mem: Merge DRAM latency calculation and bank state update
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45 #include "base/bitfield.hh"
46 #include "base/trace.hh"
47 #include "debug/DRAM.hh"
48 #include "debug/DRAMState.hh"
49 #include "debug/Drain.hh"
50 #include "mem/dram_ctrl.hh"
51 #include "sim/system.hh"
52
53 using namespace std;
54
55 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56 AbstractMemory(p),
57 port(name() + ".port", *this),
58 retryRdReq(false), retryWrReq(false),
59 busState(READ),
60 nextReqEvent(this), respondEvent(this), activateEvent(this),
61 prechargeEvent(this), refreshEvent(this), powerEvent(this),
62 drainManager(NULL),
63 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
64 deviceRowBufferSize(p->device_rowbuffer_size),
65 devicesPerRank(p->devices_per_rank),
66 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
67 rowBufferSize(devicesPerRank * deviceRowBufferSize),
68 columnsPerRowBuffer(rowBufferSize / burstSize),
69 ranksPerChannel(p->ranks_per_channel),
70 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
71 readBufferSize(p->read_buffer_size),
72 writeBufferSize(p->write_buffer_size),
73 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
74 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
75 minWritesPerSwitch(p->min_writes_per_switch),
76 writesThisTime(0), readsThisTime(0),
77 tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
78 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
79 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
80 tXAW(p->tXAW), activationLimit(p->activation_limit),
81 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
82 pageMgmt(p->page_policy),
83 maxAccessesPerRow(p->max_accesses_per_row),
84 frontendLatency(p->static_frontend_latency),
85 backendLatency(p->static_backend_latency),
86 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
87 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
88 nextReqTime(0), pwrStateTick(0), numBanksActive(0)
89 {
90 // create the bank states based on the dimensions of the ranks and
91 // banks
92 banks.resize(ranksPerChannel);
93 actTicks.resize(ranksPerChannel);
94 for (size_t c = 0; c < ranksPerChannel; ++c) {
95 banks[c].resize(banksPerRank);
96 actTicks[c].resize(activationLimit, 0);
97 }
98
99 // perform a basic check of the write thresholds
100 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
101 fatal("Write buffer low threshold %d must be smaller than the "
102 "high threshold %d\n", p->write_low_thresh_perc,
103 p->write_high_thresh_perc);
104
105 // determine the rows per bank by looking at the total capacity
106 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
107
108 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
109 AbstractMemory::size());
110
111 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
112 rowBufferSize, columnsPerRowBuffer);
113
114 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
115
116 if (range.interleaved()) {
117 if (channels != range.stripes())
118 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
119 name(), range.stripes(), channels);
120
121 if (addrMapping == Enums::RoRaBaChCo) {
122 if (rowBufferSize != range.granularity()) {
123 fatal("Interleaving of %s doesn't match RoRaBaChCo "
124 "address map\n", name());
125 }
126 } else if (addrMapping == Enums::RoRaBaCoCh) {
127 if (system()->cacheLineSize() != range.granularity()) {
128 fatal("Interleaving of %s doesn't match RoRaBaCoCh "
129 "address map\n", name());
130 }
131 } else if (addrMapping == Enums::RoCoRaBaCh) {
132 if (system()->cacheLineSize() != range.granularity())
133 fatal("Interleaving of %s doesn't match RoCoRaBaCh "
134 "address map\n", name());
135 }
136 }
137
138 // some basic sanity checks
139 if (tREFI <= tRP || tREFI <= tRFC) {
140 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
141 tREFI, tRP, tRFC);
142 }
143 }
144
145 void
146 DRAMCtrl::init()
147 {
148 if (!port.isConnected()) {
149 fatal("DRAMCtrl %s is unconnected!\n", name());
150 } else {
151 port.sendRangeChange();
152 }
153 }
154
155 void
156 DRAMCtrl::startup()
157 {
158 // update the start tick for the precharge accounting to the
159 // current tick
160 pwrStateTick = curTick();
161
162 // shift the bus busy time sufficiently far ahead that we never
163 // have to worry about negative values when computing the time for
164 // the next request, this will add an insignificant bubble at the
165 // start of simulation
166 busBusyUntil = curTick() + tRP + tRCD + tCL;
167
168 // print the configuration of the controller
169 printParams();
170
171 // kick off the refresh, and give ourselves enough time to
172 // precharge
173 schedule(refreshEvent, curTick() + tREFI - tRP);
174 }
175
176 Tick
177 DRAMCtrl::recvAtomic(PacketPtr pkt)
178 {
179 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
180
181 // do the actual memory access and turn the packet into a response
182 access(pkt);
183
184 Tick latency = 0;
185 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
186 // this value is not supposed to be accurate, just enough to
187 // keep things going, mimic a closed page
188 latency = tRP + tRCD + tCL;
189 }
190 return latency;
191 }
192
193 bool
194 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
195 {
196 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
197 readBufferSize, readQueue.size() + respQueue.size(),
198 neededEntries);
199
200 return
201 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
202 }
203
204 bool
205 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
206 {
207 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
208 writeBufferSize, writeQueue.size(), neededEntries);
209 return (writeQueue.size() + neededEntries) > writeBufferSize;
210 }
211
212 DRAMCtrl::DRAMPacket*
213 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
214 bool isRead)
215 {
216 // decode the address based on the address mapping scheme, with
217 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
218 // channel, respectively
219 uint8_t rank;
220 uint8_t bank;
221 uint16_t row;
222
223 // truncate the address to the access granularity
224 Addr addr = dramPktAddr / burstSize;
225
226 // we have removed the lowest order address bits that denote the
227 // position within the column
228 if (addrMapping == Enums::RoRaBaChCo) {
229 // the lowest order bits denote the column to ensure that
230 // sequential cache lines occupy the same row
231 addr = addr / columnsPerRowBuffer;
232
233 // take out the channel part of the address
234 addr = addr / channels;
235
236 // after the channel bits, get the bank bits to interleave
237 // over the banks
238 bank = addr % banksPerRank;
239 addr = addr / banksPerRank;
240
241 // after the bank, we get the rank bits which thus interleaves
242 // over the ranks
243 rank = addr % ranksPerChannel;
244 addr = addr / ranksPerChannel;
245
246 // lastly, get the row bits
247 row = addr % rowsPerBank;
248 addr = addr / rowsPerBank;
249 } else if (addrMapping == Enums::RoRaBaCoCh) {
250 // take out the channel part of the address
251 addr = addr / channels;
252
253 // next, the column
254 addr = addr / columnsPerRowBuffer;
255
256 // after the column bits, we get the bank bits to interleave
257 // over the banks
258 bank = addr % banksPerRank;
259 addr = addr / banksPerRank;
260
261 // after the bank, we get the rank bits which thus interleaves
262 // over the ranks
263 rank = addr % ranksPerChannel;
264 addr = addr / ranksPerChannel;
265
266 // lastly, get the row bits
267 row = addr % rowsPerBank;
268 addr = addr / rowsPerBank;
269 } else if (addrMapping == Enums::RoCoRaBaCh) {
270 // optimise for closed page mode and utilise maximum
271 // parallelism of the DRAM (at the cost of power)
272
273 // take out the channel part of the address, not that this has
274 // to match with how accesses are interleaved between the
275 // controllers in the address mapping
276 addr = addr / channels;
277
278 // start with the bank bits, as this provides the maximum
279 // opportunity for parallelism between requests
280 bank = addr % banksPerRank;
281 addr = addr / banksPerRank;
282
283 // next get the rank bits
284 rank = addr % ranksPerChannel;
285 addr = addr / ranksPerChannel;
286
287 // next the column bits which we do not need to keep track of
288 // and simply skip past
289 addr = addr / columnsPerRowBuffer;
290
291 // lastly, get the row bits
292 row = addr % rowsPerBank;
293 addr = addr / rowsPerBank;
294 } else
295 panic("Unknown address mapping policy chosen!");
296
297 assert(rank < ranksPerChannel);
298 assert(bank < banksPerRank);
299 assert(row < rowsPerBank);
300
301 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
302 dramPktAddr, rank, bank, row);
303
304 // create the corresponding DRAM packet with the entry time and
305 // ready time set to the current tick, the latter will be updated
306 // later
307 uint16_t bank_id = banksPerRank * rank + bank;
308 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
309 size, banks[rank][bank]);
310 }
311
312 void
313 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
314 {
315 // only add to the read queue here. whenever the request is
316 // eventually done, set the readyTime, and call schedule()
317 assert(!pkt->isWrite());
318
319 assert(pktCount != 0);
320
321 // if the request size is larger than burst size, the pkt is split into
322 // multiple DRAM packets
323 // Note if the pkt starting address is not aligened to burst size, the
324 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
325 // are aligned to burst size boundaries. This is to ensure we accurately
326 // check read packets against packets in write queue.
327 Addr addr = pkt->getAddr();
328 unsigned pktsServicedByWrQ = 0;
329 BurstHelper* burst_helper = NULL;
330 for (int cnt = 0; cnt < pktCount; ++cnt) {
331 unsigned size = std::min((addr | (burstSize - 1)) + 1,
332 pkt->getAddr() + pkt->getSize()) - addr;
333 readPktSize[ceilLog2(size)]++;
334 readBursts++;
335
336 // First check write buffer to see if the data is already at
337 // the controller
338 bool foundInWrQ = false;
339 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
340 // check if the read is subsumed in the write entry we are
341 // looking at
342 if ((*i)->addr <= addr &&
343 (addr + size) <= ((*i)->addr + (*i)->size)) {
344 foundInWrQ = true;
345 servicedByWrQ++;
346 pktsServicedByWrQ++;
347 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
348 "write queue\n", addr, size);
349 bytesReadWrQ += burstSize;
350 break;
351 }
352 }
353
354 // If not found in the write q, make a DRAM packet and
355 // push it onto the read queue
356 if (!foundInWrQ) {
357
358 // Make the burst helper for split packets
359 if (pktCount > 1 && burst_helper == NULL) {
360 DPRINTF(DRAM, "Read to addr %lld translates to %d "
361 "dram requests\n", pkt->getAddr(), pktCount);
362 burst_helper = new BurstHelper(pktCount);
363 }
364
365 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
366 dram_pkt->burstHelper = burst_helper;
367
368 assert(!readQueueFull(1));
369 rdQLenPdf[readQueue.size() + respQueue.size()]++;
370
371 DPRINTF(DRAM, "Adding to read queue\n");
372
373 readQueue.push_back(dram_pkt);
374
375 // Update stats
376 avgRdQLen = readQueue.size() + respQueue.size();
377 }
378
379 // Starting address of next dram pkt (aligend to burstSize boundary)
380 addr = (addr | (burstSize - 1)) + 1;
381 }
382
383 // If all packets are serviced by write queue, we send the repsonse back
384 if (pktsServicedByWrQ == pktCount) {
385 accessAndRespond(pkt, frontendLatency);
386 return;
387 }
388
389 // Update how many split packets are serviced by write queue
390 if (burst_helper != NULL)
391 burst_helper->burstsServiced = pktsServicedByWrQ;
392
393 // If we are not already scheduled to get a request out of the
394 // queue, do so now
395 if (!nextReqEvent.scheduled()) {
396 DPRINTF(DRAM, "Request scheduled immediately\n");
397 schedule(nextReqEvent, curTick());
398 }
399 }
400
401 void
402 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
403 {
404 // only add to the write queue here. whenever the request is
405 // eventually done, set the readyTime, and call schedule()
406 assert(pkt->isWrite());
407
408 // if the request size is larger than burst size, the pkt is split into
409 // multiple DRAM packets
410 Addr addr = pkt->getAddr();
411 for (int cnt = 0; cnt < pktCount; ++cnt) {
412 unsigned size = std::min((addr | (burstSize - 1)) + 1,
413 pkt->getAddr() + pkt->getSize()) - addr;
414 writePktSize[ceilLog2(size)]++;
415 writeBursts++;
416
417 // see if we can merge with an existing item in the write
418 // queue and keep track of whether we have merged or not so we
419 // can stop at that point and also avoid enqueueing a new
420 // request
421 bool merged = false;
422 auto w = writeQueue.begin();
423
424 while(!merged && w != writeQueue.end()) {
425 // either of the two could be first, if they are the same
426 // it does not matter which way we go
427 if ((*w)->addr >= addr) {
428 // the existing one starts after the new one, figure
429 // out where the new one ends with respect to the
430 // existing one
431 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
432 // check if the existing one is completely
433 // subsumed in the new one
434 DPRINTF(DRAM, "Merging write covering existing burst\n");
435 merged = true;
436 // update both the address and the size
437 (*w)->addr = addr;
438 (*w)->size = size;
439 } else if ((addr + size) >= (*w)->addr &&
440 ((*w)->addr + (*w)->size - addr) <= burstSize) {
441 // the new one is just before or partially
442 // overlapping with the existing one, and together
443 // they fit within a burst
444 DPRINTF(DRAM, "Merging write before existing burst\n");
445 merged = true;
446 // the existing queue item needs to be adjusted with
447 // respect to both address and size
448 (*w)->size = (*w)->addr + (*w)->size - addr;
449 (*w)->addr = addr;
450 }
451 } else {
452 // the new one starts after the current one, figure
453 // out where the existing one ends with respect to the
454 // new one
455 if (((*w)->addr + (*w)->size) >= (addr + size)) {
456 // check if the new one is completely subsumed in the
457 // existing one
458 DPRINTF(DRAM, "Merging write into existing burst\n");
459 merged = true;
460 // no adjustments necessary
461 } else if (((*w)->addr + (*w)->size) >= addr &&
462 (addr + size - (*w)->addr) <= burstSize) {
463 // the existing one is just before or partially
464 // overlapping with the new one, and together
465 // they fit within a burst
466 DPRINTF(DRAM, "Merging write after existing burst\n");
467 merged = true;
468 // the address is right, and only the size has
469 // to be adjusted
470 (*w)->size = addr + size - (*w)->addr;
471 }
472 }
473 ++w;
474 }
475
476 // if the item was not merged we need to create a new write
477 // and enqueue it
478 if (!merged) {
479 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
480
481 assert(writeQueue.size() < writeBufferSize);
482 wrQLenPdf[writeQueue.size()]++;
483
484 DPRINTF(DRAM, "Adding to write queue\n");
485
486 writeQueue.push_back(dram_pkt);
487
488 // Update stats
489 avgWrQLen = writeQueue.size();
490 } else {
491 // keep track of the fact that this burst effectively
492 // disappeared as it was merged with an existing one
493 mergedWrBursts++;
494 }
495
496 // Starting address of next dram pkt (aligend to burstSize boundary)
497 addr = (addr | (burstSize - 1)) + 1;
498 }
499
500 // we do not wait for the writes to be send to the actual memory,
501 // but instead take responsibility for the consistency here and
502 // snoop the write queue for any upcoming reads
503 // @todo, if a pkt size is larger than burst size, we might need a
504 // different front end latency
505 accessAndRespond(pkt, frontendLatency);
506
507 // If we are not already scheduled to get a request out of the
508 // queue, do so now
509 if (!nextReqEvent.scheduled()) {
510 DPRINTF(DRAM, "Request scheduled immediately\n");
511 schedule(nextReqEvent, curTick());
512 }
513 }
514
515 void
516 DRAMCtrl::printParams() const
517 {
518 // Sanity check print of important parameters
519 DPRINTF(DRAM,
520 "Memory controller %s physical organization\n" \
521 "Number of devices per rank %d\n" \
522 "Device bus width (in bits) %d\n" \
523 "DRAM data bus burst (bytes) %d\n" \
524 "Row buffer size (bytes) %d\n" \
525 "Columns per row buffer %d\n" \
526 "Rows per bank %d\n" \
527 "Banks per rank %d\n" \
528 "Ranks per channel %d\n" \
529 "Total mem capacity (bytes) %u\n",
530 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
531 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
532 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
533
534 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
535 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
536 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
537 string page_policy = pageMgmt == Enums::open ? "OPEN" :
538 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
539 (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
540
541 DPRINTF(DRAM,
542 "Memory controller %s characteristics\n" \
543 "Read buffer size %d\n" \
544 "Write buffer size %d\n" \
545 "Write high thresh %d\n" \
546 "Write low thresh %d\n" \
547 "Scheduler %s\n" \
548 "Address mapping %s\n" \
549 "Page policy %s\n",
550 name(), readBufferSize, writeBufferSize, writeHighThreshold,
551 writeLowThreshold, scheduler, address_mapping, page_policy);
552
553 DPRINTF(DRAM, "Memory controller %s timing specs\n" \
554 "tRCD %d ticks\n" \
555 "tCL %d ticks\n" \
556 "tRP %d ticks\n" \
557 "tBURST %d ticks\n" \
558 "tRFC %d ticks\n" \
559 "tREFI %d ticks\n" \
560 "tWTR %d ticks\n" \
561 "tRTW %d ticks\n" \
562 "tWR %d ticks\n" \
563 "tXAW (%d) %d ticks\n",
564 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
565 tRTW, tWR, activationLimit, tXAW);
566 }
567
568 void
569 DRAMCtrl::printQs() const {
570 DPRINTF(DRAM, "===READ QUEUE===\n\n");
571 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
572 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
573 }
574 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
575 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
576 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
577 }
578 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
579 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
580 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
581 }
582 }
583
584 bool
585 DRAMCtrl::recvTimingReq(PacketPtr pkt)
586 {
587 /// @todo temporary hack to deal with memory corruption issues until
588 /// 4-phase transactions are complete
589 for (int x = 0; x < pendingDelete.size(); x++)
590 delete pendingDelete[x];
591 pendingDelete.clear();
592
593 // This is where we enter from the outside world
594 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
595 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
596
597 // simply drop inhibited packets for now
598 if (pkt->memInhibitAsserted()) {
599 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
600 pendingDelete.push_back(pkt);
601 return true;
602 }
603
604 // Calc avg gap between requests
605 if (prevArrival != 0) {
606 totGap += curTick() - prevArrival;
607 }
608 prevArrival = curTick();
609
610
611 // Find out how many dram packets a pkt translates to
612 // If the burst size is equal or larger than the pkt size, then a pkt
613 // translates to only one dram packet. Otherwise, a pkt translates to
614 // multiple dram packets
615 unsigned size = pkt->getSize();
616 unsigned offset = pkt->getAddr() & (burstSize - 1);
617 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
618
619 // check local buffers and do not accept if full
620 if (pkt->isRead()) {
621 assert(size != 0);
622 if (readQueueFull(dram_pkt_count)) {
623 DPRINTF(DRAM, "Read queue full, not accepting\n");
624 // remember that we have to retry this port
625 retryRdReq = true;
626 numRdRetry++;
627 return false;
628 } else {
629 addToReadQueue(pkt, dram_pkt_count);
630 readReqs++;
631 bytesReadSys += size;
632 }
633 } else if (pkt->isWrite()) {
634 assert(size != 0);
635 if (writeQueueFull(dram_pkt_count)) {
636 DPRINTF(DRAM, "Write queue full, not accepting\n");
637 // remember that we have to retry this port
638 retryWrReq = true;
639 numWrRetry++;
640 return false;
641 } else {
642 addToWriteQueue(pkt, dram_pkt_count);
643 writeReqs++;
644 bytesWrittenSys += size;
645 }
646 } else {
647 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
648 neitherReadNorWrite++;
649 accessAndRespond(pkt, 1);
650 }
651
652 return true;
653 }
654
655 void
656 DRAMCtrl::processRespondEvent()
657 {
658 DPRINTF(DRAM,
659 "processRespondEvent(): Some req has reached its readyTime\n");
660
661 DRAMPacket* dram_pkt = respQueue.front();
662
663 if (dram_pkt->burstHelper) {
664 // it is a split packet
665 dram_pkt->burstHelper->burstsServiced++;
666 if (dram_pkt->burstHelper->burstsServiced ==
667 dram_pkt->burstHelper->burstCount) {
668 // we have now serviced all children packets of a system packet
669 // so we can now respond to the requester
670 // @todo we probably want to have a different front end and back
671 // end latency for split packets
672 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
673 delete dram_pkt->burstHelper;
674 dram_pkt->burstHelper = NULL;
675 }
676 } else {
677 // it is not a split packet
678 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
679 }
680
681 delete respQueue.front();
682 respQueue.pop_front();
683
684 if (!respQueue.empty()) {
685 assert(respQueue.front()->readyTime >= curTick());
686 assert(!respondEvent.scheduled());
687 schedule(respondEvent, respQueue.front()->readyTime);
688 } else {
689 // if there is nothing left in any queue, signal a drain
690 if (writeQueue.empty() && readQueue.empty() &&
691 drainManager) {
692 drainManager->signalDrainDone();
693 drainManager = NULL;
694 }
695 }
696
697 // We have made a location in the queue available at this point,
698 // so if there is a read that was forced to wait, retry now
699 if (retryRdReq) {
700 retryRdReq = false;
701 port.sendRetry();
702 }
703 }
704
705 void
706 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
707 {
708 // This method does the arbitration between requests. The chosen
709 // packet is simply moved to the head of the queue. The other
710 // methods know that this is the place to look. For example, with
711 // FCFS, this method does nothing
712 assert(!queue.empty());
713
714 if (queue.size() == 1) {
715 DPRINTF(DRAM, "Single request, nothing to do\n");
716 return;
717 }
718
719 if (memSchedPolicy == Enums::fcfs) {
720 // Do nothing, since the correct request is already head
721 } else if (memSchedPolicy == Enums::frfcfs) {
722 reorderQueue(queue);
723 } else
724 panic("No scheduling policy chosen\n");
725 }
726
727 void
728 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
729 {
730 // Only determine this when needed
731 uint64_t earliest_banks = 0;
732
733 // Search for row hits first, if no row hit is found then schedule the
734 // packet to one of the earliest banks available
735 bool found_earliest_pkt = false;
736 auto selected_pkt_it = queue.begin();
737
738 for (auto i = queue.begin(); i != queue.end() ; ++i) {
739 DRAMPacket* dram_pkt = *i;
740 const Bank& bank = dram_pkt->bankRef;
741 // Check if it is a row hit
742 if (bank.openRow == dram_pkt->row) {
743 // FCFS within the hits
744 DPRINTF(DRAM, "Row buffer hit\n");
745 selected_pkt_it = i;
746 break;
747 } else if (!found_earliest_pkt) {
748 // No row hit, go for first ready
749 if (earliest_banks == 0)
750 earliest_banks = minBankActAt(queue);
751
752 // simplistic approximation of when the bank can issue an
753 // activate, this is calculated in minBankActAt and could
754 // be cached
755 Tick act_at = bank.openRow == Bank::NO_ROW ?
756 bank.actAllowedAt :
757 std::max(bank.preAllowedAt, curTick()) + tRP;
758
759 // Bank is ready or is the first available bank
760 if (act_at <= curTick() ||
761 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
762 // Remember the packet to be scheduled to one of the earliest
763 // banks available, FCFS amongst the earliest banks
764 selected_pkt_it = i;
765 found_earliest_pkt = true;
766 }
767 }
768 }
769
770 DRAMPacket* selected_pkt = *selected_pkt_it;
771 queue.erase(selected_pkt_it);
772 queue.push_front(selected_pkt);
773 }
774
775 void
776 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
777 {
778 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
779
780 bool needsResponse = pkt->needsResponse();
781 // do the actual memory access which also turns the packet into a
782 // response
783 access(pkt);
784
785 // turn packet around to go back to requester if response expected
786 if (needsResponse) {
787 // access already turned the packet into a response
788 assert(pkt->isResponse());
789
790 // @todo someone should pay for this
791 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
792
793 // queue the packet in the response queue to be sent out after
794 // the static latency has passed
795 port.schedTimingResp(pkt, curTick() + static_latency);
796 } else {
797 // @todo the packet is going to be deleted, and the DRAMPacket
798 // is still having a pointer to it
799 pendingDelete.push_back(pkt);
800 }
801
802 DPRINTF(DRAM, "Done\n");
803
804 return;
805 }
806
807 void
808 DRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank,
809 uint16_t row, Bank& bank_ref)
810 {
811 assert(0 <= rank && rank < ranksPerChannel);
812 assert(actTicks[rank].size() == activationLimit);
813
814 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
815
816 // update the open row
817 assert(bank_ref.openRow == Bank::NO_ROW);
818 bank_ref.openRow = row;
819
820 // start counting anew, this covers both the case when we
821 // auto-precharged, and when this access is forced to
822 // precharge
823 bank_ref.bytesAccessed = 0;
824 bank_ref.rowAccesses = 0;
825
826 ++numBanksActive;
827 assert(numBanksActive <= banksPerRank * ranksPerChannel);
828
829 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
830 act_tick, numBanksActive);
831
832 // The next access has to respect tRAS for this bank
833 bank_ref.preAllowedAt = act_tick + tRAS;
834
835 // Respect the row-to-column command delay
836 bank_ref.colAllowedAt = act_tick + tRCD;
837
838 // start by enforcing tRRD
839 for(int i = 0; i < banksPerRank; i++) {
840 // next activate to any bank in this rank must not happen
841 // before tRRD
842 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
843 banks[rank][i].actAllowedAt);
844 }
845
846 // next, we deal with tXAW, if the activation limit is disabled
847 // then we are done
848 if (actTicks[rank].empty())
849 return;
850
851 // sanity check
852 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
853 panic("Got %d activates in window %d (%llu - %llu) which is smaller "
854 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
855 act_tick, actTicks[rank].back(), tXAW);
856 }
857
858 // shift the times used for the book keeping, the last element
859 // (highest index) is the oldest one and hence the lowest value
860 actTicks[rank].pop_back();
861
862 // record an new activation (in the future)
863 actTicks[rank].push_front(act_tick);
864
865 // cannot activate more than X times in time window tXAW, push the
866 // next one (the X + 1'st activate) to be tXAW away from the
867 // oldest in our window of X
868 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
869 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
870 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
871 for(int j = 0; j < banksPerRank; j++)
872 // next activate must not happen before end of window
873 banks[rank][j].actAllowedAt =
874 std::max(actTicks[rank].back() + tXAW,
875 banks[rank][j].actAllowedAt);
876 }
877
878 // at the point when this activate takes place, make sure we
879 // transition to the active power state
880 if (!activateEvent.scheduled())
881 schedule(activateEvent, act_tick);
882 else if (activateEvent.when() > act_tick)
883 // move it sooner in time
884 reschedule(activateEvent, act_tick);
885 }
886
887 void
888 DRAMCtrl::processActivateEvent()
889 {
890 // we should transition to the active state as soon as any bank is active
891 if (pwrState != PWR_ACT)
892 // note that at this point numBanksActive could be back at
893 // zero again due to a precharge scheduled in the future
894 schedulePowerEvent(PWR_ACT, curTick());
895 }
896
897 void
898 DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at)
899 {
900 // make sure the bank has an open row
901 assert(bank.openRow != Bank::NO_ROW);
902
903 // sample the bytes per activate here since we are closing
904 // the page
905 bytesPerActivate.sample(bank.bytesAccessed);
906
907 bank.openRow = Bank::NO_ROW;
908
909 Tick pre_done_at = pre_at + tRP;
910
911 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
912
913 assert(numBanksActive != 0);
914 --numBanksActive;
915
916 DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n",
917 pre_at, numBanksActive);
918
919 // if we look at the current number of active banks we might be
920 // tempted to think the DRAM is now idle, however this can be
921 // undone by an activate that is scheduled to happen before we
922 // would have reached the idle state, so schedule an event and
923 // rather check once we actually make it to the point in time when
924 // the (last) precharge takes place
925 if (!prechargeEvent.scheduled())
926 schedule(prechargeEvent, pre_done_at);
927 else if (prechargeEvent.when() < pre_done_at)
928 reschedule(prechargeEvent, pre_done_at);
929 }
930
931 void
932 DRAMCtrl::processPrechargeEvent()
933 {
934 // if we reached zero, then special conditions apply as we track
935 // if all banks are precharged for the power models
936 if (numBanksActive == 0) {
937 // we should transition to the idle state when the last bank
938 // is precharged
939 schedulePowerEvent(PWR_IDLE, curTick());
940 }
941 }
942
943 void
944 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
945 {
946 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
947 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
948
949 // get the bank
950 Bank& bank = dram_pkt->bankRef;
951
952 // for the state we need to track if it is a row hit or not
953 bool row_hit = true;
954
955 // respect any constraints on the command (e.g. tRCD or tCCD)
956 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
957
958 // Determine the access latency and update the bank state
959 if (bank.openRow == dram_pkt->row) {
960 // nothing to do
961 } else {
962 row_hit = false;
963
964 // If there is a page open, precharge it.
965 if (bank.openRow != Bank::NO_ROW) {
966 prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
967 }
968
969 // next we need to account for the delay in activating the
970 // page
971 Tick act_tick = std::max(bank.actAllowedAt, curTick());
972
973 // Record the activation and deal with all the global timing
974 // constraints caused be a new activation (tRRD and tXAW)
975 activateBank(act_tick, dram_pkt->rank, dram_pkt->bank,
976 dram_pkt->row, bank);
977
978 // issue the command as early as possible
979 cmd_at = bank.colAllowedAt;
980 }
981
982 // we need to wait until the bus is available before we can issue
983 // the command
984 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
985
986 // update the packet ready time
987 dram_pkt->readyTime = cmd_at + tCL + tBURST;
988
989 // only one burst can use the bus at any one point in time
990 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
991
992 // not strictly necessary, but update the time for the next
993 // read/write (add a max with tCCD here)
994 bank.colAllowedAt = cmd_at + tBURST;
995
996 // If this is a write, we also need to respect the write
997 // recovery time before a precharge
998 if (!dram_pkt->isRead) {
999 bank.preAllowedAt = std::max(bank.preAllowedAt,
1000 dram_pkt->readyTime + tWR);
1001 }
1002
1003 // increment the bytes accessed and the accesses per row
1004 bank.bytesAccessed += burstSize;
1005 ++bank.rowAccesses;
1006
1007 // if we reached the max, then issue with an auto-precharge
1008 bool auto_precharge = pageMgmt == Enums::close ||
1009 bank.rowAccesses == maxAccessesPerRow;
1010
1011 // if we did not hit the limit, we might still want to
1012 // auto-precharge
1013 if (!auto_precharge &&
1014 (pageMgmt == Enums::open_adaptive ||
1015 pageMgmt == Enums::close_adaptive)) {
1016 // a twist on the open and close page policies:
1017 // 1) open_adaptive page policy does not blindly keep the
1018 // page open, but close it if there are no row hits, and there
1019 // are bank conflicts in the queue
1020 // 2) close_adaptive page policy does not blindly close the
1021 // page, but closes it only if there are no row hits in the queue.
1022 // In this case, only force an auto precharge when there
1023 // are no same page hits in the queue
1024 bool got_more_hits = false;
1025 bool got_bank_conflict = false;
1026
1027 // either look at the read queue or write queue
1028 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1029 writeQueue;
1030 auto p = queue.begin();
1031 // make sure we are not considering the packet that we are
1032 // currently dealing with (which is the head of the queue)
1033 ++p;
1034
1035 // keep on looking until we have found required condition or
1036 // reached the end
1037 while (!(got_more_hits &&
1038 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1039 p != queue.end()) {
1040 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1041 (dram_pkt->bank == (*p)->bank);
1042 bool same_row = dram_pkt->row == (*p)->row;
1043 got_more_hits |= same_rank_bank && same_row;
1044 got_bank_conflict |= same_rank_bank && !same_row;
1045 ++p;
1046 }
1047
1048 // auto pre-charge when either
1049 // 1) open_adaptive policy, we have not got any more hits, and
1050 // have a bank conflict
1051 // 2) close_adaptive policy and we have not got any more hits
1052 auto_precharge = !got_more_hits &&
1053 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1054 }
1055
1056 // if this access should use auto-precharge, then we are
1057 // closing the row
1058 if (auto_precharge) {
1059 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1060
1061 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1062 }
1063
1064 // Update bus state
1065 busBusyUntil = dram_pkt->readyTime;
1066
1067 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1068 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1069
1070 // Update the minimum timing between the requests, this is a
1071 // conservative estimate of when we have to schedule the next
1072 // request to not introduce any unecessary bubbles. In most cases
1073 // we will wake up sooner than we have to.
1074 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1075
1076 // Update the stats and schedule the next request
1077 if (dram_pkt->isRead) {
1078 ++readsThisTime;
1079 if (row_hit)
1080 readRowHits++;
1081 bytesReadDRAM += burstSize;
1082 perBankRdBursts[dram_pkt->bankId]++;
1083
1084 // Update latency stats
1085 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1086 totBusLat += tBURST;
1087 totQLat += cmd_at - dram_pkt->entryTime;
1088 } else {
1089 ++writesThisTime;
1090 if (row_hit)
1091 writeRowHits++;
1092 bytesWritten += burstSize;
1093 perBankWrBursts[dram_pkt->bankId]++;
1094 }
1095 }
1096
1097 void
1098 DRAMCtrl::moveToRespQ()
1099 {
1100 // Remove from read queue
1101 DRAMPacket* dram_pkt = readQueue.front();
1102 readQueue.pop_front();
1103
1104 // sanity check
1105 assert(dram_pkt->size <= burstSize);
1106
1107 // Insert into response queue sorted by readyTime
1108 // It will be sent back to the requestor at its
1109 // readyTime
1110 if (respQueue.empty()) {
1111 respQueue.push_front(dram_pkt);
1112 assert(!respondEvent.scheduled());
1113 assert(dram_pkt->readyTime >= curTick());
1114 schedule(respondEvent, dram_pkt->readyTime);
1115 } else {
1116 bool done = false;
1117 auto i = respQueue.begin();
1118 while (!done && i != respQueue.end()) {
1119 if ((*i)->readyTime > dram_pkt->readyTime) {
1120 respQueue.insert(i, dram_pkt);
1121 done = true;
1122 }
1123 ++i;
1124 }
1125
1126 if (!done)
1127 respQueue.push_back(dram_pkt);
1128
1129 assert(respondEvent.scheduled());
1130
1131 if (respQueue.front()->readyTime < respondEvent.when()) {
1132 assert(respQueue.front()->readyTime >= curTick());
1133 reschedule(respondEvent, respQueue.front()->readyTime);
1134 }
1135 }
1136 }
1137
1138 void
1139 DRAMCtrl::processNextReqEvent()
1140 {
1141 if (busState == READ_TO_WRITE) {
1142 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1143 "waiting\n", readsThisTime, readQueue.size());
1144
1145 // sample and reset the read-related stats as we are now
1146 // transitioning to writes, and all reads are done
1147 rdPerTurnAround.sample(readsThisTime);
1148 readsThisTime = 0;
1149
1150 // now proceed to do the actual writes
1151 busState = WRITE;
1152 } else if (busState == WRITE_TO_READ) {
1153 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1154 "waiting\n", writesThisTime, writeQueue.size());
1155
1156 wrPerTurnAround.sample(writesThisTime);
1157 writesThisTime = 0;
1158
1159 busState = READ;
1160 }
1161
1162 if (refreshState != REF_IDLE) {
1163 // if a refresh waiting for this event loop to finish, then hand
1164 // over now, and do not schedule a new nextReqEvent
1165 if (refreshState == REF_DRAIN) {
1166 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1167
1168 refreshState = REF_PRE;
1169
1170 // hand control back to the refresh event loop
1171 schedule(refreshEvent, curTick());
1172 }
1173
1174 // let the refresh finish before issuing any further requests
1175 return;
1176 }
1177
1178 // when we get here it is either a read or a write
1179 if (busState == READ) {
1180
1181 // track if we should switch or not
1182 bool switch_to_writes = false;
1183
1184 if (readQueue.empty()) {
1185 // In the case there is no read request to go next,
1186 // trigger writes if we have passed the low threshold (or
1187 // if we are draining)
1188 if (!writeQueue.empty() &&
1189 (drainManager || writeQueue.size() > writeLowThreshold)) {
1190
1191 switch_to_writes = true;
1192 } else {
1193 // check if we are drained
1194 if (respQueue.empty () && drainManager) {
1195 drainManager->signalDrainDone();
1196 drainManager = NULL;
1197 }
1198
1199 // nothing to do, not even any point in scheduling an
1200 // event for the next request
1201 return;
1202 }
1203 } else {
1204 // Figure out which read request goes next, and move it to the
1205 // front of the read queue
1206 chooseNext(readQueue);
1207
1208 doDRAMAccess(readQueue.front());
1209
1210 // At this point we're done dealing with the request
1211 // It will be moved to a separate response queue with a
1212 // correct readyTime, and eventually be sent back at that
1213 // time
1214 moveToRespQ();
1215
1216 // we have so many writes that we have to transition
1217 if (writeQueue.size() > writeHighThreshold) {
1218 switch_to_writes = true;
1219 }
1220 }
1221
1222 // switching to writes, either because the read queue is empty
1223 // and the writes have passed the low threshold (or we are
1224 // draining), or because the writes hit the hight threshold
1225 if (switch_to_writes) {
1226 // transition to writing
1227 busState = READ_TO_WRITE;
1228
1229 // add a bubble to the data bus, as defined by the
1230 // tRTW parameter
1231 busBusyUntil += tRTW;
1232
1233 // update the minimum timing between the requests,
1234 // this shifts us back in time far enough to do any
1235 // bank preparation
1236 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1237 }
1238 } else {
1239 chooseNext(writeQueue);
1240 DRAMPacket* dram_pkt = writeQueue.front();
1241 // sanity check
1242 assert(dram_pkt->size <= burstSize);
1243 doDRAMAccess(dram_pkt);
1244
1245 writeQueue.pop_front();
1246 delete dram_pkt;
1247
1248 // If we emptied the write queue, or got sufficiently below the
1249 // threshold (using the minWritesPerSwitch as the hysteresis) and
1250 // are not draining, or we have reads waiting and have done enough
1251 // writes, then switch to reads.
1252 if (writeQueue.empty() ||
1253 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1254 !drainManager) ||
1255 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1256 // turn the bus back around for reads again
1257 busState = WRITE_TO_READ;
1258
1259 // note that the we switch back to reads also in the idle
1260 // case, which eventually will check for any draining and
1261 // also pause any further scheduling if there is really
1262 // nothing to do
1263
1264 // here we get a bit creative and shift the bus busy time not
1265 // just the tWTR, but also a CAS latency to capture the fact
1266 // that we are allowed to prepare a new bank, but not issue a
1267 // read command until after tWTR, in essence we capture a
1268 // bubble on the data bus that is tWTR + tCL
1269 busBusyUntil += tWTR + tCL;
1270
1271 // update the minimum timing between the requests, this shifts
1272 // us back in time far enough to do any bank preparation
1273 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1274 }
1275 }
1276
1277 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1278
1279 // If there is space available and we have writes waiting then let
1280 // them retry. This is done here to ensure that the retry does not
1281 // cause a nextReqEvent to be scheduled before we do so as part of
1282 // the next request processing
1283 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1284 retryWrReq = false;
1285 port.sendRetry();
1286 }
1287 }
1288
1289 uint64_t
1290 DRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const
1291 {
1292 uint64_t bank_mask = 0;
1293 Tick min_act_at = MaxTick;
1294
1295 // deterimne if we have queued transactions targetting a
1296 // bank in question
1297 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1298 for (auto p = queue.begin(); p != queue.end(); ++p) {
1299 got_waiting[(*p)->bankId] = true;
1300 }
1301
1302 for (int i = 0; i < ranksPerChannel; i++) {
1303 for (int j = 0; j < banksPerRank; j++) {
1304 uint8_t bank_id = i * banksPerRank + j;
1305
1306 // if we have waiting requests for the bank, and it is
1307 // amongst the first available, update the mask
1308 if (got_waiting[bank_id]) {
1309 // simplistic approximation of when the bank can issue
1310 // an activate, ignoring any rank-to-rank switching
1311 // cost
1312 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1313 banks[i][j].actAllowedAt :
1314 std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1315
1316 if (act_at <= min_act_at) {
1317 // reset bank mask if new minimum is found
1318 if (act_at < min_act_at)
1319 bank_mask = 0;
1320 // set the bit corresponding to the available bank
1321 replaceBits(bank_mask, bank_id, bank_id, 1);
1322 min_act_at = act_at;
1323 }
1324 }
1325 }
1326 }
1327
1328 return bank_mask;
1329 }
1330
1331 void
1332 DRAMCtrl::processRefreshEvent()
1333 {
1334 // when first preparing the refresh, remember when it was due
1335 if (refreshState == REF_IDLE) {
1336 // remember when the refresh is due
1337 refreshDueAt = curTick();
1338
1339 // proceed to drain
1340 refreshState = REF_DRAIN;
1341
1342 DPRINTF(DRAM, "Refresh due\n");
1343 }
1344
1345 // let any scheduled read or write go ahead, after which it will
1346 // hand control back to this event loop
1347 if (refreshState == REF_DRAIN) {
1348 if (nextReqEvent.scheduled()) {
1349 // hand control over to the request loop until it is
1350 // evaluated next
1351 DPRINTF(DRAM, "Refresh awaiting draining\n");
1352
1353 return;
1354 } else {
1355 refreshState = REF_PRE;
1356 }
1357 }
1358
1359 // at this point, ensure that all banks are precharged
1360 if (refreshState == REF_PRE) {
1361 // precharge any active bank if we are not already in the idle
1362 // state
1363 if (pwrState != PWR_IDLE) {
1364 DPRINTF(DRAM, "Precharging all\n");
1365 for (int i = 0; i < ranksPerChannel; i++) {
1366 for (int j = 0; j < banksPerRank; j++) {
1367 if (banks[i][j].openRow != Bank::NO_ROW) {
1368 // respect both causality and any existing bank
1369 // constraints
1370 Tick pre_at = std::max(banks[i][j].preAllowedAt,
1371 curTick());
1372
1373 prechargeBank(banks[i][j], pre_at);
1374 }
1375 }
1376 }
1377 } else {
1378 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1379
1380 // go ahead and kick the power state machine into gear if
1381 // we are already idle
1382 schedulePowerEvent(PWR_REF, curTick());
1383 }
1384
1385 refreshState = REF_RUN;
1386 assert(numBanksActive == 0);
1387
1388 // wait for all banks to be precharged, at which point the
1389 // power state machine will transition to the idle state, and
1390 // automatically move to a refresh, at that point it will also
1391 // call this method to get the refresh event loop going again
1392 return;
1393 }
1394
1395 // last but not least we perform the actual refresh
1396 if (refreshState == REF_RUN) {
1397 // should never get here with any banks active
1398 assert(numBanksActive == 0);
1399 assert(pwrState == PWR_REF);
1400
1401 Tick ref_done_at = curTick() + tRFC;
1402
1403 for (int i = 0; i < ranksPerChannel; i++) {
1404 for (int j = 0; j < banksPerRank; j++) {
1405 banks[i][j].actAllowedAt = ref_done_at;
1406 }
1407 }
1408
1409 // make sure we did not wait so long that we cannot make up
1410 // for it
1411 if (refreshDueAt + tREFI < ref_done_at) {
1412 fatal("Refresh was delayed so long we cannot catch up\n");
1413 }
1414
1415 // compensate for the delay in actually performing the refresh
1416 // when scheduling the next one
1417 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1418
1419 assert(!powerEvent.scheduled());
1420
1421 // move to the idle power state once the refresh is done, this
1422 // will also move the refresh state machine to the refresh
1423 // idle state
1424 schedulePowerEvent(PWR_IDLE, ref_done_at);
1425
1426 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1427 ref_done_at, refreshDueAt + tREFI);
1428 }
1429 }
1430
1431 void
1432 DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1433 {
1434 // respect causality
1435 assert(tick >= curTick());
1436
1437 if (!powerEvent.scheduled()) {
1438 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1439 tick, pwr_state);
1440
1441 // insert the new transition
1442 pwrStateTrans = pwr_state;
1443
1444 schedule(powerEvent, tick);
1445 } else {
1446 panic("Scheduled power event at %llu to state %d, "
1447 "with scheduled event at %llu to %d\n", tick, pwr_state,
1448 powerEvent.when(), pwrStateTrans);
1449 }
1450 }
1451
1452 void
1453 DRAMCtrl::processPowerEvent()
1454 {
1455 // remember where we were, and for how long
1456 Tick duration = curTick() - pwrStateTick;
1457 PowerState prev_state = pwrState;
1458
1459 // update the accounting
1460 pwrStateTime[prev_state] += duration;
1461
1462 pwrState = pwrStateTrans;
1463 pwrStateTick = curTick();
1464
1465 if (pwrState == PWR_IDLE) {
1466 DPRINTF(DRAMState, "All banks precharged\n");
1467
1468 // if we were refreshing, make sure we start scheduling requests again
1469 if (prev_state == PWR_REF) {
1470 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1471 assert(pwrState == PWR_IDLE);
1472
1473 // kick things into action again
1474 refreshState = REF_IDLE;
1475 assert(!nextReqEvent.scheduled());
1476 schedule(nextReqEvent, curTick());
1477 } else {
1478 assert(prev_state == PWR_ACT);
1479
1480 // if we have a pending refresh, and are now moving to
1481 // the idle state, direclty transition to a refresh
1482 if (refreshState == REF_RUN) {
1483 // there should be nothing waiting at this point
1484 assert(!powerEvent.scheduled());
1485
1486 // update the state in zero time and proceed below
1487 pwrState = PWR_REF;
1488 }
1489 }
1490 }
1491
1492 // we transition to the refresh state, let the refresh state
1493 // machine know of this state update and let it deal with the
1494 // scheduling of the next power state transition as well as the
1495 // following refresh
1496 if (pwrState == PWR_REF) {
1497 DPRINTF(DRAMState, "Refreshing\n");
1498 // kick the refresh event loop into action again, and that
1499 // in turn will schedule a transition to the idle power
1500 // state once the refresh is done
1501 assert(refreshState == REF_RUN);
1502 processRefreshEvent();
1503 }
1504 }
1505
1506 void
1507 DRAMCtrl::regStats()
1508 {
1509 using namespace Stats;
1510
1511 AbstractMemory::regStats();
1512
1513 readReqs
1514 .name(name() + ".readReqs")
1515 .desc("Number of read requests accepted");
1516
1517 writeReqs
1518 .name(name() + ".writeReqs")
1519 .desc("Number of write requests accepted");
1520
1521 readBursts
1522 .name(name() + ".readBursts")
1523 .desc("Number of DRAM read bursts, "
1524 "including those serviced by the write queue");
1525
1526 writeBursts
1527 .name(name() + ".writeBursts")
1528 .desc("Number of DRAM write bursts, "
1529 "including those merged in the write queue");
1530
1531 servicedByWrQ
1532 .name(name() + ".servicedByWrQ")
1533 .desc("Number of DRAM read bursts serviced by the write queue");
1534
1535 mergedWrBursts
1536 .name(name() + ".mergedWrBursts")
1537 .desc("Number of DRAM write bursts merged with an existing one");
1538
1539 neitherReadNorWrite
1540 .name(name() + ".neitherReadNorWriteReqs")
1541 .desc("Number of requests that are neither read nor write");
1542
1543 perBankRdBursts
1544 .init(banksPerRank * ranksPerChannel)
1545 .name(name() + ".perBankRdBursts")
1546 .desc("Per bank write bursts");
1547
1548 perBankWrBursts
1549 .init(banksPerRank * ranksPerChannel)
1550 .name(name() + ".perBankWrBursts")
1551 .desc("Per bank write bursts");
1552
1553 avgRdQLen
1554 .name(name() + ".avgRdQLen")
1555 .desc("Average read queue length when enqueuing")
1556 .precision(2);
1557
1558 avgWrQLen
1559 .name(name() + ".avgWrQLen")
1560 .desc("Average write queue length when enqueuing")
1561 .precision(2);
1562
1563 totQLat
1564 .name(name() + ".totQLat")
1565 .desc("Total ticks spent queuing");
1566
1567 totBusLat
1568 .name(name() + ".totBusLat")
1569 .desc("Total ticks spent in databus transfers");
1570
1571 totMemAccLat
1572 .name(name() + ".totMemAccLat")
1573 .desc("Total ticks spent from burst creation until serviced "
1574 "by the DRAM");
1575
1576 avgQLat
1577 .name(name() + ".avgQLat")
1578 .desc("Average queueing delay per DRAM burst")
1579 .precision(2);
1580
1581 avgQLat = totQLat / (readBursts - servicedByWrQ);
1582
1583 avgBusLat
1584 .name(name() + ".avgBusLat")
1585 .desc("Average bus latency per DRAM burst")
1586 .precision(2);
1587
1588 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1589
1590 avgMemAccLat
1591 .name(name() + ".avgMemAccLat")
1592 .desc("Average memory access latency per DRAM burst")
1593 .precision(2);
1594
1595 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1596
1597 numRdRetry
1598 .name(name() + ".numRdRetry")
1599 .desc("Number of times read queue was full causing retry");
1600
1601 numWrRetry
1602 .name(name() + ".numWrRetry")
1603 .desc("Number of times write queue was full causing retry");
1604
1605 readRowHits
1606 .name(name() + ".readRowHits")
1607 .desc("Number of row buffer hits during reads");
1608
1609 writeRowHits
1610 .name(name() + ".writeRowHits")
1611 .desc("Number of row buffer hits during writes");
1612
1613 readRowHitRate
1614 .name(name() + ".readRowHitRate")
1615 .desc("Row buffer hit rate for reads")
1616 .precision(2);
1617
1618 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1619
1620 writeRowHitRate
1621 .name(name() + ".writeRowHitRate")
1622 .desc("Row buffer hit rate for writes")
1623 .precision(2);
1624
1625 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1626
1627 readPktSize
1628 .init(ceilLog2(burstSize) + 1)
1629 .name(name() + ".readPktSize")
1630 .desc("Read request sizes (log2)");
1631
1632 writePktSize
1633 .init(ceilLog2(burstSize) + 1)
1634 .name(name() + ".writePktSize")
1635 .desc("Write request sizes (log2)");
1636
1637 rdQLenPdf
1638 .init(readBufferSize)
1639 .name(name() + ".rdQLenPdf")
1640 .desc("What read queue length does an incoming req see");
1641
1642 wrQLenPdf
1643 .init(writeBufferSize)
1644 .name(name() + ".wrQLenPdf")
1645 .desc("What write queue length does an incoming req see");
1646
1647 bytesPerActivate
1648 .init(maxAccessesPerRow)
1649 .name(name() + ".bytesPerActivate")
1650 .desc("Bytes accessed per row activation")
1651 .flags(nozero);
1652
1653 rdPerTurnAround
1654 .init(readBufferSize)
1655 .name(name() + ".rdPerTurnAround")
1656 .desc("Reads before turning the bus around for writes")
1657 .flags(nozero);
1658
1659 wrPerTurnAround
1660 .init(writeBufferSize)
1661 .name(name() + ".wrPerTurnAround")
1662 .desc("Writes before turning the bus around for reads")
1663 .flags(nozero);
1664
1665 bytesReadDRAM
1666 .name(name() + ".bytesReadDRAM")
1667 .desc("Total number of bytes read from DRAM");
1668
1669 bytesReadWrQ
1670 .name(name() + ".bytesReadWrQ")
1671 .desc("Total number of bytes read from write queue");
1672
1673 bytesWritten
1674 .name(name() + ".bytesWritten")
1675 .desc("Total number of bytes written to DRAM");
1676
1677 bytesReadSys
1678 .name(name() + ".bytesReadSys")
1679 .desc("Total read bytes from the system interface side");
1680
1681 bytesWrittenSys
1682 .name(name() + ".bytesWrittenSys")
1683 .desc("Total written bytes from the system interface side");
1684
1685 avgRdBW
1686 .name(name() + ".avgRdBW")
1687 .desc("Average DRAM read bandwidth in MiByte/s")
1688 .precision(2);
1689
1690 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1691
1692 avgWrBW
1693 .name(name() + ".avgWrBW")
1694 .desc("Average achieved write bandwidth in MiByte/s")
1695 .precision(2);
1696
1697 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1698
1699 avgRdBWSys
1700 .name(name() + ".avgRdBWSys")
1701 .desc("Average system read bandwidth in MiByte/s")
1702 .precision(2);
1703
1704 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1705
1706 avgWrBWSys
1707 .name(name() + ".avgWrBWSys")
1708 .desc("Average system write bandwidth in MiByte/s")
1709 .precision(2);
1710
1711 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1712
1713 peakBW
1714 .name(name() + ".peakBW")
1715 .desc("Theoretical peak bandwidth in MiByte/s")
1716 .precision(2);
1717
1718 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1719
1720 busUtil
1721 .name(name() + ".busUtil")
1722 .desc("Data bus utilization in percentage")
1723 .precision(2);
1724
1725 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1726
1727 totGap
1728 .name(name() + ".totGap")
1729 .desc("Total gap between requests");
1730
1731 avgGap
1732 .name(name() + ".avgGap")
1733 .desc("Average gap between requests")
1734 .precision(2);
1735
1736 avgGap = totGap / (readReqs + writeReqs);
1737
1738 // Stats for DRAM Power calculation based on Micron datasheet
1739 busUtilRead
1740 .name(name() + ".busUtilRead")
1741 .desc("Data bus utilization in percentage for reads")
1742 .precision(2);
1743
1744 busUtilRead = avgRdBW / peakBW * 100;
1745
1746 busUtilWrite
1747 .name(name() + ".busUtilWrite")
1748 .desc("Data bus utilization in percentage for writes")
1749 .precision(2);
1750
1751 busUtilWrite = avgWrBW / peakBW * 100;
1752
1753 pageHitRate
1754 .name(name() + ".pageHitRate")
1755 .desc("Row buffer hit rate, read and write combined")
1756 .precision(2);
1757
1758 pageHitRate = (writeRowHits + readRowHits) /
1759 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1760
1761 pwrStateTime
1762 .init(5)
1763 .name(name() + ".memoryStateTime")
1764 .desc("Time in different power states");
1765 pwrStateTime.subname(0, "IDLE");
1766 pwrStateTime.subname(1, "REF");
1767 pwrStateTime.subname(2, "PRE_PDN");
1768 pwrStateTime.subname(3, "ACT");
1769 pwrStateTime.subname(4, "ACT_PDN");
1770 }
1771
1772 void
1773 DRAMCtrl::recvFunctional(PacketPtr pkt)
1774 {
1775 // rely on the abstract memory
1776 functionalAccess(pkt);
1777 }
1778
1779 BaseSlavePort&
1780 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1781 {
1782 if (if_name != "port") {
1783 return MemObject::getSlavePort(if_name, idx);
1784 } else {
1785 return port;
1786 }
1787 }
1788
1789 unsigned int
1790 DRAMCtrl::drain(DrainManager *dm)
1791 {
1792 unsigned int count = port.drain(dm);
1793
1794 // if there is anything in any of our internal queues, keep track
1795 // of that as well
1796 if (!(writeQueue.empty() && readQueue.empty() &&
1797 respQueue.empty())) {
1798 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1799 " resp: %d\n", writeQueue.size(), readQueue.size(),
1800 respQueue.size());
1801 ++count;
1802 drainManager = dm;
1803
1804 // the only part that is not drained automatically over time
1805 // is the write queue, thus kick things into action if needed
1806 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1807 schedule(nextReqEvent, curTick());
1808 }
1809 }
1810
1811 if (count)
1812 setDrainState(Drainable::Draining);
1813 else
1814 setDrainState(Drainable::Drained);
1815 return count;
1816 }
1817
1818 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1819 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1820 memory(_memory)
1821 { }
1822
1823 AddrRangeList
1824 DRAMCtrl::MemoryPort::getAddrRanges() const
1825 {
1826 AddrRangeList ranges;
1827 ranges.push_back(memory.getAddrRange());
1828 return ranges;
1829 }
1830
1831 void
1832 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1833 {
1834 pkt->pushLabel(memory.name());
1835
1836 if (!queue.checkFunctional(pkt)) {
1837 // Default implementation of SimpleTimingPort::recvFunctional()
1838 // calls recvAtomic() and throws away the latency; we can save a
1839 // little here by just not calculating the latency.
1840 memory.recvFunctional(pkt);
1841 }
1842
1843 pkt->popLabel();
1844 }
1845
1846 Tick
1847 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1848 {
1849 return memory.recvAtomic(pkt);
1850 }
1851
1852 bool
1853 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1854 {
1855 // pass it to the memory controller
1856 return memory.recvTimingReq(pkt);
1857 }
1858
1859 DRAMCtrl*
1860 DRAMCtrlParams::create()
1861 {
1862 return new DRAMCtrl(this);
1863 }