mem: Add DRAM device size and check against config
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45 #include "base/bitfield.hh"
46 #include "base/trace.hh"
47 #include "debug/DRAM.hh"
48 #include "debug/DRAMPower.hh"
49 #include "debug/DRAMState.hh"
50 #include "debug/Drain.hh"
51 #include "mem/dram_ctrl.hh"
52 #include "sim/system.hh"
53
54 using namespace std;
55 using namespace Data;
56
57 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
58 AbstractMemory(p),
59 port(name() + ".port", *this),
60 retryRdReq(false), retryWrReq(false),
61 busState(READ),
62 nextReqEvent(this), respondEvent(this), activateEvent(this),
63 prechargeEvent(this), refreshEvent(this), powerEvent(this),
64 drainManager(NULL),
65 deviceSize(p->device_size),
66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67 deviceRowBufferSize(p->device_rowbuffer_size),
68 devicesPerRank(p->devices_per_rank),
69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70 rowBufferSize(devicesPerRank * deviceRowBufferSize),
71 columnsPerRowBuffer(rowBufferSize / burstSize),
72 columnsPerStripe(range.granularity() / burstSize),
73 ranksPerChannel(p->ranks_per_channel),
74 bankGroupsPerRank(p->bank_groups_per_rank),
75 bankGroupArch(p->bank_groups_per_rank > 0),
76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77 readBufferSize(p->read_buffer_size),
78 writeBufferSize(p->write_buffer_size),
79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81 minWritesPerSwitch(p->min_writes_per_switch),
82 writesThisTime(0), readsThisTime(0),
83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88 pageMgmt(p->page_policy),
89 maxAccessesPerRow(p->max_accesses_per_row),
90 frontendLatency(p->static_frontend_latency),
91 backendLatency(p->static_backend_latency),
92 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
93 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
94 nextReqTime(0), pwrStateTick(0), numBanksActive(0),
95 activeRank(0), timeStampOffset(0)
96 {
97 // create the bank states based on the dimensions of the ranks and
98 // banks
99 banks.resize(ranksPerChannel);
100
101 //create list of drampower objects. For each rank 1 drampower instance.
102 for (int i = 0; i < ranksPerChannel; i++) {
103 DRAMPower drampower = DRAMPower(p, false);
104 rankPower.emplace_back(drampower);
105 }
106
107 actTicks.resize(ranksPerChannel);
108 for (size_t c = 0; c < ranksPerChannel; ++c) {
109 banks[c].resize(banksPerRank);
110 actTicks[c].resize(activationLimit, 0);
111 }
112
113 // set the bank indices
114 for (int r = 0; r < ranksPerChannel; r++) {
115 for (int b = 0; b < banksPerRank; b++) {
116 banks[r][b].rank = r;
117 banks[r][b].bank = b;
118 if (bankGroupArch) {
119 // Simply assign lower bits to bank group in order to
120 // rotate across bank groups as banks are incremented
121 // e.g. with 4 banks per bank group and 16 banks total:
122 // banks 0,4,8,12 are in bank group 0
123 // banks 1,5,9,13 are in bank group 1
124 // banks 2,6,10,14 are in bank group 2
125 // banks 3,7,11,15 are in bank group 3
126 banks[r][b].bankgr = b % bankGroupsPerRank;
127 } else {
128 // No bank groups; simply assign to bank number
129 banks[r][b].bankgr = b;
130 }
131 }
132 }
133
134 // perform a basic check of the write thresholds
135 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
136 fatal("Write buffer low threshold %d must be smaller than the "
137 "high threshold %d\n", p->write_low_thresh_perc,
138 p->write_high_thresh_perc);
139
140 // determine the rows per bank by looking at the total capacity
141 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
142
143 // determine the dram actual capacity from the DRAM config in Mbytes
144 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
145 ranksPerChannel;
146
147 // if actual DRAM size does not match memory capacity in system warn!
148 if (deviceCapacity != capacity / (1024 * 1024))
149 warn("DRAM device capacity (%d Mbytes) does not match the "
150 "address range assigned (%d Mbytes)\n", deviceCapacity,
151 capacity / (1024 * 1024));
152
153 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
154 AbstractMemory::size());
155
156 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
157 rowBufferSize, columnsPerRowBuffer);
158
159 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
160
161 // a bit of sanity checks on the interleaving
162 if (range.interleaved()) {
163 if (channels != range.stripes())
164 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
165 name(), range.stripes(), channels);
166
167 if (addrMapping == Enums::RoRaBaChCo) {
168 if (rowBufferSize != range.granularity()) {
169 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
170 "address map\n", name());
171 }
172 } else if (addrMapping == Enums::RoRaBaCoCh ||
173 addrMapping == Enums::RoCoRaBaCh) {
174 // for the interleavings with channel bits in the bottom,
175 // if the system uses a channel striping granularity that
176 // is larger than the DRAM burst size, then map the
177 // sequential accesses within a stripe to a number of
178 // columns in the DRAM, effectively placing some of the
179 // lower-order column bits as the least-significant bits
180 // of the address (above the ones denoting the burst size)
181 assert(columnsPerStripe >= 1);
182
183 // channel striping has to be done at a granularity that
184 // is equal or larger to a cache line
185 if (system()->cacheLineSize() > range.granularity()) {
186 fatal("Channel interleaving of %s must be at least as large "
187 "as the cache line size\n", name());
188 }
189
190 // ...and equal or smaller than the row-buffer size
191 if (rowBufferSize < range.granularity()) {
192 fatal("Channel interleaving of %s must be at most as large "
193 "as the row-buffer size\n", name());
194 }
195 // this is essentially the check above, so just to be sure
196 assert(columnsPerStripe <= columnsPerRowBuffer);
197 }
198 }
199
200 // some basic sanity checks
201 if (tREFI <= tRP || tREFI <= tRFC) {
202 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
203 tREFI, tRP, tRFC);
204 }
205
206 // basic bank group architecture checks ->
207 if (bankGroupArch) {
208 // must have at least one bank per bank group
209 if (bankGroupsPerRank > banksPerRank) {
210 fatal("banks per rank (%d) must be equal to or larger than "
211 "banks groups per rank (%d)\n",
212 banksPerRank, bankGroupsPerRank);
213 }
214 // must have same number of banks in each bank group
215 if ((banksPerRank % bankGroupsPerRank) != 0) {
216 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
217 "per rank (%d) for equal banks per bank group\n",
218 banksPerRank, bankGroupsPerRank);
219 }
220 // tCCD_L should be greater than minimal, back-to-back burst delay
221 if (tCCD_L <= tBURST) {
222 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
223 "bank groups per rank (%d) is greater than 1\n",
224 tCCD_L, tBURST, bankGroupsPerRank);
225 }
226 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
227 if (tRRD_L <= tRRD) {
228 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
229 "bank groups per rank (%d) is greater than 1\n",
230 tRRD_L, tRRD, bankGroupsPerRank);
231 }
232 }
233
234 }
235
236 void
237 DRAMCtrl::init()
238 {
239 AbstractMemory::init();
240
241 if (!port.isConnected()) {
242 fatal("DRAMCtrl %s is unconnected!\n", name());
243 } else {
244 port.sendRangeChange();
245 }
246 }
247
248 void
249 DRAMCtrl::startup()
250 {
251 // timestamp offset should be in clock cycles for DRAMPower
252 timeStampOffset = divCeil(curTick(), tCK);
253 // update the start tick for the precharge accounting to the
254 // current tick
255 pwrStateTick = curTick();
256
257 // shift the bus busy time sufficiently far ahead that we never
258 // have to worry about negative values when computing the time for
259 // the next request, this will add an insignificant bubble at the
260 // start of simulation
261 busBusyUntil = curTick() + tRP + tRCD + tCL;
262
263 // kick off the refresh, and give ourselves enough time to
264 // precharge
265 schedule(refreshEvent, curTick() + tREFI - tRP);
266 }
267
268 Tick
269 DRAMCtrl::recvAtomic(PacketPtr pkt)
270 {
271 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
272
273 // do the actual memory access and turn the packet into a response
274 access(pkt);
275
276 Tick latency = 0;
277 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
278 // this value is not supposed to be accurate, just enough to
279 // keep things going, mimic a closed page
280 latency = tRP + tRCD + tCL;
281 }
282 return latency;
283 }
284
285 bool
286 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
287 {
288 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
289 readBufferSize, readQueue.size() + respQueue.size(),
290 neededEntries);
291
292 return
293 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
294 }
295
296 bool
297 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
298 {
299 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
300 writeBufferSize, writeQueue.size(), neededEntries);
301 return (writeQueue.size() + neededEntries) > writeBufferSize;
302 }
303
304 DRAMCtrl::DRAMPacket*
305 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
306 bool isRead)
307 {
308 // decode the address based on the address mapping scheme, with
309 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
310 // channel, respectively
311 uint8_t rank;
312 uint8_t bank;
313 // use a 64-bit unsigned during the computations as the row is
314 // always the top bits, and check before creating the DRAMPacket
315 uint64_t row;
316
317 // truncate the address to a DRAM burst, which makes it unique to
318 // a specific column, row, bank, rank and channel
319 Addr addr = dramPktAddr / burstSize;
320
321 // we have removed the lowest order address bits that denote the
322 // position within the column
323 if (addrMapping == Enums::RoRaBaChCo) {
324 // the lowest order bits denote the column to ensure that
325 // sequential cache lines occupy the same row
326 addr = addr / columnsPerRowBuffer;
327
328 // take out the channel part of the address
329 addr = addr / channels;
330
331 // after the channel bits, get the bank bits to interleave
332 // over the banks
333 bank = addr % banksPerRank;
334 addr = addr / banksPerRank;
335
336 // after the bank, we get the rank bits which thus interleaves
337 // over the ranks
338 rank = addr % ranksPerChannel;
339 addr = addr / ranksPerChannel;
340
341 // lastly, get the row bits
342 row = addr % rowsPerBank;
343 addr = addr / rowsPerBank;
344 } else if (addrMapping == Enums::RoRaBaCoCh) {
345 // take out the lower-order column bits
346 addr = addr / columnsPerStripe;
347
348 // take out the channel part of the address
349 addr = addr / channels;
350
351 // next, the higher-order column bites
352 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
353
354 // after the column bits, we get the bank bits to interleave
355 // over the banks
356 bank = addr % banksPerRank;
357 addr = addr / banksPerRank;
358
359 // after the bank, we get the rank bits which thus interleaves
360 // over the ranks
361 rank = addr % ranksPerChannel;
362 addr = addr / ranksPerChannel;
363
364 // lastly, get the row bits
365 row = addr % rowsPerBank;
366 addr = addr / rowsPerBank;
367 } else if (addrMapping == Enums::RoCoRaBaCh) {
368 // optimise for closed page mode and utilise maximum
369 // parallelism of the DRAM (at the cost of power)
370
371 // take out the lower-order column bits
372 addr = addr / columnsPerStripe;
373
374 // take out the channel part of the address, not that this has
375 // to match with how accesses are interleaved between the
376 // controllers in the address mapping
377 addr = addr / channels;
378
379 // start with the bank bits, as this provides the maximum
380 // opportunity for parallelism between requests
381 bank = addr % banksPerRank;
382 addr = addr / banksPerRank;
383
384 // next get the rank bits
385 rank = addr % ranksPerChannel;
386 addr = addr / ranksPerChannel;
387
388 // next, the higher-order column bites
389 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
390
391 // lastly, get the row bits
392 row = addr % rowsPerBank;
393 addr = addr / rowsPerBank;
394 } else
395 panic("Unknown address mapping policy chosen!");
396
397 assert(rank < ranksPerChannel);
398 assert(bank < banksPerRank);
399 assert(row < rowsPerBank);
400 assert(row < Bank::NO_ROW);
401
402 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
403 dramPktAddr, rank, bank, row);
404
405 // create the corresponding DRAM packet with the entry time and
406 // ready time set to the current tick, the latter will be updated
407 // later
408 uint16_t bank_id = banksPerRank * rank + bank;
409 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
410 size, banks[rank][bank]);
411 }
412
413 void
414 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
415 {
416 // only add to the read queue here. whenever the request is
417 // eventually done, set the readyTime, and call schedule()
418 assert(!pkt->isWrite());
419
420 assert(pktCount != 0);
421
422 // if the request size is larger than burst size, the pkt is split into
423 // multiple DRAM packets
424 // Note if the pkt starting address is not aligened to burst size, the
425 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
426 // are aligned to burst size boundaries. This is to ensure we accurately
427 // check read packets against packets in write queue.
428 Addr addr = pkt->getAddr();
429 unsigned pktsServicedByWrQ = 0;
430 BurstHelper* burst_helper = NULL;
431 for (int cnt = 0; cnt < pktCount; ++cnt) {
432 unsigned size = std::min((addr | (burstSize - 1)) + 1,
433 pkt->getAddr() + pkt->getSize()) - addr;
434 readPktSize[ceilLog2(size)]++;
435 readBursts++;
436
437 // First check write buffer to see if the data is already at
438 // the controller
439 bool foundInWrQ = false;
440 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
441 // check if the read is subsumed in the write entry we are
442 // looking at
443 if ((*i)->addr <= addr &&
444 (addr + size) <= ((*i)->addr + (*i)->size)) {
445 foundInWrQ = true;
446 servicedByWrQ++;
447 pktsServicedByWrQ++;
448 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
449 "write queue\n", addr, size);
450 bytesReadWrQ += burstSize;
451 break;
452 }
453 }
454
455 // If not found in the write q, make a DRAM packet and
456 // push it onto the read queue
457 if (!foundInWrQ) {
458
459 // Make the burst helper for split packets
460 if (pktCount > 1 && burst_helper == NULL) {
461 DPRINTF(DRAM, "Read to addr %lld translates to %d "
462 "dram requests\n", pkt->getAddr(), pktCount);
463 burst_helper = new BurstHelper(pktCount);
464 }
465
466 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
467 dram_pkt->burstHelper = burst_helper;
468
469 assert(!readQueueFull(1));
470 rdQLenPdf[readQueue.size() + respQueue.size()]++;
471
472 DPRINTF(DRAM, "Adding to read queue\n");
473
474 readQueue.push_back(dram_pkt);
475
476 // Update stats
477 avgRdQLen = readQueue.size() + respQueue.size();
478 }
479
480 // Starting address of next dram pkt (aligend to burstSize boundary)
481 addr = (addr | (burstSize - 1)) + 1;
482 }
483
484 // If all packets are serviced by write queue, we send the repsonse back
485 if (pktsServicedByWrQ == pktCount) {
486 accessAndRespond(pkt, frontendLatency);
487 return;
488 }
489
490 // Update how many split packets are serviced by write queue
491 if (burst_helper != NULL)
492 burst_helper->burstsServiced = pktsServicedByWrQ;
493
494 // If we are not already scheduled to get a request out of the
495 // queue, do so now
496 if (!nextReqEvent.scheduled()) {
497 DPRINTF(DRAM, "Request scheduled immediately\n");
498 schedule(nextReqEvent, curTick());
499 }
500 }
501
502 void
503 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
504 {
505 // only add to the write queue here. whenever the request is
506 // eventually done, set the readyTime, and call schedule()
507 assert(pkt->isWrite());
508
509 // if the request size is larger than burst size, the pkt is split into
510 // multiple DRAM packets
511 Addr addr = pkt->getAddr();
512 for (int cnt = 0; cnt < pktCount; ++cnt) {
513 unsigned size = std::min((addr | (burstSize - 1)) + 1,
514 pkt->getAddr() + pkt->getSize()) - addr;
515 writePktSize[ceilLog2(size)]++;
516 writeBursts++;
517
518 // see if we can merge with an existing item in the write
519 // queue and keep track of whether we have merged or not so we
520 // can stop at that point and also avoid enqueueing a new
521 // request
522 bool merged = false;
523 auto w = writeQueue.begin();
524
525 while(!merged && w != writeQueue.end()) {
526 // either of the two could be first, if they are the same
527 // it does not matter which way we go
528 if ((*w)->addr >= addr) {
529 // the existing one starts after the new one, figure
530 // out where the new one ends with respect to the
531 // existing one
532 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
533 // check if the existing one is completely
534 // subsumed in the new one
535 DPRINTF(DRAM, "Merging write covering existing burst\n");
536 merged = true;
537 // update both the address and the size
538 (*w)->addr = addr;
539 (*w)->size = size;
540 } else if ((addr + size) >= (*w)->addr &&
541 ((*w)->addr + (*w)->size - addr) <= burstSize) {
542 // the new one is just before or partially
543 // overlapping with the existing one, and together
544 // they fit within a burst
545 DPRINTF(DRAM, "Merging write before existing burst\n");
546 merged = true;
547 // the existing queue item needs to be adjusted with
548 // respect to both address and size
549 (*w)->size = (*w)->addr + (*w)->size - addr;
550 (*w)->addr = addr;
551 }
552 } else {
553 // the new one starts after the current one, figure
554 // out where the existing one ends with respect to the
555 // new one
556 if (((*w)->addr + (*w)->size) >= (addr + size)) {
557 // check if the new one is completely subsumed in the
558 // existing one
559 DPRINTF(DRAM, "Merging write into existing burst\n");
560 merged = true;
561 // no adjustments necessary
562 } else if (((*w)->addr + (*w)->size) >= addr &&
563 (addr + size - (*w)->addr) <= burstSize) {
564 // the existing one is just before or partially
565 // overlapping with the new one, and together
566 // they fit within a burst
567 DPRINTF(DRAM, "Merging write after existing burst\n");
568 merged = true;
569 // the address is right, and only the size has
570 // to be adjusted
571 (*w)->size = addr + size - (*w)->addr;
572 }
573 }
574 ++w;
575 }
576
577 // if the item was not merged we need to create a new write
578 // and enqueue it
579 if (!merged) {
580 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
581
582 assert(writeQueue.size() < writeBufferSize);
583 wrQLenPdf[writeQueue.size()]++;
584
585 DPRINTF(DRAM, "Adding to write queue\n");
586
587 writeQueue.push_back(dram_pkt);
588
589 // Update stats
590 avgWrQLen = writeQueue.size();
591 } else {
592 // keep track of the fact that this burst effectively
593 // disappeared as it was merged with an existing one
594 mergedWrBursts++;
595 }
596
597 // Starting address of next dram pkt (aligend to burstSize boundary)
598 addr = (addr | (burstSize - 1)) + 1;
599 }
600
601 // we do not wait for the writes to be send to the actual memory,
602 // but instead take responsibility for the consistency here and
603 // snoop the write queue for any upcoming reads
604 // @todo, if a pkt size is larger than burst size, we might need a
605 // different front end latency
606 accessAndRespond(pkt, frontendLatency);
607
608 // If we are not already scheduled to get a request out of the
609 // queue, do so now
610 if (!nextReqEvent.scheduled()) {
611 DPRINTF(DRAM, "Request scheduled immediately\n");
612 schedule(nextReqEvent, curTick());
613 }
614 }
615
616 void
617 DRAMCtrl::printQs() const {
618 DPRINTF(DRAM, "===READ QUEUE===\n\n");
619 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
620 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
621 }
622 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
623 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
624 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
625 }
626 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
627 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
628 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
629 }
630 }
631
632 bool
633 DRAMCtrl::recvTimingReq(PacketPtr pkt)
634 {
635 /// @todo temporary hack to deal with memory corruption issues until
636 /// 4-phase transactions are complete
637 for (int x = 0; x < pendingDelete.size(); x++)
638 delete pendingDelete[x];
639 pendingDelete.clear();
640
641 // This is where we enter from the outside world
642 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
643 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
644
645 // simply drop inhibited packets for now
646 if (pkt->memInhibitAsserted()) {
647 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
648 pendingDelete.push_back(pkt);
649 return true;
650 }
651
652 // Calc avg gap between requests
653 if (prevArrival != 0) {
654 totGap += curTick() - prevArrival;
655 }
656 prevArrival = curTick();
657
658
659 // Find out how many dram packets a pkt translates to
660 // If the burst size is equal or larger than the pkt size, then a pkt
661 // translates to only one dram packet. Otherwise, a pkt translates to
662 // multiple dram packets
663 unsigned size = pkt->getSize();
664 unsigned offset = pkt->getAddr() & (burstSize - 1);
665 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
666
667 // check local buffers and do not accept if full
668 if (pkt->isRead()) {
669 assert(size != 0);
670 if (readQueueFull(dram_pkt_count)) {
671 DPRINTF(DRAM, "Read queue full, not accepting\n");
672 // remember that we have to retry this port
673 retryRdReq = true;
674 numRdRetry++;
675 return false;
676 } else {
677 addToReadQueue(pkt, dram_pkt_count);
678 readReqs++;
679 bytesReadSys += size;
680 }
681 } else if (pkt->isWrite()) {
682 assert(size != 0);
683 if (writeQueueFull(dram_pkt_count)) {
684 DPRINTF(DRAM, "Write queue full, not accepting\n");
685 // remember that we have to retry this port
686 retryWrReq = true;
687 numWrRetry++;
688 return false;
689 } else {
690 addToWriteQueue(pkt, dram_pkt_count);
691 writeReqs++;
692 bytesWrittenSys += size;
693 }
694 } else {
695 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
696 neitherReadNorWrite++;
697 accessAndRespond(pkt, 1);
698 }
699
700 return true;
701 }
702
703 void
704 DRAMCtrl::processRespondEvent()
705 {
706 DPRINTF(DRAM,
707 "processRespondEvent(): Some req has reached its readyTime\n");
708
709 DRAMPacket* dram_pkt = respQueue.front();
710
711 if (dram_pkt->burstHelper) {
712 // it is a split packet
713 dram_pkt->burstHelper->burstsServiced++;
714 if (dram_pkt->burstHelper->burstsServiced ==
715 dram_pkt->burstHelper->burstCount) {
716 // we have now serviced all children packets of a system packet
717 // so we can now respond to the requester
718 // @todo we probably want to have a different front end and back
719 // end latency for split packets
720 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
721 delete dram_pkt->burstHelper;
722 dram_pkt->burstHelper = NULL;
723 }
724 } else {
725 // it is not a split packet
726 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
727 }
728
729 delete respQueue.front();
730 respQueue.pop_front();
731
732 if (!respQueue.empty()) {
733 assert(respQueue.front()->readyTime >= curTick());
734 assert(!respondEvent.scheduled());
735 schedule(respondEvent, respQueue.front()->readyTime);
736 } else {
737 // if there is nothing left in any queue, signal a drain
738 if (writeQueue.empty() && readQueue.empty() &&
739 drainManager) {
740 drainManager->signalDrainDone();
741 drainManager = NULL;
742 }
743 }
744
745 // We have made a location in the queue available at this point,
746 // so if there is a read that was forced to wait, retry now
747 if (retryRdReq) {
748 retryRdReq = false;
749 port.sendRetry();
750 }
751 }
752
753 void
754 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
755 {
756 // This method does the arbitration between requests. The chosen
757 // packet is simply moved to the head of the queue. The other
758 // methods know that this is the place to look. For example, with
759 // FCFS, this method does nothing
760 assert(!queue.empty());
761
762 if (queue.size() == 1) {
763 DPRINTF(DRAM, "Single request, nothing to do\n");
764 return;
765 }
766
767 if (memSchedPolicy == Enums::fcfs) {
768 // Do nothing, since the correct request is already head
769 } else if (memSchedPolicy == Enums::frfcfs) {
770 reorderQueue(queue, switched_cmd_type);
771 } else
772 panic("No scheduling policy chosen\n");
773 }
774
775 void
776 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
777 {
778 // Only determine this when needed
779 uint64_t earliest_banks = 0;
780
781 // Search for row hits first, if no row hit is found then schedule the
782 // packet to one of the earliest banks available
783 bool found_earliest_pkt = false;
784 bool found_prepped_diff_rank_pkt = false;
785 auto selected_pkt_it = queue.begin();
786
787 for (auto i = queue.begin(); i != queue.end() ; ++i) {
788 DRAMPacket* dram_pkt = *i;
789 const Bank& bank = dram_pkt->bankRef;
790 // Check if it is a row hit
791 if (bank.openRow == dram_pkt->row) {
792 if (dram_pkt->rank == activeRank || switched_cmd_type) {
793 // FCFS within the hits, giving priority to commands
794 // that access the same rank as the previous burst
795 // to minimize bus turnaround delays
796 // Only give rank prioity when command type is not changing
797 DPRINTF(DRAM, "Row buffer hit\n");
798 selected_pkt_it = i;
799 break;
800 } else if (!found_prepped_diff_rank_pkt) {
801 // found row hit for command on different rank than prev burst
802 selected_pkt_it = i;
803 found_prepped_diff_rank_pkt = true;
804 }
805 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
806 // No row hit and
807 // haven't found an entry with a row hit to a new rank
808 if (earliest_banks == 0)
809 // Determine entries with earliest bank prep delay
810 // Function will give priority to commands that access the
811 // same rank as previous burst and can prep the bank seamlessly
812 earliest_banks = minBankPrep(queue, switched_cmd_type);
813
814 // FCFS - Bank is first available bank
815 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
816 // Remember the packet to be scheduled to one of the earliest
817 // banks available, FCFS amongst the earliest banks
818 selected_pkt_it = i;
819 found_earliest_pkt = true;
820 }
821 }
822 }
823
824 DRAMPacket* selected_pkt = *selected_pkt_it;
825 queue.erase(selected_pkt_it);
826 queue.push_front(selected_pkt);
827 }
828
829 void
830 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
831 {
832 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
833
834 bool needsResponse = pkt->needsResponse();
835 // do the actual memory access which also turns the packet into a
836 // response
837 access(pkt);
838
839 // turn packet around to go back to requester if response expected
840 if (needsResponse) {
841 // access already turned the packet into a response
842 assert(pkt->isResponse());
843
844 // @todo someone should pay for this
845 pkt->firstWordDelay = pkt->lastWordDelay = 0;
846
847 // queue the packet in the response queue to be sent out after
848 // the static latency has passed
849 port.schedTimingResp(pkt, curTick() + static_latency);
850 } else {
851 // @todo the packet is going to be deleted, and the DRAMPacket
852 // is still having a pointer to it
853 pendingDelete.push_back(pkt);
854 }
855
856 DPRINTF(DRAM, "Done\n");
857
858 return;
859 }
860
861 void
862 DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
863 {
864 // get the rank index from the bank
865 uint8_t rank = bank.rank;
866
867 assert(actTicks[rank].size() == activationLimit);
868
869 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
870
871 // update the open row
872 assert(bank.openRow == Bank::NO_ROW);
873 bank.openRow = row;
874
875 // start counting anew, this covers both the case when we
876 // auto-precharged, and when this access is forced to
877 // precharge
878 bank.bytesAccessed = 0;
879 bank.rowAccesses = 0;
880
881 ++numBanksActive;
882 assert(numBanksActive <= banksPerRank * ranksPerChannel);
883
884 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
885 bank.bank, bank.rank, act_tick, numBanksActive);
886
887 rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank,
888 divCeil(act_tick, tCK) -
889 timeStampOffset);
890
891 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
892 timeStampOffset, bank.bank, bank.rank);
893
894 // The next access has to respect tRAS for this bank
895 bank.preAllowedAt = act_tick + tRAS;
896
897 // Respect the row-to-column command delay
898 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt);
899
900 // start by enforcing tRRD
901 for(int i = 0; i < banksPerRank; i++) {
902 // next activate to any bank in this rank must not happen
903 // before tRRD
904 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) {
905 // bank group architecture requires longer delays between
906 // ACT commands within the same bank group. Use tRRD_L
907 // in this case
908 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L,
909 banks[rank][i].actAllowedAt);
910 } else {
911 // use shorter tRRD value when either
912 // 1) bank group architecture is not supportted
913 // 2) bank is in a different bank group
914 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
915 banks[rank][i].actAllowedAt);
916 }
917 }
918
919 // next, we deal with tXAW, if the activation limit is disabled
920 // then we are done
921 if (actTicks[rank].empty())
922 return;
923
924 // sanity check
925 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
926 panic("Got %d activates in window %d (%llu - %llu) which is smaller "
927 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
928 act_tick, actTicks[rank].back(), tXAW);
929 }
930
931 // shift the times used for the book keeping, the last element
932 // (highest index) is the oldest one and hence the lowest value
933 actTicks[rank].pop_back();
934
935 // record an new activation (in the future)
936 actTicks[rank].push_front(act_tick);
937
938 // cannot activate more than X times in time window tXAW, push the
939 // next one (the X + 1'st activate) to be tXAW away from the
940 // oldest in our window of X
941 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
942 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
943 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
944 for(int j = 0; j < banksPerRank; j++)
945 // next activate must not happen before end of window
946 banks[rank][j].actAllowedAt =
947 std::max(actTicks[rank].back() + tXAW,
948 banks[rank][j].actAllowedAt);
949 }
950
951 // at the point when this activate takes place, make sure we
952 // transition to the active power state
953 if (!activateEvent.scheduled())
954 schedule(activateEvent, act_tick);
955 else if (activateEvent.when() > act_tick)
956 // move it sooner in time
957 reschedule(activateEvent, act_tick);
958 }
959
960 void
961 DRAMCtrl::processActivateEvent()
962 {
963 // we should transition to the active state as soon as any bank is active
964 if (pwrState != PWR_ACT)
965 // note that at this point numBanksActive could be back at
966 // zero again due to a precharge scheduled in the future
967 schedulePowerEvent(PWR_ACT, curTick());
968 }
969
970 void
971 DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
972 {
973 // make sure the bank has an open row
974 assert(bank.openRow != Bank::NO_ROW);
975
976 // sample the bytes per activate here since we are closing
977 // the page
978 bytesPerActivate.sample(bank.bytesAccessed);
979
980 bank.openRow = Bank::NO_ROW;
981
982 // no precharge allowed before this one
983 bank.preAllowedAt = pre_at;
984
985 Tick pre_done_at = pre_at + tRP;
986
987 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
988
989 assert(numBanksActive != 0);
990 --numBanksActive;
991
992 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
993 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
994
995 if (trace) {
996
997 rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank,
998 divCeil(pre_at, tCK) -
999 timeStampOffset);
1000 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1001 timeStampOffset, bank.bank, bank.rank);
1002 }
1003 // if we look at the current number of active banks we might be
1004 // tempted to think the DRAM is now idle, however this can be
1005 // undone by an activate that is scheduled to happen before we
1006 // would have reached the idle state, so schedule an event and
1007 // rather check once we actually make it to the point in time when
1008 // the (last) precharge takes place
1009 if (!prechargeEvent.scheduled())
1010 schedule(prechargeEvent, pre_done_at);
1011 else if (prechargeEvent.when() < pre_done_at)
1012 reschedule(prechargeEvent, pre_done_at);
1013 }
1014
1015 void
1016 DRAMCtrl::processPrechargeEvent()
1017 {
1018 // if we reached zero, then special conditions apply as we track
1019 // if all banks are precharged for the power models
1020 if (numBanksActive == 0) {
1021 // we should transition to the idle state when the last bank
1022 // is precharged
1023 schedulePowerEvent(PWR_IDLE, curTick());
1024 }
1025 }
1026
1027 void
1028 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1029 {
1030 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1031 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1032
1033 // get the bank
1034 Bank& bank = dram_pkt->bankRef;
1035
1036 // for the state we need to track if it is a row hit or not
1037 bool row_hit = true;
1038
1039 // respect any constraints on the command (e.g. tRCD or tCCD)
1040 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1041
1042 // Determine the access latency and update the bank state
1043 if (bank.openRow == dram_pkt->row) {
1044 // nothing to do
1045 } else {
1046 row_hit = false;
1047
1048 // If there is a page open, precharge it.
1049 if (bank.openRow != Bank::NO_ROW) {
1050 prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
1051 }
1052
1053 // next we need to account for the delay in activating the
1054 // page
1055 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1056
1057 // Record the activation and deal with all the global timing
1058 // constraints caused be a new activation (tRRD and tXAW)
1059 activateBank(bank, act_tick, dram_pkt->row);
1060
1061 // issue the command as early as possible
1062 cmd_at = bank.colAllowedAt;
1063 }
1064
1065 // we need to wait until the bus is available before we can issue
1066 // the command
1067 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1068
1069 // update the packet ready time
1070 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1071
1072 // only one burst can use the bus at any one point in time
1073 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1074
1075 // update the time for the next read/write burst for each
1076 // bank (add a max with tCCD/tCCD_L here)
1077 Tick cmd_dly;
1078 for(int j = 0; j < ranksPerChannel; j++) {
1079 for(int i = 0; i < banksPerRank; i++) {
1080 // next burst to same bank group in this rank must not happen
1081 // before tCCD_L. Different bank group timing requirement is
1082 // tBURST; Add tCS for different ranks
1083 if (dram_pkt->rank == j) {
1084 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) {
1085 // bank group architecture requires longer delays between
1086 // RD/WR burst commands to the same bank group.
1087 // Use tCCD_L in this case
1088 cmd_dly = tCCD_L;
1089 } else {
1090 // use tBURST (equivalent to tCCD_S), the shorter
1091 // cas-to-cas delay value, when either:
1092 // 1) bank group architecture is not supportted
1093 // 2) bank is in a different bank group
1094 cmd_dly = tBURST;
1095 }
1096 } else {
1097 // different rank is by default in a different bank group
1098 // use tBURST (equivalent to tCCD_S), which is the shorter
1099 // cas-to-cas delay in this case
1100 // Add tCS to account for rank-to-rank bus delay requirements
1101 cmd_dly = tBURST + tCS;
1102 }
1103 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly,
1104 banks[j][i].colAllowedAt);
1105 }
1106 }
1107
1108 // Save rank of current access
1109 activeRank = dram_pkt->rank;
1110
1111 // If this is a write, we also need to respect the write recovery
1112 // time before a precharge, in the case of a read, respect the
1113 // read to precharge constraint
1114 bank.preAllowedAt = std::max(bank.preAllowedAt,
1115 dram_pkt->isRead ? cmd_at + tRTP :
1116 dram_pkt->readyTime + tWR);
1117
1118 // increment the bytes accessed and the accesses per row
1119 bank.bytesAccessed += burstSize;
1120 ++bank.rowAccesses;
1121
1122 // if we reached the max, then issue with an auto-precharge
1123 bool auto_precharge = pageMgmt == Enums::close ||
1124 bank.rowAccesses == maxAccessesPerRow;
1125
1126 // if we did not hit the limit, we might still want to
1127 // auto-precharge
1128 if (!auto_precharge &&
1129 (pageMgmt == Enums::open_adaptive ||
1130 pageMgmt == Enums::close_adaptive)) {
1131 // a twist on the open and close page policies:
1132 // 1) open_adaptive page policy does not blindly keep the
1133 // page open, but close it if there are no row hits, and there
1134 // are bank conflicts in the queue
1135 // 2) close_adaptive page policy does not blindly close the
1136 // page, but closes it only if there are no row hits in the queue.
1137 // In this case, only force an auto precharge when there
1138 // are no same page hits in the queue
1139 bool got_more_hits = false;
1140 bool got_bank_conflict = false;
1141
1142 // either look at the read queue or write queue
1143 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1144 writeQueue;
1145 auto p = queue.begin();
1146 // make sure we are not considering the packet that we are
1147 // currently dealing with (which is the head of the queue)
1148 ++p;
1149
1150 // keep on looking until we have found required condition or
1151 // reached the end
1152 while (!(got_more_hits &&
1153 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1154 p != queue.end()) {
1155 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1156 (dram_pkt->bank == (*p)->bank);
1157 bool same_row = dram_pkt->row == (*p)->row;
1158 got_more_hits |= same_rank_bank && same_row;
1159 got_bank_conflict |= same_rank_bank && !same_row;
1160 ++p;
1161 }
1162
1163 // auto pre-charge when either
1164 // 1) open_adaptive policy, we have not got any more hits, and
1165 // have a bank conflict
1166 // 2) close_adaptive policy and we have not got any more hits
1167 auto_precharge = !got_more_hits &&
1168 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1169 }
1170
1171 // DRAMPower trace command to be written
1172 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1173
1174 // MemCommand required for DRAMPower library
1175 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1176 MemCommand::WR;
1177
1178 // if this access should use auto-precharge, then we are
1179 // closing the row
1180 if (auto_precharge) {
1181 // if auto-precharge push a PRE command at the correct tick to the
1182 // list used by DRAMPower library to calculate power
1183 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1184
1185 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1186 }
1187
1188 // Update bus state
1189 busBusyUntil = dram_pkt->readyTime;
1190
1191 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1192 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1193
1194 rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank,
1195 divCeil(cmd_at, tCK) -
1196 timeStampOffset);
1197
1198 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1199 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1200
1201 // Update the minimum timing between the requests, this is a
1202 // conservative estimate of when we have to schedule the next
1203 // request to not introduce any unecessary bubbles. In most cases
1204 // we will wake up sooner than we have to.
1205 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1206
1207 // Update the stats and schedule the next request
1208 if (dram_pkt->isRead) {
1209 ++readsThisTime;
1210 if (row_hit)
1211 readRowHits++;
1212 bytesReadDRAM += burstSize;
1213 perBankRdBursts[dram_pkt->bankId]++;
1214
1215 // Update latency stats
1216 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1217 totBusLat += tBURST;
1218 totQLat += cmd_at - dram_pkt->entryTime;
1219 } else {
1220 ++writesThisTime;
1221 if (row_hit)
1222 writeRowHits++;
1223 bytesWritten += burstSize;
1224 perBankWrBursts[dram_pkt->bankId]++;
1225 }
1226 }
1227
1228 void
1229 DRAMCtrl::processNextReqEvent()
1230 {
1231 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1232 // or WRITE_TO_READ state
1233 bool switched_cmd_type = false;
1234 if (busState == READ_TO_WRITE) {
1235 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1236 "waiting\n", readsThisTime, readQueue.size());
1237
1238 // sample and reset the read-related stats as we are now
1239 // transitioning to writes, and all reads are done
1240 rdPerTurnAround.sample(readsThisTime);
1241 readsThisTime = 0;
1242
1243 // now proceed to do the actual writes
1244 busState = WRITE;
1245 switched_cmd_type = true;
1246 } else if (busState == WRITE_TO_READ) {
1247 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1248 "waiting\n", writesThisTime, writeQueue.size());
1249
1250 wrPerTurnAround.sample(writesThisTime);
1251 writesThisTime = 0;
1252
1253 busState = READ;
1254 switched_cmd_type = true;
1255 }
1256
1257 if (refreshState != REF_IDLE) {
1258 // if a refresh waiting for this event loop to finish, then hand
1259 // over now, and do not schedule a new nextReqEvent
1260 if (refreshState == REF_DRAIN) {
1261 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1262
1263 refreshState = REF_PRE;
1264
1265 // hand control back to the refresh event loop
1266 schedule(refreshEvent, curTick());
1267 }
1268
1269 // let the refresh finish before issuing any further requests
1270 return;
1271 }
1272
1273 // when we get here it is either a read or a write
1274 if (busState == READ) {
1275
1276 // track if we should switch or not
1277 bool switch_to_writes = false;
1278
1279 if (readQueue.empty()) {
1280 // In the case there is no read request to go next,
1281 // trigger writes if we have passed the low threshold (or
1282 // if we are draining)
1283 if (!writeQueue.empty() &&
1284 (drainManager || writeQueue.size() > writeLowThreshold)) {
1285
1286 switch_to_writes = true;
1287 } else {
1288 // check if we are drained
1289 if (respQueue.empty () && drainManager) {
1290 drainManager->signalDrainDone();
1291 drainManager = NULL;
1292 }
1293
1294 // nothing to do, not even any point in scheduling an
1295 // event for the next request
1296 return;
1297 }
1298 } else {
1299 // Figure out which read request goes next, and move it to the
1300 // front of the read queue
1301 chooseNext(readQueue, switched_cmd_type);
1302
1303 DRAMPacket* dram_pkt = readQueue.front();
1304
1305 // here we get a bit creative and shift the bus busy time not
1306 // just the tWTR, but also a CAS latency to capture the fact
1307 // that we are allowed to prepare a new bank, but not issue a
1308 // read command until after tWTR, in essence we capture a
1309 // bubble on the data bus that is tWTR + tCL
1310 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1311 busBusyUntil += tWTR + tCL;
1312 }
1313
1314 doDRAMAccess(dram_pkt);
1315
1316 // At this point we're done dealing with the request
1317 readQueue.pop_front();
1318
1319 // sanity check
1320 assert(dram_pkt->size <= burstSize);
1321 assert(dram_pkt->readyTime >= curTick());
1322
1323 // Insert into response queue. It will be sent back to the
1324 // requestor at its readyTime
1325 if (respQueue.empty()) {
1326 assert(!respondEvent.scheduled());
1327 schedule(respondEvent, dram_pkt->readyTime);
1328 } else {
1329 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1330 assert(respondEvent.scheduled());
1331 }
1332
1333 respQueue.push_back(dram_pkt);
1334
1335 // we have so many writes that we have to transition
1336 if (writeQueue.size() > writeHighThreshold) {
1337 switch_to_writes = true;
1338 }
1339 }
1340
1341 // switching to writes, either because the read queue is empty
1342 // and the writes have passed the low threshold (or we are
1343 // draining), or because the writes hit the hight threshold
1344 if (switch_to_writes) {
1345 // transition to writing
1346 busState = READ_TO_WRITE;
1347 }
1348 } else {
1349 chooseNext(writeQueue, switched_cmd_type);
1350 DRAMPacket* dram_pkt = writeQueue.front();
1351 // sanity check
1352 assert(dram_pkt->size <= burstSize);
1353
1354 // add a bubble to the data bus, as defined by the
1355 // tRTW when access is to the same rank as previous burst
1356 // Different rank timing is handled with tCS, which is
1357 // applied to colAllowedAt
1358 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1359 busBusyUntil += tRTW;
1360 }
1361
1362 doDRAMAccess(dram_pkt);
1363
1364 writeQueue.pop_front();
1365 delete dram_pkt;
1366
1367 // If we emptied the write queue, or got sufficiently below the
1368 // threshold (using the minWritesPerSwitch as the hysteresis) and
1369 // are not draining, or we have reads waiting and have done enough
1370 // writes, then switch to reads.
1371 if (writeQueue.empty() ||
1372 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1373 !drainManager) ||
1374 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1375 // turn the bus back around for reads again
1376 busState = WRITE_TO_READ;
1377
1378 // note that the we switch back to reads also in the idle
1379 // case, which eventually will check for any draining and
1380 // also pause any further scheduling if there is really
1381 // nothing to do
1382 }
1383 }
1384
1385 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1386
1387 // If there is space available and we have writes waiting then let
1388 // them retry. This is done here to ensure that the retry does not
1389 // cause a nextReqEvent to be scheduled before we do so as part of
1390 // the next request processing
1391 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1392 retryWrReq = false;
1393 port.sendRetry();
1394 }
1395 }
1396
1397 uint64_t
1398 DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1399 bool switched_cmd_type) const
1400 {
1401 uint64_t bank_mask = 0;
1402 Tick min_act_at = MaxTick;
1403
1404 uint64_t bank_mask_same_rank = 0;
1405 Tick min_act_at_same_rank = MaxTick;
1406
1407 // Give precedence to commands that access same rank as previous command
1408 bool same_rank_match = false;
1409
1410 // determine if we have queued transactions targetting the
1411 // bank in question
1412 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1413 for (auto p = queue.begin(); p != queue.end(); ++p) {
1414 got_waiting[(*p)->bankId] = true;
1415 }
1416
1417 for (int i = 0; i < ranksPerChannel; i++) {
1418 for (int j = 0; j < banksPerRank; j++) {
1419 uint8_t bank_id = i * banksPerRank + j;
1420
1421 // if we have waiting requests for the bank, and it is
1422 // amongst the first available, update the mask
1423 if (got_waiting[bank_id]) {
1424 // simplistic approximation of when the bank can issue
1425 // an activate, ignoring any rank-to-rank switching
1426 // cost in this calculation
1427 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1428 banks[i][j].actAllowedAt :
1429 std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1430
1431 // prioritize commands that access the
1432 // same rank as previous burst
1433 // Calculate bank mask separately for the case and
1434 // evaluate after loop iterations complete
1435 if (i == activeRank && ranksPerChannel > 1) {
1436 if (act_at <= min_act_at_same_rank) {
1437 // reset same rank bank mask if new minimum is found
1438 // and previous minimum could not immediately send ACT
1439 if (act_at < min_act_at_same_rank &&
1440 min_act_at_same_rank > curTick())
1441 bank_mask_same_rank = 0;
1442
1443 // Set flag indicating that a same rank
1444 // opportunity was found
1445 same_rank_match = true;
1446
1447 // set the bit corresponding to the available bank
1448 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1449 min_act_at_same_rank = act_at;
1450 }
1451 } else {
1452 if (act_at <= min_act_at) {
1453 // reset bank mask if new minimum is found
1454 // and either previous minimum could not immediately send ACT
1455 if (act_at < min_act_at && min_act_at > curTick())
1456 bank_mask = 0;
1457 // set the bit corresponding to the available bank
1458 replaceBits(bank_mask, bank_id, bank_id, 1);
1459 min_act_at = act_at;
1460 }
1461 }
1462 }
1463 }
1464 }
1465
1466 // Determine the earliest time when the next burst can issue based
1467 // on the current busBusyUntil delay.
1468 // Offset by tRCD to correlate with ACT timing variables
1469 Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1470
1471 // Prioritize same rank accesses that can issue B2B
1472 // Only optimize for same ranks when the command type
1473 // does not change; do not want to unnecessarily incur tWTR
1474 //
1475 // Resulting FCFS prioritization Order is:
1476 // 1) Commands that access the same rank as previous burst
1477 // and can prep the bank seamlessly.
1478 // 2) Commands (any rank) with earliest bank prep
1479 if (!switched_cmd_type && same_rank_match &&
1480 min_act_at_same_rank <= min_cmd_at) {
1481 bank_mask = bank_mask_same_rank;
1482 }
1483
1484 return bank_mask;
1485 }
1486
1487 void
1488 DRAMCtrl::processRefreshEvent()
1489 {
1490 // when first preparing the refresh, remember when it was due
1491 if (refreshState == REF_IDLE) {
1492 // remember when the refresh is due
1493 refreshDueAt = curTick();
1494
1495 // proceed to drain
1496 refreshState = REF_DRAIN;
1497
1498 DPRINTF(DRAM, "Refresh due\n");
1499 }
1500
1501 // let any scheduled read or write go ahead, after which it will
1502 // hand control back to this event loop
1503 if (refreshState == REF_DRAIN) {
1504 if (nextReqEvent.scheduled()) {
1505 // hand control over to the request loop until it is
1506 // evaluated next
1507 DPRINTF(DRAM, "Refresh awaiting draining\n");
1508
1509 return;
1510 } else {
1511 refreshState = REF_PRE;
1512 }
1513 }
1514
1515 // at this point, ensure that all banks are precharged
1516 if (refreshState == REF_PRE) {
1517 // precharge any active bank if we are not already in the idle
1518 // state
1519 if (pwrState != PWR_IDLE) {
1520 // at the moment, we use a precharge all even if there is
1521 // only a single bank open
1522 DPRINTF(DRAM, "Precharging all\n");
1523
1524 // first determine when we can precharge
1525 Tick pre_at = curTick();
1526 for (int i = 0; i < ranksPerChannel; i++) {
1527 for (int j = 0; j < banksPerRank; j++) {
1528 // respect both causality and any existing bank
1529 // constraints, some banks could already have a
1530 // (auto) precharge scheduled
1531 pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
1532 }
1533 }
1534
1535 // make sure all banks are precharged, and for those that
1536 // already are, update their availability
1537 Tick act_allowed_at = pre_at + tRP;
1538
1539 for (int i = 0; i < ranksPerChannel; i++) {
1540 for (int j = 0; j < banksPerRank; j++) {
1541 if (banks[i][j].openRow != Bank::NO_ROW) {
1542 prechargeBank(banks[i][j], pre_at, false);
1543 } else {
1544 banks[i][j].actAllowedAt =
1545 std::max(banks[i][j].actAllowedAt, act_allowed_at);
1546 banks[i][j].preAllowedAt =
1547 std::max(banks[i][j].preAllowedAt, pre_at);
1548 }
1549 }
1550
1551 // at the moment this affects all ranks
1552 rankPower[i].powerlib.doCommand(MemCommand::PREA, 0,
1553 divCeil(pre_at, tCK) -
1554 timeStampOffset);
1555
1556 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) -
1557 timeStampOffset, i);
1558 }
1559 } else {
1560 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1561
1562 // go ahead and kick the power state machine into gear if
1563 // we are already idle
1564 schedulePowerEvent(PWR_REF, curTick());
1565 }
1566
1567 refreshState = REF_RUN;
1568 assert(numBanksActive == 0);
1569
1570 // wait for all banks to be precharged, at which point the
1571 // power state machine will transition to the idle state, and
1572 // automatically move to a refresh, at that point it will also
1573 // call this method to get the refresh event loop going again
1574 return;
1575 }
1576
1577 // last but not least we perform the actual refresh
1578 if (refreshState == REF_RUN) {
1579 // should never get here with any banks active
1580 assert(numBanksActive == 0);
1581 assert(pwrState == PWR_REF);
1582
1583 Tick ref_done_at = curTick() + tRFC;
1584
1585 for (int i = 0; i < ranksPerChannel; i++) {
1586 for (int j = 0; j < banksPerRank; j++) {
1587 banks[i][j].actAllowedAt = ref_done_at;
1588 }
1589
1590 // at the moment this affects all ranks
1591 rankPower[i].powerlib.doCommand(MemCommand::REF, 0,
1592 divCeil(curTick(), tCK) -
1593 timeStampOffset);
1594
1595 // at the moment sort the list of commands and update the counters
1596 // for DRAMPower libray when doing a refresh
1597 sort(rankPower[i].powerlib.cmdList.begin(),
1598 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime);
1599
1600 // update the counters for DRAMPower, passing false to
1601 // indicate that this is not the last command in the
1602 // list. DRAMPower requires this information for the
1603 // correct calculation of the background energy at the end
1604 // of the simulation. Ideally we would want to call this
1605 // function with true once at the end of the
1606 // simulation. However, the discarded energy is extremly
1607 // small and does not effect the final results.
1608 rankPower[i].powerlib.updateCounters(false);
1609
1610 // call the energy function
1611 rankPower[i].powerlib.calcEnergy();
1612
1613 // Update the stats
1614 updatePowerStats(i);
1615
1616 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) -
1617 timeStampOffset, i);
1618 }
1619
1620 // make sure we did not wait so long that we cannot make up
1621 // for it
1622 if (refreshDueAt + tREFI < ref_done_at) {
1623 fatal("Refresh was delayed so long we cannot catch up\n");
1624 }
1625
1626 // compensate for the delay in actually performing the refresh
1627 // when scheduling the next one
1628 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1629
1630 assert(!powerEvent.scheduled());
1631
1632 // move to the idle power state once the refresh is done, this
1633 // will also move the refresh state machine to the refresh
1634 // idle state
1635 schedulePowerEvent(PWR_IDLE, ref_done_at);
1636
1637 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1638 ref_done_at, refreshDueAt + tREFI);
1639 }
1640 }
1641
1642 void
1643 DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1644 {
1645 // respect causality
1646 assert(tick >= curTick());
1647
1648 if (!powerEvent.scheduled()) {
1649 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1650 tick, pwr_state);
1651
1652 // insert the new transition
1653 pwrStateTrans = pwr_state;
1654
1655 schedule(powerEvent, tick);
1656 } else {
1657 panic("Scheduled power event at %llu to state %d, "
1658 "with scheduled event at %llu to %d\n", tick, pwr_state,
1659 powerEvent.when(), pwrStateTrans);
1660 }
1661 }
1662
1663 void
1664 DRAMCtrl::processPowerEvent()
1665 {
1666 // remember where we were, and for how long
1667 Tick duration = curTick() - pwrStateTick;
1668 PowerState prev_state = pwrState;
1669
1670 // update the accounting
1671 pwrStateTime[prev_state] += duration;
1672
1673 pwrState = pwrStateTrans;
1674 pwrStateTick = curTick();
1675
1676 if (pwrState == PWR_IDLE) {
1677 DPRINTF(DRAMState, "All banks precharged\n");
1678
1679 // if we were refreshing, make sure we start scheduling requests again
1680 if (prev_state == PWR_REF) {
1681 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1682 assert(pwrState == PWR_IDLE);
1683
1684 // kick things into action again
1685 refreshState = REF_IDLE;
1686 assert(!nextReqEvent.scheduled());
1687 schedule(nextReqEvent, curTick());
1688 } else {
1689 assert(prev_state == PWR_ACT);
1690
1691 // if we have a pending refresh, and are now moving to
1692 // the idle state, direclty transition to a refresh
1693 if (refreshState == REF_RUN) {
1694 // there should be nothing waiting at this point
1695 assert(!powerEvent.scheduled());
1696
1697 // update the state in zero time and proceed below
1698 pwrState = PWR_REF;
1699 }
1700 }
1701 }
1702
1703 // we transition to the refresh state, let the refresh state
1704 // machine know of this state update and let it deal with the
1705 // scheduling of the next power state transition as well as the
1706 // following refresh
1707 if (pwrState == PWR_REF) {
1708 DPRINTF(DRAMState, "Refreshing\n");
1709 // kick the refresh event loop into action again, and that
1710 // in turn will schedule a transition to the idle power
1711 // state once the refresh is done
1712 assert(refreshState == REF_RUN);
1713 processRefreshEvent();
1714 }
1715 }
1716
1717 void
1718 DRAMCtrl::updatePowerStats(uint8_t rank)
1719 {
1720 // Get the energy and power from DRAMPower
1721 Data::MemoryPowerModel::Energy energy =
1722 rankPower[rank].powerlib.getEnergy();
1723 Data::MemoryPowerModel::Power power =
1724 rankPower[rank].powerlib.getPower();
1725
1726 actEnergy[rank] = energy.act_energy * devicesPerRank;
1727 preEnergy[rank] = energy.pre_energy * devicesPerRank;
1728 readEnergy[rank] = energy.read_energy * devicesPerRank;
1729 writeEnergy[rank] = energy.write_energy * devicesPerRank;
1730 refreshEnergy[rank] = energy.ref_energy * devicesPerRank;
1731 actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank;
1732 preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank;
1733 totalEnergy[rank] = energy.total_energy * devicesPerRank;
1734 averagePower[rank] = power.average_power * devicesPerRank;
1735 }
1736
1737 void
1738 DRAMCtrl::regStats()
1739 {
1740 using namespace Stats;
1741
1742 AbstractMemory::regStats();
1743
1744 readReqs
1745 .name(name() + ".readReqs")
1746 .desc("Number of read requests accepted");
1747
1748 writeReqs
1749 .name(name() + ".writeReqs")
1750 .desc("Number of write requests accepted");
1751
1752 readBursts
1753 .name(name() + ".readBursts")
1754 .desc("Number of DRAM read bursts, "
1755 "including those serviced by the write queue");
1756
1757 writeBursts
1758 .name(name() + ".writeBursts")
1759 .desc("Number of DRAM write bursts, "
1760 "including those merged in the write queue");
1761
1762 servicedByWrQ
1763 .name(name() + ".servicedByWrQ")
1764 .desc("Number of DRAM read bursts serviced by the write queue");
1765
1766 mergedWrBursts
1767 .name(name() + ".mergedWrBursts")
1768 .desc("Number of DRAM write bursts merged with an existing one");
1769
1770 neitherReadNorWrite
1771 .name(name() + ".neitherReadNorWriteReqs")
1772 .desc("Number of requests that are neither read nor write");
1773
1774 perBankRdBursts
1775 .init(banksPerRank * ranksPerChannel)
1776 .name(name() + ".perBankRdBursts")
1777 .desc("Per bank write bursts");
1778
1779 perBankWrBursts
1780 .init(banksPerRank * ranksPerChannel)
1781 .name(name() + ".perBankWrBursts")
1782 .desc("Per bank write bursts");
1783
1784 avgRdQLen
1785 .name(name() + ".avgRdQLen")
1786 .desc("Average read queue length when enqueuing")
1787 .precision(2);
1788
1789 avgWrQLen
1790 .name(name() + ".avgWrQLen")
1791 .desc("Average write queue length when enqueuing")
1792 .precision(2);
1793
1794 totQLat
1795 .name(name() + ".totQLat")
1796 .desc("Total ticks spent queuing");
1797
1798 totBusLat
1799 .name(name() + ".totBusLat")
1800 .desc("Total ticks spent in databus transfers");
1801
1802 totMemAccLat
1803 .name(name() + ".totMemAccLat")
1804 .desc("Total ticks spent from burst creation until serviced "
1805 "by the DRAM");
1806
1807 avgQLat
1808 .name(name() + ".avgQLat")
1809 .desc("Average queueing delay per DRAM burst")
1810 .precision(2);
1811
1812 avgQLat = totQLat / (readBursts - servicedByWrQ);
1813
1814 avgBusLat
1815 .name(name() + ".avgBusLat")
1816 .desc("Average bus latency per DRAM burst")
1817 .precision(2);
1818
1819 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1820
1821 avgMemAccLat
1822 .name(name() + ".avgMemAccLat")
1823 .desc("Average memory access latency per DRAM burst")
1824 .precision(2);
1825
1826 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1827
1828 numRdRetry
1829 .name(name() + ".numRdRetry")
1830 .desc("Number of times read queue was full causing retry");
1831
1832 numWrRetry
1833 .name(name() + ".numWrRetry")
1834 .desc("Number of times write queue was full causing retry");
1835
1836 readRowHits
1837 .name(name() + ".readRowHits")
1838 .desc("Number of row buffer hits during reads");
1839
1840 writeRowHits
1841 .name(name() + ".writeRowHits")
1842 .desc("Number of row buffer hits during writes");
1843
1844 readRowHitRate
1845 .name(name() + ".readRowHitRate")
1846 .desc("Row buffer hit rate for reads")
1847 .precision(2);
1848
1849 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1850
1851 writeRowHitRate
1852 .name(name() + ".writeRowHitRate")
1853 .desc("Row buffer hit rate for writes")
1854 .precision(2);
1855
1856 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1857
1858 readPktSize
1859 .init(ceilLog2(burstSize) + 1)
1860 .name(name() + ".readPktSize")
1861 .desc("Read request sizes (log2)");
1862
1863 writePktSize
1864 .init(ceilLog2(burstSize) + 1)
1865 .name(name() + ".writePktSize")
1866 .desc("Write request sizes (log2)");
1867
1868 rdQLenPdf
1869 .init(readBufferSize)
1870 .name(name() + ".rdQLenPdf")
1871 .desc("What read queue length does an incoming req see");
1872
1873 wrQLenPdf
1874 .init(writeBufferSize)
1875 .name(name() + ".wrQLenPdf")
1876 .desc("What write queue length does an incoming req see");
1877
1878 bytesPerActivate
1879 .init(maxAccessesPerRow)
1880 .name(name() + ".bytesPerActivate")
1881 .desc("Bytes accessed per row activation")
1882 .flags(nozero);
1883
1884 rdPerTurnAround
1885 .init(readBufferSize)
1886 .name(name() + ".rdPerTurnAround")
1887 .desc("Reads before turning the bus around for writes")
1888 .flags(nozero);
1889
1890 wrPerTurnAround
1891 .init(writeBufferSize)
1892 .name(name() + ".wrPerTurnAround")
1893 .desc("Writes before turning the bus around for reads")
1894 .flags(nozero);
1895
1896 bytesReadDRAM
1897 .name(name() + ".bytesReadDRAM")
1898 .desc("Total number of bytes read from DRAM");
1899
1900 bytesReadWrQ
1901 .name(name() + ".bytesReadWrQ")
1902 .desc("Total number of bytes read from write queue");
1903
1904 bytesWritten
1905 .name(name() + ".bytesWritten")
1906 .desc("Total number of bytes written to DRAM");
1907
1908 bytesReadSys
1909 .name(name() + ".bytesReadSys")
1910 .desc("Total read bytes from the system interface side");
1911
1912 bytesWrittenSys
1913 .name(name() + ".bytesWrittenSys")
1914 .desc("Total written bytes from the system interface side");
1915
1916 avgRdBW
1917 .name(name() + ".avgRdBW")
1918 .desc("Average DRAM read bandwidth in MiByte/s")
1919 .precision(2);
1920
1921 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1922
1923 avgWrBW
1924 .name(name() + ".avgWrBW")
1925 .desc("Average achieved write bandwidth in MiByte/s")
1926 .precision(2);
1927
1928 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1929
1930 avgRdBWSys
1931 .name(name() + ".avgRdBWSys")
1932 .desc("Average system read bandwidth in MiByte/s")
1933 .precision(2);
1934
1935 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1936
1937 avgWrBWSys
1938 .name(name() + ".avgWrBWSys")
1939 .desc("Average system write bandwidth in MiByte/s")
1940 .precision(2);
1941
1942 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1943
1944 peakBW
1945 .name(name() + ".peakBW")
1946 .desc("Theoretical peak bandwidth in MiByte/s")
1947 .precision(2);
1948
1949 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1950
1951 busUtil
1952 .name(name() + ".busUtil")
1953 .desc("Data bus utilization in percentage")
1954 .precision(2);
1955
1956 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1957
1958 totGap
1959 .name(name() + ".totGap")
1960 .desc("Total gap between requests");
1961
1962 avgGap
1963 .name(name() + ".avgGap")
1964 .desc("Average gap between requests")
1965 .precision(2);
1966
1967 avgGap = totGap / (readReqs + writeReqs);
1968
1969 // Stats for DRAM Power calculation based on Micron datasheet
1970 busUtilRead
1971 .name(name() + ".busUtilRead")
1972 .desc("Data bus utilization in percentage for reads")
1973 .precision(2);
1974
1975 busUtilRead = avgRdBW / peakBW * 100;
1976
1977 busUtilWrite
1978 .name(name() + ".busUtilWrite")
1979 .desc("Data bus utilization in percentage for writes")
1980 .precision(2);
1981
1982 busUtilWrite = avgWrBW / peakBW * 100;
1983
1984 pageHitRate
1985 .name(name() + ".pageHitRate")
1986 .desc("Row buffer hit rate, read and write combined")
1987 .precision(2);
1988
1989 pageHitRate = (writeRowHits + readRowHits) /
1990 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1991
1992 pwrStateTime
1993 .init(5)
1994 .name(name() + ".memoryStateTime")
1995 .desc("Time in different power states");
1996 pwrStateTime.subname(0, "IDLE");
1997 pwrStateTime.subname(1, "REF");
1998 pwrStateTime.subname(2, "PRE_PDN");
1999 pwrStateTime.subname(3, "ACT");
2000 pwrStateTime.subname(4, "ACT_PDN");
2001
2002 actEnergy
2003 .init(ranksPerChannel)
2004 .name(name() + ".actEnergy")
2005 .desc("Energy for activate commands per rank (pJ)");
2006
2007 preEnergy
2008 .init(ranksPerChannel)
2009 .name(name() + ".preEnergy")
2010 .desc("Energy for precharge commands per rank (pJ)");
2011
2012 readEnergy
2013 .init(ranksPerChannel)
2014 .name(name() + ".readEnergy")
2015 .desc("Energy for read commands per rank (pJ)");
2016
2017 writeEnergy
2018 .init(ranksPerChannel)
2019 .name(name() + ".writeEnergy")
2020 .desc("Energy for write commands per rank (pJ)");
2021
2022 refreshEnergy
2023 .init(ranksPerChannel)
2024 .name(name() + ".refreshEnergy")
2025 .desc("Energy for refresh commands per rank (pJ)");
2026
2027 actBackEnergy
2028 .init(ranksPerChannel)
2029 .name(name() + ".actBackEnergy")
2030 .desc("Energy for active background per rank (pJ)");
2031
2032 preBackEnergy
2033 .init(ranksPerChannel)
2034 .name(name() + ".preBackEnergy")
2035 .desc("Energy for precharge background per rank (pJ)");
2036
2037 totalEnergy
2038 .init(ranksPerChannel)
2039 .name(name() + ".totalEnergy")
2040 .desc("Total energy per rank (pJ)");
2041
2042 averagePower
2043 .init(ranksPerChannel)
2044 .name(name() + ".averagePower")
2045 .desc("Core power per rank (mW)");
2046 }
2047
2048 void
2049 DRAMCtrl::recvFunctional(PacketPtr pkt)
2050 {
2051 // rely on the abstract memory
2052 functionalAccess(pkt);
2053 }
2054
2055 BaseSlavePort&
2056 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2057 {
2058 if (if_name != "port") {
2059 return MemObject::getSlavePort(if_name, idx);
2060 } else {
2061 return port;
2062 }
2063 }
2064
2065 unsigned int
2066 DRAMCtrl::drain(DrainManager *dm)
2067 {
2068 unsigned int count = port.drain(dm);
2069
2070 // if there is anything in any of our internal queues, keep track
2071 // of that as well
2072 if (!(writeQueue.empty() && readQueue.empty() &&
2073 respQueue.empty())) {
2074 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2075 " resp: %d\n", writeQueue.size(), readQueue.size(),
2076 respQueue.size());
2077 ++count;
2078 drainManager = dm;
2079
2080 // the only part that is not drained automatically over time
2081 // is the write queue, thus kick things into action if needed
2082 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2083 schedule(nextReqEvent, curTick());
2084 }
2085 }
2086
2087 if (count)
2088 setDrainState(Drainable::Draining);
2089 else
2090 setDrainState(Drainable::Drained);
2091 return count;
2092 }
2093
2094 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2095 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2096 memory(_memory)
2097 { }
2098
2099 AddrRangeList
2100 DRAMCtrl::MemoryPort::getAddrRanges() const
2101 {
2102 AddrRangeList ranges;
2103 ranges.push_back(memory.getAddrRange());
2104 return ranges;
2105 }
2106
2107 void
2108 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2109 {
2110 pkt->pushLabel(memory.name());
2111
2112 if (!queue.checkFunctional(pkt)) {
2113 // Default implementation of SimpleTimingPort::recvFunctional()
2114 // calls recvAtomic() and throws away the latency; we can save a
2115 // little here by just not calculating the latency.
2116 memory.recvFunctional(pkt);
2117 }
2118
2119 pkt->popLabel();
2120 }
2121
2122 Tick
2123 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2124 {
2125 return memory.recvAtomic(pkt);
2126 }
2127
2128 bool
2129 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2130 {
2131 // pass it to the memory controller
2132 return memory.recvTimingReq(pkt);
2133 }
2134
2135 DRAMCtrl*
2136 DRAMCtrlParams::create()
2137 {
2138 return new DRAMCtrl(this);
2139 }