRAMPower
255 timeStampOffset = divCeil(curTick(), tCK);
256
257 // update the start tick for the precharge accounting to the
258 // current tick
259 for (auto r : ranks) {
260 r->startup(curTick() + tREFI - tRP);
261 }
262
263 // shift the bus busy time sufficiently far ahead that we never
264 // have to worry about negative values when computing the time for
265 // the next request, this will add an insignificant bubble at the
266 // start of simulation
267 busBusyUntil = curTick() + tRP + tRCD + tCL;
268 }
269 }
270
271 Tick
272 DRAMCtrl::recvAtomic(PacketPtr pkt)
273 {
274 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
275
276 // do the actual memory access and turn the packet into a response
277 access(pkt);
278
279 Tick latency = 0;
280 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
281 // this value is not supposed to be accurate, just enough to
282 // keep things going, mimic a closed page
283 latency = tRP + tRCD + tCL;
284 }
285 return latency;
286 }
287
288 bool
289 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
290 {
291 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
292 readBufferSize, readQueue.size() + respQueue.size(),
293 neededEntries);
294
295 return
296 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
297 }
298
299 bool
300 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
301 {
302 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
303 writeBufferSize, writeQueue.size(), neededEntries);
304 return (writeQueue.size() + neededEntries) > writeBufferSize;
305 }
306
307 DRAMCtrl::DRAMPacket*
308 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
309 bool isRead)
310 {
311 // decode the address based on the address mapping scheme, with
312 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
313 // channel, respectively
314 uint8_t rank;
315 uint8_t bank;
316 // use a 64-bit unsigned during the computations as the row is
317 // always the top bits, and check before creating the DRAMPacket
318 uint64_t row;
319
320 // truncate the address to a DRAM burst, which makes it unique to
321 // a specific column, row, bank, rank and channel
322 Addr addr = dramPktAddr / burstSize;
323
324 // we have removed the lowest order address bits that denote the
325 // position within the column
326 if (addrMapping == Enums::RoRaBaChCo) {
327 // the lowest order bits denote the column to ensure that
328 // sequential cache lines occupy the same row
329 addr = addr / columnsPerRowBuffer;
330
331 // take out the channel part of the address
332 addr = addr / channels;
333
334 // after the channel bits, get the bank bits to interleave
335 // over the banks
336 bank = addr % banksPerRank;
337 addr = addr / banksPerRank;
338
339 // after the bank, we get the rank bits which thus interleaves
340 // over the ranks
341 rank = addr % ranksPerChannel;
342 addr = addr / ranksPerChannel;
343
344 // lastly, get the row bits
345 row = addr % rowsPerBank;
346 addr = addr / rowsPerBank;
347 } else if (addrMapping == Enums::RoRaBaCoCh) {
348 // take out the lower-order column bits
349 addr = addr / columnsPerStripe;
350
351 // take out the channel part of the address
352 addr = addr / channels;
353
354 // next, the higher-order column bites
355 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
356
357 // after the column bits, we get the bank bits to interleave
358 // over the banks
359 bank = addr % banksPerRank;
360 addr = addr / banksPerRank;
361
362 // after the bank, we get the rank bits which thus interleaves
363 // over the ranks
364 rank = addr % ranksPerChannel;
365 addr = addr / ranksPerChannel;
366
367 // lastly, get the row bits
368 row = addr % rowsPerBank;
369 addr = addr / rowsPerBank;
370 } else if (addrMapping == Enums::RoCoRaBaCh) {
371 // optimise for closed page mode and utilise maximum
372 // parallelism of the DRAM (at the cost of power)
373
374 // take out the lower-order column bits
375 addr = addr / columnsPerStripe;
376
377 // take out the channel part of the address, not that this has
378 // to match with how accesses are interleaved between the
379 // controllers in the address mapping
380 addr = addr / channels;
381
382 // start with the bank bits, as this provides the maximum
383 // opportunity for parallelism between requests
384 bank = addr % banksPerRank;
385 addr = addr / banksPerRank;
386
387 // next get the rank bits
388 rank = addr % ranksPerChannel;
389 addr = addr / ranksPerChannel;
390
391 // next, the higher-order column bites
392 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
393
394 // lastly, get the row bits
395 row = addr % rowsPerBank;
396 addr = addr / rowsPerBank;
397 } else
398 panic("Unknown address mapping policy chosen!");
399
400 assert(rank < ranksPerChannel);
401 assert(bank < banksPerRank);
402 assert(row < rowsPerBank);
403 assert(row < Bank::NO_ROW);
404
405 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
406 dramPktAddr, rank, bank, row);
407
408 // create the corresponding DRAM packet with the entry time and
409 // ready time set to the current tick, the latter will be updated
410 // later
411 uint16_t bank_id = banksPerRank * rank + bank;
412 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
413 size, ranks[rank]->banks[bank], *ranks[rank]);
414 }
415
416 void
417 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
418 {
419 // only add to the read queue here. whenever the request is
420 // eventually done, set the readyTime, and call schedule()
421 assert(!pkt->isWrite());
422
423 assert(pktCount != 0);
424
425 // if the request size is larger than burst size, the pkt is split into
426 // multiple DRAM packets
427 // Note if the pkt starting address is not aligened to burst size, the
428 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
429 // are aligned to burst size boundaries. This is to ensure we accurately
430 // check read packets against packets in write queue.
431 Addr addr = pkt->getAddr();
432 unsigned pktsServicedByWrQ = 0;
433 BurstHelper* burst_helper = NULL;
434 for (int cnt = 0; cnt < pktCount; ++cnt) {
435 unsigned size = std::min((addr | (burstSize - 1)) + 1,
436 pkt->getAddr() + pkt->getSize()) - addr;
437 readPktSize[ceilLog2(size)]++;
438 readBursts++;
439
440 // First check write buffer to see if the data is already at
441 // the controller
442 bool foundInWrQ = false;
443 Addr burst_addr = burstAlign(addr);
444 // if the burst address is not present then there is no need
445 // looking any further
446 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
447 for (const auto& p : writeQueue) {
448 // check if the read is subsumed in the write queue
449 // packet we are looking at
450 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
451 foundInWrQ = true;
452 servicedByWrQ++;
453 pktsServicedByWrQ++;
454 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
455 "write queue\n", addr, size);
456 bytesReadWrQ += burstSize;
457 break;
458 }
459 }
460 }
461
462 // If not found in the write q, make a DRAM packet and
463 // push it onto the read queue
464 if (!foundInWrQ) {
465
466 // Make the burst helper for split packets
467 if (pktCount > 1 && burst_helper == NULL) {
468 DPRINTF(DRAM, "Read to addr %lld translates to %d "
469 "dram requests\n", pkt->getAddr(), pktCount);
470 burst_helper = new BurstHelper(pktCount);
471 }
472
473 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
474 dram_pkt->burstHelper = burst_helper;
475
476 assert(!readQueueFull(1));
477 rdQLenPdf[readQueue.size() + respQueue.size()]++;
478
479 DPRINTF(DRAM, "Adding to read queue\n");
480
481 readQueue.push_back(dram_pkt);
482
483 // Update stats
484 avgRdQLen = readQueue.size() + respQueue.size();
485 }
486
487 // Starting address of next dram pkt (aligend to burstSize boundary)
488 addr = (addr | (burstSize - 1)) + 1;
489 }
490
491 // If all packets are serviced by write queue, we send the repsonse back
492 if (pktsServicedByWrQ == pktCount) {
493 accessAndRespond(pkt, frontendLatency);
494 return;
495 }
496
497 // Update how many split packets are serviced by write queue
498 if (burst_helper != NULL)
499 burst_helper->burstsServiced = pktsServicedByWrQ;
500
501 // If we are not already scheduled to get a request out of the
502 // queue, do so now
503 if (!nextReqEvent.scheduled()) {
504 DPRINTF(DRAM, "Request scheduled immediately\n");
505 schedule(nextReqEvent, curTick());
506 }
507 }
508
509 void
510 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
511 {
512 // only add to the write queue here. whenever the request is
513 // eventually done, set the readyTime, and call schedule()
514 assert(pkt->isWrite());
515
516 // if the request size is larger than burst size, the pkt is split into
517 // multiple DRAM packets
518 Addr addr = pkt->getAddr();
519 for (int cnt = 0; cnt < pktCount; ++cnt) {
520 unsigned size = std::min((addr | (burstSize - 1)) + 1,
521 pkt->getAddr() + pkt->getSize()) - addr;
522 writePktSize[ceilLog2(size)]++;
523 writeBursts++;
524
525 // see if we can merge with an existing item in the write
526 // queue and keep track of whether we have merged or not
527 bool merged = isInWriteQueue.find(burstAlign(addr)) !=
528 isInWriteQueue.end();
529
530 // if the item was not merged we need to create a new write
531 // and enqueue it
532 if (!merged) {
533 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
534
535 assert(writeQueue.size() < writeBufferSize);
536 wrQLenPdf[writeQueue.size()]++;
537
538 DPRINTF(DRAM, "Adding to write queue\n");
539
540 writeQueue.push_back(dram_pkt);
541 isInWriteQueue.insert(burstAlign(addr));
542 assert(writeQueue.size() == isInWriteQueue.size());
543
544 // Update stats
545 avgWrQLen = writeQueue.size();
546 } else {
547 DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
548
549 // keep track of the fact that this burst effectively
550 // disappeared as it was merged with an existing one
551 mergedWrBursts++;
552 }
553
554 // Starting address of next dram pkt (aligend to burstSize boundary)
555 addr = (addr | (burstSize - 1)) + 1;
556 }
557
558 // we do not wait for the writes to be send to the actual memory,
559 // but instead take responsibility for the consistency here and
560 // snoop the write queue for any upcoming reads
561 // @todo, if a pkt size is larger than burst size, we might need a
562 // different front end latency
563 accessAndRespond(pkt, frontendLatency);
564
565 // If we are not already scheduled to get a request out of the
566 // queue, do so now
567 if (!nextReqEvent.scheduled()) {
568 DPRINTF(DRAM, "Request scheduled immediately\n");
569 schedule(nextReqEvent, curTick());
570 }
571 }
572
573 void
574 DRAMCtrl::printQs() const {
575 DPRINTF(DRAM, "===READ QUEUE===\n\n");
576 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
577 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
578 }
579 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
580 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
581 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
582 }
583 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
584 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
585 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
586 }
587 }
588
589 bool
590 DRAMCtrl::recvTimingReq(PacketPtr pkt)
591 {
592 /// @todo temporary hack to deal with memory corruption issues until
593 /// 4-phase transactions are complete
594 for (int x = 0; x < pendingDelete.size(); x++)
595 delete pendingDelete[x];
596 pendingDelete.clear();
597
598 // This is where we enter from the outside world
599 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
600 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
601
602 // simply drop inhibited packets and clean evictions
603 if (pkt->memInhibitAsserted() ||
604 pkt->cmd == MemCmd::CleanEvict) {
605 DPRINTF(DRAM, "Inhibited packet or clean evict -- Dropping it now\n");
606 pendingDelete.push_back(pkt);
607 return true;
608 }
609
610 // Calc avg gap between requests
611 if (prevArrival != 0) {
612 totGap += curTick() - prevArrival;
613 }
614 prevArrival = curTick();
615
616
617 // Find out how many dram packets a pkt translates to
618 // If the burst size is equal or larger than the pkt size, then a pkt
619 // translates to only one dram packet. Otherwise, a pkt translates to
620 // multiple dram packets
621 unsigned size = pkt->getSize();
622 unsigned offset = pkt->getAddr() & (burstSize - 1);
623 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
624
625 // check local buffers and do not accept if full
626 if (pkt->isRead()) {
627 assert(size != 0);
628 if (readQueueFull(dram_pkt_count)) {
629 DPRINTF(DRAM, "Read queue full, not accepting\n");
630 // remember that we have to retry this port
631 retryRdReq = true;
632 numRdRetry++;
633 return false;
634 } else {
635 addToReadQueue(pkt, dram_pkt_count);
636 readReqs++;
637 bytesReadSys += size;
638 }
639 } else if (pkt->isWrite()) {
640 assert(size != 0);
641 if (writeQueueFull(dram_pkt_count)) {
642 DPRINTF(DRAM, "Write queue full, not accepting\n");
643 // remember that we have to retry this port
644 retryWrReq = true;
645 numWrRetry++;
646 return false;
647 } else {
648 addToWriteQueue(pkt, dram_pkt_count);
649 writeReqs++;
650 bytesWrittenSys += size;
651 }
652 } else {
653 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
654 neitherReadNorWrite++;
655 accessAndRespond(pkt, 1);
656 }
657
658 return true;
659 }
660
661 void
662 DRAMCtrl::processRespondEvent()
663 {
664 DPRINTF(DRAM,
665 "processRespondEvent(): Some req has reached its readyTime\n");
666
667 DRAMPacket* dram_pkt = respQueue.front();
668
669 if (dram_pkt->burstHelper) {
670 // it is a split packet
671 dram_pkt->burstHelper->burstsServiced++;
672 if (dram_pkt->burstHelper->burstsServiced ==
673 dram_pkt->burstHelper->burstCount) {
674 // we have now serviced all children packets of a system packet
675 // so we can now respond to the requester
676 // @todo we probably want to have a different front end and back
677 // end latency for split packets
678 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
679 delete dram_pkt->burstHelper;
680 dram_pkt->burstHelper = NULL;
681 }
682 } else {
683 // it is not a split packet
684 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
685 }
686
687 delete respQueue.front();
688 respQueue.pop_front();
689
690 if (!respQueue.empty()) {
691 assert(respQueue.front()->readyTime >= curTick());
692 assert(!respondEvent.scheduled());
693 schedule(respondEvent, respQueue.front()->readyTime);
694 } else {
695 // if there is nothing left in any queue, signal a drain
696 if (drainState() == DrainState::Draining &&
697 writeQueue.empty() && readQueue.empty()) {
698
699 DPRINTF(Drain, "DRAM controller done draining\n");
700 signalDrainDone();
701 }
702 }
703
704 // We have made a location in the queue available at this point,
705 // so if there is a read that was forced to wait, retry now
706 if (retryRdReq) {
707 retryRdReq = false;
708 port.sendRetryReq();
709 }
710 }
711
712 bool
713 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
714 {
715 // This method does the arbitration between requests. The chosen
716 // packet is simply moved to the head of the queue. The other
717 // methods know that this is the place to look. For example, with
718 // FCFS, this method does nothing
719 assert(!queue.empty());
720
721 // bool to indicate if a packet to an available rank is found
722 bool found_packet = false;
723 if (queue.size() == 1) {
724 DRAMPacket* dram_pkt = queue.front();
725 // available rank corresponds to state refresh idle
726 if (ranks[dram_pkt->rank]->isAvailable()) {
727 found_packet = true;
728 DPRINTF(DRAM, "Single request, going to a free rank\n");
729 } else {
730 DPRINTF(DRAM, "Single request, going to a busy rank\n");
731 }
732 return found_packet;
733 }
734
735 if (memSchedPolicy == Enums::fcfs) {
736 // check if there is a packet going to a free rank
737 for(auto i = queue.begin(); i != queue.end() ; ++i) {
738 DRAMPacket* dram_pkt = *i;
739 if (ranks[dram_pkt->rank]->isAvailable()) {
740 queue.erase(i);
741 queue.push_front(dram_pkt);
742 found_packet = true;
743 break;
744 }
745 }
746 } else if (memSchedPolicy == Enums::frfcfs) {
747 found_packet = reorderQueue(queue, extra_col_delay);
748 } else
749 panic("No scheduling policy chosen\n");
750 return found_packet;
751 }
752
753 bool
754 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
755 {
756 // Only determine this if needed
757 uint64_t earliest_banks = 0;
758 bool hidden_bank_prep = false;
759
760 // search for seamless row hits first, if no seamless row hit is
761 // found then determine if there are other packets that can be issued
762 // without incurring additional bus delay due to bank timing
763 // Will select closed rows first to enable more open row possibilies
764 // in future selections
765 bool found_hidden_bank = false;
766
767 // remember if we found a row hit, not seamless, but bank prepped
768 // and ready
769 bool found_prepped_pkt = false;
770
771 // if we have no row hit, prepped or not, and no seamless packet,
772 // just go for the earliest possible
773 bool found_earliest_pkt = false;
774
775 auto selected_pkt_it = queue.end();
776
777 // time we need to issue a column command to be seamless
778 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
779 curTick());
780
781 for (auto i = queue.begin(); i != queue.end() ; ++i) {
782 DRAMPacket* dram_pkt = *i;
783 const Bank& bank = dram_pkt->bankRef;
784
785 // check if rank is available, if not, jump to the next packet
786 if (dram_pkt->rankRef.isAvailable()) {
787 // check if it is a row hit
788 if (bank.openRow == dram_pkt->row) {
789 // no additional rank-to-rank or same bank-group
790 // delays, or we switched read/write and might as well
791 // go for the row hit
792 if (bank.colAllowedAt <= min_col_at) {
793 // FCFS within the hits, giving priority to
794 // commands that can issue seamlessly, without
795 // additional delay, such as same rank accesses
796 // and/or different bank-group accesses
797 DPRINTF(DRAM, "Seamless row buffer hit\n");
798 selected_pkt_it = i;
799 // no need to look through the remaining queue entries
800 break;
801 } else if (!found_hidden_bank && !found_prepped_pkt) {
802 // if we did not find a packet to a closed row that can
803 // issue the bank commands without incurring delay, and
804 // did not yet find a packet to a prepped row, remember
805 // the current one
806 selected_pkt_it = i;
807 found_prepped_pkt = true;
808 DPRINTF(DRAM, "Prepped row buffer hit\n");
809 }
810 } else if (!found_earliest_pkt) {
811 // if we have not initialised the bank status, do it
812 // now, and only once per scheduling decisions
813 if (earliest_banks == 0) {
814 // determine entries with earliest bank delay
815 pair<uint64_t, bool> bankStatus =
816 minBankPrep(queue, min_col_at);
817 earliest_banks = bankStatus.first;
818 hidden_bank_prep = bankStatus.second;
819 }
820
821 // bank is amongst first available banks
822 // minBankPrep will give priority to packets that can
823 // issue seamlessly
824 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
825 found_earliest_pkt = true;
826 found_hidden_bank = hidden_bank_prep;
827
828 // give priority to packets that can issue
829 // bank commands 'behind the scenes'
830 // any additional delay if any will be due to
831 // col-to-col command requirements
832 if (hidden_bank_prep || !found_prepped_pkt)
833 selected_pkt_it = i;
834 }
835 }
836 }
837 }
838
839 if (selected_pkt_it != queue.end()) {
840 DRAMPacket* selected_pkt = *selected_pkt_it;
841 queue.erase(selected_pkt_it);
842 queue.push_front(selected_pkt);
843 return true;
844 }
845
846 return false;
847 }
848
849 void
850 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
851 {
852 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
853
854 bool needsResponse = pkt->needsResponse();
855 // do the actual memory access which also turns the packet into a
856 // response
857 access(pkt);
858
859 // turn packet around to go back to requester if response expected
860 if (needsResponse) {
861 // access already turned the packet into a response
862 assert(pkt->isResponse());
863 // response_time consumes the static latency and is charged also
864 // with headerDelay that takes into account the delay provided by
865 // the xbar and also the payloadDelay that takes into account the
866 // number of data beats.
867 Tick response_time = curTick() + static_latency + pkt->headerDelay +
868 pkt->payloadDelay;
869 // Here we reset the timing of the packet before sending it out.
870 pkt->headerDelay = pkt->payloadDelay = 0;
871
872 // queue the packet in the response queue to be sent out after
873 // the static latency has passed
874 port.schedTimingResp(pkt, response_time);
875 } else {
876 // @todo the packet is going to be deleted, and the DRAMPacket
877 // is still having a pointer to it
878 pendingDelete.push_back(pkt);
879 }
880
881 DPRINTF(DRAM, "Done\n");
882
883 return;
884 }
885
886 void
887 DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
888 Tick act_tick, uint32_t row)
889 {
890 assert(rank_ref.actTicks.size() == activationLimit);
891
892 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
893
894 // update the open row
895 assert(bank_ref.openRow == Bank::NO_ROW);
896 bank_ref.openRow = row;
897
898 // start counting anew, this covers both the case when we
899 // auto-precharged, and when this access is forced to
900 // precharge
901 bank_ref.bytesAccessed = 0;
902 bank_ref.rowAccesses = 0;
903
904 ++rank_ref.numBanksActive;
905 assert(rank_ref.numBanksActive <= banksPerRank);
906
907 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
908 bank_ref.bank, rank_ref.rank, act_tick,
909 ranks[rank_ref.rank]->numBanksActive);
910
911 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
912 divCeil(act_tick, tCK) -
913 timeStampOffset);
914
915 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
916 timeStampOffset, bank_ref.bank, rank_ref.rank);
917
918 // The next access has to respect tRAS for this bank
919 bank_ref.preAllowedAt = act_tick + tRAS;
920
921 // Respect the row-to-column command delay
922 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
923
924 // start by enforcing tRRD
925 for(int i = 0; i < banksPerRank; i++) {
926 // next activate to any bank in this rank must not happen
927 // before tRRD
928 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
929 // bank group architecture requires longer delays between
930 // ACT commands within the same bank group. Use tRRD_L
931 // in this case
932 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
933 rank_ref.banks[i].actAllowedAt);
934 } else {
935 // use shorter tRRD value when either
936 // 1) bank group architecture is not supportted
937 // 2) bank is in a different bank group
938 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
939 rank_ref.banks[i].actAllowedAt);
940 }
941 }
942
943 // next, we deal with tXAW, if the activation limit is disabled
944 // then we directly schedule an activate power event
945 if (!rank_ref.actTicks.empty()) {
946 // sanity check
947 if (rank_ref.actTicks.back() &&
948 (act_tick - rank_ref.actTicks.back()) < tXAW) {
949 panic("Got %d activates in window %d (%llu - %llu) which "
950 "is smaller than %llu\n", activationLimit, act_tick -
951 rank_ref.actTicks.back(), act_tick,
952 rank_ref.actTicks.back(), tXAW);
953 }
954
955 // shift the times used for the book keeping, the last element
956 // (highest index) is the oldest one and hence the lowest value
957 rank_ref.actTicks.pop_back();
958
959 // record an new activation (in the future)
960 rank_ref.actTicks.push_front(act_tick);
961
962 // cannot activate more than X times in time window tXAW, push the
963 // next one (the X + 1'st activate) to be tXAW away from the
964 // oldest in our window of X
965 if (rank_ref.actTicks.back() &&
966 (act_tick - rank_ref.actTicks.back()) < tXAW) {
967 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
968 "no earlier than %llu\n", activationLimit,
969 rank_ref.actTicks.back() + tXAW);
970 for(int j = 0; j < banksPerRank; j++)
971 // next activate must not happen before end of window
972 rank_ref.banks[j].actAllowedAt =
973 std::max(rank_ref.actTicks.back() + tXAW,
974 rank_ref.banks[j].actAllowedAt);
975 }
976 }
977
978 // at the point when this activate takes place, make sure we
979 // transition to the active power state
980 if (!rank_ref.activateEvent.scheduled())
981 schedule(rank_ref.activateEvent, act_tick);
982 else if (rank_ref.activateEvent.when() > act_tick)
983 // move it sooner in time
984 reschedule(rank_ref.activateEvent, act_tick);
985 }
986
987 void
988 DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
989 {
990 // make sure the bank has an open row
991 assert(bank.openRow != Bank::NO_ROW);
992
993 // sample the bytes per activate here since we are closing
994 // the page
995 bytesPerActivate.sample(bank.bytesAccessed);
996
997 bank.openRow = Bank::NO_ROW;
998
999 // no precharge allowed before this one
1000 bank.preAllowedAt = pre_at;
1001
1002 Tick pre_done_at = pre_at + tRP;
1003
1004 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1005
1006 assert(rank_ref.numBanksActive != 0);
1007 --rank_ref.numBanksActive;
1008
1009 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1010 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1011 rank_ref.numBanksActive);
1012
1013 if (trace) {
1014
1015 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1016 divCeil(pre_at, tCK) -
1017 timeStampOffset);
1018 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1019 timeStampOffset, bank.bank, rank_ref.rank);
1020 }
1021 // if we look at the current number of active banks we might be
1022 // tempted to think the DRAM is now idle, however this can be
1023 // undone by an activate that is scheduled to happen before we
1024 // would have reached the idle state, so schedule an event and
1025 // rather check once we actually make it to the point in time when
1026 // the (last) precharge takes place
1027 if (!rank_ref.prechargeEvent.scheduled())
1028 schedule(rank_ref.prechargeEvent, pre_done_at);
1029 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1030 reschedule(rank_ref.prechargeEvent, pre_done_at);
1031 }
1032
1033 void
1034 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1035 {
1036 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1037 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1038
1039 // get the rank
1040 Rank& rank = dram_pkt->rankRef;
1041
1042 // get the bank
1043 Bank& bank = dram_pkt->bankRef;
1044
1045 // for the state we need to track if it is a row hit or not
1046 bool row_hit = true;
1047
1048 // respect any constraints on the command (e.g. tRCD or tCCD)
1049 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1050
1051 // Determine the access latency and update the bank state
1052 if (bank.openRow == dram_pkt->row) {
1053 // nothing to do
1054 } else {
1055 row_hit = false;
1056
1057 // If there is a page open, precharge it.
1058 if (bank.openRow != Bank::NO_ROW) {
1059 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1060 }
1061
1062 // next we need to account for the delay in activating the
1063 // page
1064 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1065
1066 // Record the activation and deal with all the global timing
1067 // constraints caused be a new activation (tRRD and tXAW)
1068 activateBank(rank, bank, act_tick, dram_pkt->row);
1069
1070 // issue the command as early as possible
1071 cmd_at = bank.colAllowedAt;
1072 }
1073
1074 // we need to wait until the bus is available before we can issue
1075 // the command
1076 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1077
1078 // update the packet ready time
1079 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1080
1081 // only one burst can use the bus at any one point in time
1082 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1083
1084 // update the time for the next read/write burst for each
1085 // bank (add a max with tCCD/tCCD_L here)
1086 Tick cmd_dly;
1087 for(int j = 0; j < ranksPerChannel; j++) {
1088 for(int i = 0; i < banksPerRank; i++) {
1089 // next burst to same bank group in this rank must not happen
1090 // before tCCD_L. Different bank group timing requirement is
1091 // tBURST; Add tCS for different ranks
1092 if (dram_pkt->rank == j) {
1093 if (bankGroupArch &&
1094 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1095 // bank group architecture requires longer delays between
1096 // RD/WR burst commands to the same bank group.
1097 // Use tCCD_L in this case
1098 cmd_dly = tCCD_L;
1099 } else {
1100 // use tBURST (equivalent to tCCD_S), the shorter
1101 // cas-to-cas delay value, when either:
1102 // 1) bank group architecture is not supportted
1103 // 2) bank is in a different bank group
1104 cmd_dly = tBURST;
1105 }
1106 } else {
1107 // different rank is by default in a different bank group
1108 // use tBURST (equivalent to tCCD_S), which is the shorter
1109 // cas-to-cas delay in this case
1110 // Add tCS to account for rank-to-rank bus delay requirements
1111 cmd_dly = tBURST + tCS;
1112 }
1113 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1114 ranks[j]->banks[i].colAllowedAt);
1115 }
1116 }
1117
1118 // Save rank of current access
1119 activeRank = dram_pkt->rank;
1120
1121 // If this is a write, we also need to respect the write recovery
1122 // time before a precharge, in the case of a read, respect the
1123 // read to precharge constraint
1124 bank.preAllowedAt = std::max(bank.preAllowedAt,
1125 dram_pkt->isRead ? cmd_at + tRTP :
1126 dram_pkt->readyTime + tWR);
1127
1128 // increment the bytes accessed and the accesses per row
1129 bank.bytesAccessed += burstSize;
1130 ++bank.rowAccesses;
1131
1132 // if we reached the max, then issue with an auto-precharge
1133 bool auto_precharge = pageMgmt == Enums::close ||
1134 bank.rowAccesses == maxAccessesPerRow;
1135
1136 // if we did not hit the limit, we might still want to
1137 // auto-precharge
1138 if (!auto_precharge &&
1139 (pageMgmt == Enums::open_adaptive ||
1140 pageMgmt == Enums::close_adaptive)) {
1141 // a twist on the open and close page policies:
1142 // 1) open_adaptive page policy does not blindly keep the
1143 // page open, but close it if there are no row hits, and there
1144 // are bank conflicts in the queue
1145 // 2) close_adaptive page policy does not blindly close the
1146 // page, but closes it only if there are no row hits in the queue.
1147 // In this case, only force an auto precharge when there
1148 // are no same page hits in the queue
1149 bool got_more_hits = false;
1150 bool got_bank_conflict = false;
1151
1152 // either look at the read queue or write queue
1153 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1154 writeQueue;
1155 auto p = queue.begin();
1156 // make sure we are not considering the packet that we are
1157 // currently dealing with (which is the head of the queue)
1158 ++p;
1159
1160 // keep on looking until we find a hit or reach the end of the queue
1161 // 1) if a hit is found, then both open and close adaptive policies keep
1162 // the page open
1163 // 2) if no hit is found, got_bank_conflict is set to true if a bank
1164 // conflict request is waiting in the queue
1165 while (!got_more_hits && p != queue.end()) {
1166 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1167 (dram_pkt->bank == (*p)->bank);
1168 bool same_row = dram_pkt->row == (*p)->row;
1169 got_more_hits |= same_rank_bank && same_row;
1170 got_bank_conflict |= same_rank_bank && !same_row;
1171 ++p;
1172 }
1173
1174 // auto pre-charge when either
1175 // 1) open_adaptive policy, we have not got any more hits, and
1176 // have a bank conflict
1177 // 2) close_adaptive policy and we have not got any more hits
1178 auto_precharge = !got_more_hits &&
1179 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1180 }
1181
1182 // DRAMPower trace command to be written
1183 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1184
1185 // MemCommand required for DRAMPower library
1186 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1187 MemCommand::WR;
1188
1189 // if this access should use auto-precharge, then we are
1190 // closing the row
1191 if (auto_precharge) {
1192 // if auto-precharge push a PRE command at the correct tick to the
1193 // list used by DRAMPower library to calculate power
1194 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1195
1196 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1197 }
1198
1199 // Update bus state
1200 busBusyUntil = dram_pkt->readyTime;
1201
1202 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1203 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1204
1205 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1206 divCeil(cmd_at, tCK) -
1207 timeStampOffset);
1208
1209 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1210 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1211
1212 // Update the minimum timing between the requests, this is a
1213 // conservative estimate of when we have to schedule the next
1214 // request to not introduce any unecessary bubbles. In most cases
1215 // we will wake up sooner than we have to.
1216 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1217
1218 // Update the stats and schedule the next request
1219 if (dram_pkt->isRead) {
1220 ++readsThisTime;
1221 if (row_hit)
1222 readRowHits++;
1223 bytesReadDRAM += burstSize;
1224 perBankRdBursts[dram_pkt->bankId]++;
1225
1226 // Update latency stats
1227 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1228 totBusLat += tBURST;
1229 totQLat += cmd_at - dram_pkt->entryTime;
1230 } else {
1231 ++writesThisTime;
1232 if (row_hit)
1233 writeRowHits++;
1234 bytesWritten += burstSize;
1235 perBankWrBursts[dram_pkt->bankId]++;
1236 }
1237 }
1238
1239 void
1240 DRAMCtrl::processNextReqEvent()
1241 {
1242 int busyRanks = 0;
1243 for (auto r : ranks) {
1244 if (!r->isAvailable()) {
1245 // rank is busy refreshing
1246 busyRanks++;
1247
1248 // let the rank know that if it was waiting to drain, it
1249 // is now done and ready to proceed
1250 r->checkDrainDone();
1251 }
1252 }
1253
1254 if (busyRanks == ranksPerChannel) {
1255 // if all ranks are refreshing wait for them to finish
1256 // and stall this state machine without taking any further
1257 // action, and do not schedule a new nextReqEvent
1258 return;
1259 }
1260
1261 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1262 // or WRITE_TO_READ state
1263 bool switched_cmd_type = false;
1264 if (busState == READ_TO_WRITE) {
1265 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1266 "waiting\n", readsThisTime, readQueue.size());
1267
1268 // sample and reset the read-related stats as we are now
1269 // transitioning to writes, and all reads are done
1270 rdPerTurnAround.sample(readsThisTime);
1271 readsThisTime = 0;
1272
1273 // now proceed to do the actual writes
1274 busState = WRITE;
1275 switched_cmd_type = true;
1276 } else if (busState == WRITE_TO_READ) {
1277 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1278 "waiting\n", writesThisTime, writeQueue.size());
1279
1280 wrPerTurnAround.sample(writesThisTime);
1281 writesThisTime = 0;
1282
1283 busState = READ;
1284 switched_cmd_type = true;
1285 }
1286
1287 // when we get here it is either a read or a write
1288 if (busState == READ) {
1289
1290 // track if we should switch or not
1291 bool switch_to_writes = false;
1292
1293 if (readQueue.empty()) {
1294 // In the case there is no read request to go next,
1295 // trigger writes if we have passed the low threshold (or
1296 // if we are draining)
1297 if (!writeQueue.empty() &&
1298 (drainState() == DrainState::Draining ||
1299 writeQueue.size() > writeLowThreshold)) {
1300
1301 switch_to_writes = true;
1302 } else {
1303 // check if we are drained
1304 if (drainState() == DrainState::Draining &&
1305 respQueue.empty()) {
1306
1307 DPRINTF(Drain, "DRAM controller done draining\n");
1308 signalDrainDone();
1309 }
1310
1311 // nothing to do, not even any point in scheduling an
1312 // event for the next request
1313 return;
1314 }
1315 } else {
1316 // bool to check if there is a read to a free rank
1317 bool found_read = false;
1318
1319 // Figure out which read request goes next, and move it to the
1320 // front of the read queue
1321 // If we are changing command type, incorporate the minimum
1322 // bus turnaround delay which will be tCS (different rank) case
1323 found_read = chooseNext(readQueue,
1324 switched_cmd_type ? tCS : 0);
1325
1326 // if no read to an available rank is found then return
1327 // at this point. There could be writes to the available ranks
1328 // which are above the required threshold. However, to
1329 // avoid adding more complexity to the code, return and wait
1330 // for a refresh event to kick things into action again.
1331 if (!found_read)
1332 return;
1333
1334 DRAMPacket* dram_pkt = readQueue.front();
1335 assert(dram_pkt->rankRef.isAvailable());
1336 // here we get a bit creative and shift the bus busy time not
1337 // just the tWTR, but also a CAS latency to capture the fact
1338 // that we are allowed to prepare a new bank, but not issue a
1339 // read command until after tWTR, in essence we capture a
1340 // bubble on the data bus that is tWTR + tCL
1341 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1342 busBusyUntil += tWTR + tCL;
1343 }
1344
1345 doDRAMAccess(dram_pkt);
1346
1347 // At this point we're done dealing with the request
1348 readQueue.pop_front();
1349
1350 // sanity check
1351 assert(dram_pkt->size <= burstSize);
1352 assert(dram_pkt->readyTime >= curTick());
1353
1354 // Insert into response queue. It will be sent back to the
1355 // requestor at its readyTime
1356 if (respQueue.empty()) {
1357 assert(!respondEvent.scheduled());
1358 schedule(respondEvent, dram_pkt->readyTime);
1359 } else {
1360 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1361 assert(respondEvent.scheduled());
1362 }
1363
1364 respQueue.push_back(dram_pkt);
1365
1366 // we have so many writes that we have to transition
1367 if (writeQueue.size() > writeHighThreshold) {
1368 switch_to_writes = true;
1369 }
1370 }
1371
1372 // switching to writes, either because the read queue is empty
1373 // and the writes have passed the low threshold (or we are
1374 // draining), or because the writes hit the hight threshold
1375 if (switch_to_writes) {
1376 // transition to writing
1377 busState = READ_TO_WRITE;
1378 }
1379 } else {
1380 // bool to check if write to free rank is found
1381 bool found_write = false;
1382
1383 // If we are changing command type, incorporate the minimum
1384 // bus turnaround delay
1385 found_write = chooseNext(writeQueue,
1386 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1387
1388 // if no writes to an available rank are found then return.
1389 // There could be reads to the available ranks. However, to avoid
1390 // adding more complexity to the code, return at this point and wait
1391 // for a refresh event to kick things into action again.
1392 if (!found_write)
1393 return;
1394
1395 DRAMPacket* dram_pkt = writeQueue.front();
1396 assert(dram_pkt->rankRef.isAvailable());
1397 // sanity check
1398 assert(dram_pkt->size <= burstSize);
1399
1400 // add a bubble to the data bus, as defined by the
1401 // tRTW when access is to the same rank as previous burst
1402 // Different rank timing is handled with tCS, which is
1403 // applied to colAllowedAt
1404 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1405 busBusyUntil += tRTW;
1406 }
1407
1408 doDRAMAccess(dram_pkt);
1409
1410 writeQueue.pop_front();
1411 isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1412 delete dram_pkt;
1413
1414 // If we emptied the write queue, or got sufficiently below the
1415 // threshold (using the minWritesPerSwitch as the hysteresis) and
1416 // are not draining, or we have reads waiting and have done enough
1417 // writes, then switch to reads.
1418 if (writeQueue.empty() ||
1419 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1420 drainState() != DrainState::Draining) ||
1421 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1422 // turn the bus back around for reads again
1423 busState = WRITE_TO_READ;
1424
1425 // note that the we switch back to reads also in the idle
1426 // case, which eventually will check for any draining and
1427 // also pause any further scheduling if there is really
1428 // nothing to do
1429 }
1430 }
1431 // It is possible that a refresh to another rank kicks things back into
1432 // action before reaching this point.
1433 if (!nextReqEvent.scheduled())
1434 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1435
1436 // If there is space available and we have writes waiting then let
1437 // them retry. This is done here to ensure that the retry does not
1438 // cause a nextReqEvent to be scheduled before we do so as part of
1439 // the next request processing
1440 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1441 retryWrReq = false;
1442 port.sendRetryReq();
1443 }
1444 }
1445
1446 pair<uint64_t, bool>
1447 DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1448 Tick min_col_at) const
1449 {
1450 uint64_t bank_mask = 0;
1451 Tick min_act_at = MaxTick;
1452
1453 // latest Tick for which ACT can occur without incurring additoinal
1454 // delay on the data bus
1455 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1456
1457 // Flag condition when burst can issue back-to-back with previous burst
1458 bool found_seamless_bank = false;
1459
1460 // Flag condition when bank can be opened without incurring additional
1461 // delay on the data bus
1462 bool hidden_bank_prep = false;
1463
1464 // determine if we have queued transactions targetting the
1465 // bank in question
1466 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1467 for (const auto& p : queue) {
1468 if(p->rankRef.isAvailable())
1469 got_waiting[p->bankId] = true;
1470 }
1471
1472 // Find command with optimal bank timing
1473 // Will prioritize commands that can issue seamlessly.
1474 for (int i = 0; i < ranksPerChannel; i++) {
1475 for (int j = 0; j < banksPerRank; j++) {
1476 uint16_t bank_id = i * banksPerRank + j;
1477
1478 // if we have waiting requests for the bank, and it is
1479 // amongst the first available, update the mask
1480 if (got_waiting[bank_id]) {
1481 // make sure this rank is not currently refreshing.
1482 assert(ranks[i]->isAvailable());
1483 // simplistic approximation of when the bank can issue
1484 // an activate, ignoring any rank-to-rank switching
1485 // cost in this calculation
1486 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1487 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1488 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1489
1490 // When is the earliest the R/W burst can issue?
1491 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1492 act_at + tRCD);
1493
1494 // bank can issue burst back-to-back (seamlessly) with
1495 // previous burst
1496 bool new_seamless_bank = col_at <= min_col_at;
1497
1498 // if we found a new seamless bank or we have no
1499 // seamless banks, and got a bank with an earlier
1500 // activate time, it should be added to the bit mask
1501 if (new_seamless_bank ||
1502 (!found_seamless_bank && act_at <= min_act_at)) {
1503 // if we did not have a seamless bank before, and
1504 // we do now, reset the bank mask, also reset it
1505 // if we have not yet found a seamless bank and
1506 // the activate time is smaller than what we have
1507 // seen so far
1508 if (!found_seamless_bank &&
1509 (new_seamless_bank || act_at < min_act_at)) {
1510 bank_mask = 0;
1511 }
1512
1513 found_seamless_bank |= new_seamless_bank;
1514
1515 // ACT can occur 'behind the scenes'
1516 hidden_bank_prep = act_at <= hidden_act_max;
1517
1518 // set the bit corresponding to the available bank
1519 replaceBits(bank_mask, bank_id, bank_id, 1);
1520 min_act_at = act_at;
1521 }
1522 }
1523 }
1524 }
1525
1526 return make_pair(bank_mask, hidden_bank_prep);
1527 }
1528
1529 DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1530 : EventManager(&_memory), memory(_memory),
1531 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1532 refreshState(REF_IDLE), refreshDueAt(0),
1533 power(_p, false), numBanksActive(0),
1534 activateEvent(*this), prechargeEvent(*this),
1535 refreshEvent(*this), powerEvent(*this)
1536 { }
1537
1538 void
1539 DRAMCtrl::Rank::startup(Tick ref_tick)
1540 {
1541 assert(ref_tick > curTick());
1542
1543 pwrStateTick = curTick();
1544
1545 // kick off the refresh, and give ourselves enough time to
1546 // precharge
1547 schedule(refreshEvent, ref_tick);
1548 }
1549
1550 void
1551 DRAMCtrl::Rank::suspend()
1552 {
1553 deschedule(refreshEvent);
1554 }
1555
1556 void
1557 DRAMCtrl::Rank::checkDrainDone()
1558 {
1559 // if this rank was waiting to drain it is now able to proceed to
1560 // precharge
1561 if (refreshState == REF_DRAIN) {
1562 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1563
1564 refreshState = REF_PRE;
1565
1566 // hand control back to the refresh event loop
1567 schedule(refreshEvent, curTick());
1568 }
1569 }
1570
1571 void
1572 DRAMCtrl::Rank::processActivateEvent()
1573 {
1574 // we should transition to the active state as soon as any bank is active
1575 if (pwrState != PWR_ACT)
1576 // note that at this point numBanksActive could be back at
1577 // zero again due to a precharge scheduled in the future
1578 schedulePowerEvent(PWR_ACT, curTick());
1579 }
1580
1581 void
1582 DRAMCtrl::Rank::processPrechargeEvent()
1583 {
1584 // if we reached zero, then special conditions apply as we track
1585 // if all banks are precharged for the power models
1586 if (numBanksActive == 0) {
1587 // we should transition to the idle state when the last bank
1588 // is precharged
1589 schedulePowerEvent(PWR_IDLE, curTick());
1590 }
1591 }
1592
1593 void
1594 DRAMCtrl::Rank::processRefreshEvent()
1595 {
1596 // when first preparing the refresh, remember when it was due
1597 if (refreshState == REF_IDLE) {
1598 // remember when the refresh is due
1599 refreshDueAt = curTick();
1600
1601 // proceed to drain
1602 refreshState = REF_DRAIN;
1603
1604 DPRINTF(DRAM, "Refresh due\n");
1605 }
1606
1607 // let any scheduled read or write to the same rank go ahead,
1608 // after which it will
1609 // hand control back to this event loop
1610 if (refreshState == REF_DRAIN) {
1611 // if a request is at the moment being handled and this request is
1612 // accessing the current rank then wait for it to finish
1613 if ((rank == memory.activeRank)
1614 && (memory.nextReqEvent.scheduled())) {
1615 // hand control over to the request loop until it is
1616 // evaluated next
1617 DPRINTF(DRAM, "Refresh awaiting draining\n");
1618
1619 return;
1620 } else {
1621 refreshState = REF_PRE;
1622 }
1623 }
1624
1625 // at this point, ensure that all banks are precharged
1626 if (refreshState == REF_PRE) {
1627 // precharge any active bank if we are not already in the idle
1628 // state
1629 if (pwrState != PWR_IDLE) {
1630 // at the moment, we use a precharge all even if there is
1631 // only a single bank open
1632 DPRINTF(DRAM, "Precharging all\n");
1633
1634 // first determine when we can precharge
1635 Tick pre_at = curTick();
1636
1637 for (auto &b : banks) {
1638 // respect both causality and any existing bank
1639 // constraints, some banks could already have a
1640 // (auto) precharge scheduled
1641 pre_at = std::max(b.preAllowedAt, pre_at);
1642 }
1643
1644 // make sure all banks per rank are precharged, and for those that
1645 // already are, update their availability
1646 Tick act_allowed_at = pre_at + memory.tRP;
1647
1648 for (auto &b : banks) {
1649 if (b.openRow != Bank::NO_ROW) {
1650 memory.prechargeBank(*this, b, pre_at, false);
1651 } else {
1652 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1653 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1654 }
1655 }
1656
1657 // precharge all banks in rank
1658 power.powerlib.doCommand(MemCommand::PREA, 0,
1659 divCeil(pre_at, memory.tCK) -
1660 memory.timeStampOffset);
1661
1662 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1663 divCeil(pre_at, memory.tCK) -
1664 memory.timeStampOffset, rank);
1665 } else {
1666 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1667
1668 // go ahead and kick the power state machine into gear if
1669 // we are already idle
1670 schedulePowerEvent(PWR_REF, curTick());
1671 }
1672
1673 refreshState = REF_RUN;
1674 assert(numBanksActive == 0);
1675
1676 // wait for all banks to be precharged, at which point the
1677 // power state machine will transition to the idle state, and
1678 // automatically move to a refresh, at that point it will also
1679 // call this method to get the refresh event loop going again
1680 return;
1681 }
1682
1683 // last but not least we perform the actual refresh
1684 if (refreshState == REF_RUN) {
1685 // should never get here with any banks active
1686 assert(numBanksActive == 0);
1687 assert(pwrState == PWR_REF);
1688
1689 Tick ref_done_at = curTick() + memory.tRFC;
1690
1691 for (auto &b : banks) {
1692 b.actAllowedAt = ref_done_at;
1693 }
1694
1695 // at the moment this affects all ranks
1696 power.powerlib.doCommand(MemCommand::REF, 0,
1697 divCeil(curTick(), memory.tCK) -
1698 memory.timeStampOffset);
1699
1700 // at the moment sort the list of commands and update the counters
1701 // for DRAMPower libray when doing a refresh
1702 sort(power.powerlib.cmdList.begin(),
1703 power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1704
1705 // update the counters for DRAMPower, passing false to
1706 // indicate that this is not the last command in the
1707 // list. DRAMPower requires this information for the
1708 // correct calculation of the background energy at the end
1709 // of the simulation. Ideally we would want to call this
1710 // function with true once at the end of the
1711 // simulation. However, the discarded energy is extremly
1712 // small and does not effect the final results.
1713 power.powerlib.updateCounters(false);
1714
1715 // call the energy function
1716 power.powerlib.calcEnergy();
1717
1718 // Update the stats
1719 updatePowerStats();
1720
1721 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1722 memory.timeStampOffset, rank);
1723
1724 // make sure we did not wait so long that we cannot make up
1725 // for it
1726 if (refreshDueAt + memory.tREFI < ref_done_at) {
1727 fatal("Refresh was delayed so long we cannot catch up\n");
1728 }
1729
1730 // compensate for the delay in actually performing the refresh
1731 // when scheduling the next one
1732 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1733
1734 assert(!powerEvent.scheduled());
1735
1736 // move to the idle power state once the refresh is done, this
1737 // will also move the refresh state machine to the refresh
1738 // idle state
1739 schedulePowerEvent(PWR_IDLE, ref_done_at);
1740
1741 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1742 ref_done_at, refreshDueAt + memory.tREFI);
1743 }
1744 }
1745
1746 void
1747 DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1748 {
1749 // respect causality
1750 assert(tick >= curTick());
1751
1752 if (!powerEvent.scheduled()) {
1753 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1754 tick, pwr_state);
1755
1756 // insert the new transition
1757 pwrStateTrans = pwr_state;
1758
1759 schedule(powerEvent, tick);
1760 } else {
1761 panic("Scheduled power event at %llu to state %d, "
1762 "with scheduled event at %llu to %d\n", tick, pwr_state,
1763 powerEvent.when(), pwrStateTrans);
1764 }
1765 }
1766
1767 void
1768 DRAMCtrl::Rank::processPowerEvent()
1769 {
1770 // remember where we were, and for how long
1771 Tick duration = curTick() - pwrStateTick;
1772 PowerState prev_state = pwrState;
1773
1774 // update the accounting
1775 pwrStateTime[prev_state] += duration;
1776
1777 pwrState = pwrStateTrans;
1778 pwrStateTick = curTick();
1779
1780 if (pwrState == PWR_IDLE) {
1781 DPRINTF(DRAMState, "All banks precharged\n");
1782
1783 // if we were refreshing, make sure we start scheduling requests again
1784 if (prev_state == PWR_REF) {
1785 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1786 assert(pwrState == PWR_IDLE);
1787
1788 // kick things into action again
1789 refreshState = REF_IDLE;
1790 // a request event could be already scheduled by the state
1791 // machine of the other rank
1792 if (!memory.nextReqEvent.scheduled())
1793 schedule(memory.nextReqEvent, curTick());
1794 } else {
1795 assert(prev_state == PWR_ACT);
1796
1797 // if we have a pending refresh, and are now moving to
1798 // the idle state, direclty transition to a refresh
1799 if (refreshState == REF_RUN) {
1800 // there should be nothing waiting at this point
1801 assert(!powerEvent.scheduled());
1802
1803 // update the state in zero time and proceed below
1804 pwrState = PWR_REF;
1805 }
1806 }
1807 }
1808
1809 // we transition to the refresh state, let the refresh state
1810 // machine know of this state update and let it deal with the
1811 // scheduling of the next power state transition as well as the
1812 // following refresh
1813 if (pwrState == PWR_REF) {
1814 DPRINTF(DRAMState, "Refreshing\n");
1815 // kick the refresh event loop into action again, and that
1816 // in turn will schedule a transition to the idle power
1817 // state once the refresh is done
1818 assert(refreshState == REF_RUN);
1819 processRefreshEvent();
1820 }
1821 }
1822
1823 void
1824 DRAMCtrl::Rank::updatePowerStats()
1825 {
1826 // Get the energy and power from DRAMPower
1827 Data::MemoryPowerModel::Energy energy =
1828 power.powerlib.getEnergy();
1829 Data::MemoryPowerModel::Power rank_power =
1830 power.powerlib.getPower();
1831
1832 actEnergy = energy.act_energy * memory.devicesPerRank;
1833 preEnergy = energy.pre_energy * memory.devicesPerRank;
1834 readEnergy = energy.read_energy * memory.devicesPerRank;
1835 writeEnergy = energy.write_energy * memory.devicesPerRank;
1836 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1837 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1838 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1839 totalEnergy = energy.total_energy * memory.devicesPerRank;
1840 averagePower = rank_power.average_power * memory.devicesPerRank;
1841 }
1842
1843 void
1844 DRAMCtrl::Rank::regStats()
1845 {
1846 using namespace Stats;
1847
1848 pwrStateTime
1849 .init(5)
1850 .name(name() + ".memoryStateTime")
1851 .desc("Time in different power states");
1852 pwrStateTime.subname(0, "IDLE");
1853 pwrStateTime.subname(1, "REF");
1854 pwrStateTime.subname(2, "PRE_PDN");
1855 pwrStateTime.subname(3, "ACT");
1856 pwrStateTime.subname(4, "ACT_PDN");
1857
1858 actEnergy
1859 .name(name() + ".actEnergy")
1860 .desc("Energy for activate commands per rank (pJ)");
1861
1862 preEnergy
1863 .name(name() + ".preEnergy")
1864 .desc("Energy for precharge commands per rank (pJ)");
1865
1866 readEnergy
1867 .name(name() + ".readEnergy")
1868 .desc("Energy for read commands per rank (pJ)");
1869
1870 writeEnergy
1871 .name(name() + ".writeEnergy")
1872 .desc("Energy for write commands per rank (pJ)");
1873
1874 refreshEnergy
1875 .name(name() + ".refreshEnergy")
1876 .desc("Energy for refresh commands per rank (pJ)");
1877
1878 actBackEnergy
1879 .name(name() + ".actBackEnergy")
1880 .desc("Energy for active background per rank (pJ)");
1881
1882 preBackEnergy
1883 .name(name() + ".preBackEnergy")
1884 .desc("Energy for precharge background per rank (pJ)");
1885
1886 totalEnergy
1887 .name(name() + ".totalEnergy")
1888 .desc("Total energy per rank (pJ)");
1889
1890 averagePower
1891 .name(name() + ".averagePower")
1892 .desc("Core power per rank (mW)");
1893 }
1894 void
1895 DRAMCtrl::regStats()
1896 {
1897 using namespace Stats;
1898
1899 AbstractMemory::regStats();
1900
1901 for (auto r : ranks) {
1902 r->regStats();
1903 }
1904
1905 readReqs
1906 .name(name() + ".readReqs")
1907 .desc("Number of read requests accepted");
1908
1909 writeReqs
1910 .name(name() + ".writeReqs")
1911 .desc("Number of write requests accepted");
1912
1913 readBursts
1914 .name(name() + ".readBursts")
1915 .desc("Number of DRAM read bursts, "
1916 "including those serviced by the write queue");
1917
1918 writeBursts
1919 .name(name() + ".writeBursts")
1920 .desc("Number of DRAM write bursts, "
1921 "including those merged in the write queue");
1922
1923 servicedByWrQ
1924 .name(name() + ".servicedByWrQ")
1925 .desc("Number of DRAM read bursts serviced by the write queue");
1926
1927 mergedWrBursts
1928 .name(name() + ".mergedWrBursts")
1929 .desc("Number of DRAM write bursts merged with an existing one");
1930
1931 neitherReadNorWrite
1932 .name(name() + ".neitherReadNorWriteReqs")
1933 .desc("Number of requests that are neither read nor write");
1934
1935 perBankRdBursts
1936 .init(banksPerRank * ranksPerChannel)
1937 .name(name() + ".perBankRdBursts")
1938 .desc("Per bank write bursts");
1939
1940 perBankWrBursts
1941 .init(banksPerRank * ranksPerChannel)
1942 .name(name() + ".perBankWrBursts")
1943 .desc("Per bank write bursts");
1944
1945 avgRdQLen
1946 .name(name() + ".avgRdQLen")
1947 .desc("Average read queue length when enqueuing")
1948 .precision(2);
1949
1950 avgWrQLen
1951 .name(name() + ".avgWrQLen")
1952 .desc("Average write queue length when enqueuing")
1953 .precision(2);
1954
1955 totQLat
1956 .name(name() + ".totQLat")
1957 .desc("Total ticks spent queuing");
1958
1959 totBusLat
1960 .name(name() + ".totBusLat")
1961 .desc("Total ticks spent in databus transfers");
1962
1963 totMemAccLat
1964 .name(name() + ".totMemAccLat")
1965 .desc("Total ticks spent from burst creation until serviced "
1966 "by the DRAM");
1967
1968 avgQLat
1969 .name(name() + ".avgQLat")
1970 .desc("Average queueing delay per DRAM burst")
1971 .precision(2);
1972
1973 avgQLat = totQLat / (readBursts - servicedByWrQ);
1974
1975 avgBusLat
1976 .name(name() + ".avgBusLat")
1977 .desc("Average bus latency per DRAM burst")
1978 .precision(2);
1979
1980 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1981
1982 avgMemAccLat
1983 .name(name() + ".avgMemAccLat")
1984 .desc("Average memory access latency per DRAM burst")
1985 .precision(2);
1986
1987 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1988
1989 numRdRetry
1990 .name(name() + ".numRdRetry")
1991 .desc("Number of times read queue was full causing retry");
1992
1993 numWrRetry
1994 .name(name() + ".numWrRetry")
1995 .desc("Number of times write queue was full causing retry");
1996
1997 readRowHits
1998 .name(name() + ".readRowHits")
1999 .desc("Number of row buffer hits during reads");
2000
2001 writeRowHits
2002 .name(name() + ".writeRowHits")
2003 .desc("Number of row buffer hits during writes");
2004
2005 readRowHitRate
2006 .name(name() + ".readRowHitRate")
2007 .desc("Row buffer hit rate for reads")
2008 .precision(2);
2009
2010 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2011
2012 writeRowHitRate
2013 .name(name() + ".writeRowHitRate")
2014 .desc("Row buffer hit rate for writes")
2015 .precision(2);
2016
2017 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2018
2019 readPktSize
2020 .init(ceilLog2(burstSize) + 1)
2021 .name(name() + ".readPktSize")
2022 .desc("Read request sizes (log2)");
2023
2024 writePktSize
2025 .init(ceilLog2(burstSize) + 1)
2026 .name(name() + ".writePktSize")
2027 .desc("Write request sizes (log2)");
2028
2029 rdQLenPdf
2030 .init(readBufferSize)
2031 .name(name() + ".rdQLenPdf")
2032 .desc("What read queue length does an incoming req see");
2033
2034 wrQLenPdf
2035 .init(writeBufferSize)
2036 .name(name() + ".wrQLenPdf")
2037 .desc("What write queue length does an incoming req see");
2038
2039 bytesPerActivate
2040 .init(maxAccessesPerRow)
2041 .name(name() + ".bytesPerActivate")
2042 .desc("Bytes accessed per row activation")
2043 .flags(nozero);
2044
2045 rdPerTurnAround
2046 .init(readBufferSize)
2047 .name(name() + ".rdPerTurnAround")
2048 .desc("Reads before turning the bus around for writes")
2049 .flags(nozero);
2050
2051 wrPerTurnAround
2052 .init(writeBufferSize)
2053 .name(name() + ".wrPerTurnAround")
2054 .desc("Writes before turning the bus around for reads")
2055 .flags(nozero);
2056
2057 bytesReadDRAM
2058 .name(name() + ".bytesReadDRAM")
2059 .desc("Total number of bytes read from DRAM");
2060
2061 bytesReadWrQ
2062 .name(name() + ".bytesReadWrQ")
2063 .desc("Total number of bytes read from write queue");
2064
2065 bytesWritten
2066 .name(name() + ".bytesWritten")
2067 .desc("Total number of bytes written to DRAM");
2068
2069 bytesReadSys
2070 .name(name() + ".bytesReadSys")
2071 .desc("Total read bytes from the system interface side");
2072
2073 bytesWrittenSys
2074 .name(name() + ".bytesWrittenSys")
2075 .desc("Total written bytes from the system interface side");
2076
2077 avgRdBW
2078 .name(name() + ".avgRdBW")
2079 .desc("Average DRAM read bandwidth in MiByte/s")
2080 .precision(2);
2081
2082 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2083
2084 avgWrBW
2085 .name(name() + ".avgWrBW")
2086 .desc("Average achieved write bandwidth in MiByte/s")
2087 .precision(2);
2088
2089 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2090
2091 avgRdBWSys
2092 .name(name() + ".avgRdBWSys")
2093 .desc("Average system read bandwidth in MiByte/s")
2094 .precision(2);
2095
2096 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2097
2098 avgWrBWSys
2099 .name(name() + ".avgWrBWSys")
2100 .desc("Average system write bandwidth in MiByte/s")
2101 .precision(2);
2102
2103 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2104
2105 peakBW
2106 .name(name() + ".peakBW")
2107 .desc("Theoretical peak bandwidth in MiByte/s")
2108 .precision(2);
2109
2110 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2111
2112 busUtil
2113 .name(name() + ".busUtil")
2114 .desc("Data bus utilization in percentage")
2115 .precision(2);
2116 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2117
2118 totGap
2119 .name(name() + ".totGap")
2120 .desc("Total gap between requests");
2121
2122 avgGap
2123 .name(name() + ".avgGap")
2124 .desc("Average gap between requests")
2125 .precision(2);
2126
2127 avgGap = totGap / (readReqs + writeReqs);
2128
2129 // Stats for DRAM Power calculation based on Micron datasheet
2130 busUtilRead
2131 .name(name() + ".busUtilRead")
2132 .desc("Data bus utilization in percentage for reads")
2133 .precision(2);
2134
2135 busUtilRead = avgRdBW / peakBW * 100;
2136
2137 busUtilWrite
2138 .name(name() + ".busUtilWrite")
2139 .desc("Data bus utilization in percentage for writes")
2140 .precision(2);
2141
2142 busUtilWrite = avgWrBW / peakBW * 100;
2143
2144 pageHitRate
2145 .name(name() + ".pageHitRate")
2146 .desc("Row buffer hit rate, read and write combined")
2147 .precision(2);
2148
2149 pageHitRate = (writeRowHits + readRowHits) /
2150 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2151 }
2152
2153 void
2154 DRAMCtrl::recvFunctional(PacketPtr pkt)
2155 {
2156 // rely on the abstract memory
2157 functionalAccess(pkt);
2158 }
2159
2160 BaseSlavePort&
2161 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2162 {
2163 if (if_name != "port") {
2164 return MemObject::getSlavePort(if_name, idx);
2165 } else {
2166 return port;
2167 }
2168 }
2169
2170 DrainState
2171 DRAMCtrl::drain()
2172 {
2173 // if there is anything in any of our internal queues, keep track
2174 // of that as well
2175 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) {
2176 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2177 " resp: %d\n", writeQueue.size(), readQueue.size(),
2178 respQueue.size());
2179
2180 // the only part that is not drained automatically over time
2181 // is the write queue, thus kick things into action if needed
2182 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2183 schedule(nextReqEvent, curTick());
2184 }
2185 return DrainState::Draining;
2186 } else {
2187 return DrainState::Drained;
2188 }
2189 }
2190
2191 void
2192 DRAMCtrl::drainResume()
2193 {
2194 if (!isTimingMode && system()->isTimingMode()) {
2195 // if we switched to timing mode, kick things into action,
2196 // and behave as if we restored from a checkpoint
2197 startup();
2198 } else if (isTimingMode && !system()->isTimingMode()) {
2199 // if we switch from timing mode, stop the refresh events to
2200 // not cause issues with KVM
2201 for (auto r : ranks) {
2202 r->suspend();
2203 }
2204 }
2205
2206 // update the mode
2207 isTimingMode = system()->isTimingMode();
2208 }
2209
2210 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2211 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2212 memory(_memory)
2213 { }
2214
2215 AddrRangeList
2216 DRAMCtrl::MemoryPort::getAddrRanges() const
2217 {
2218 AddrRangeList ranges;
2219 ranges.push_back(memory.getAddrRange());
2220 return ranges;
2221 }
2222
2223 void
2224 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2225 {
2226 pkt->pushLabel(memory.name());
2227
2228 if (!queue.checkFunctional(pkt)) {
2229 // Default implementation of SimpleTimingPort::recvFunctional()
2230 // calls recvAtomic() and throws away the latency; we can save a
2231 // little here by just not calculating the latency.
2232 memory.recvFunctional(pkt);
2233 }
2234
2235 pkt->popLabel();
2236 }
2237
2238 Tick
2239 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2240 {
2241 return memory.recvAtomic(pkt);
2242 }
2243
2244 bool
2245 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2246 {
2247 // pass it to the memory controller
2248 return memory.recvTimingReq(pkt);
2249 }
2250
2251 DRAMCtrl*
2252 DRAMCtrlParams::create()
2253 {
2254 return new DRAMCtrl(this);
2255 }