mem: Add tRTP to the DRAM controller
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45 #include "base/bitfield.hh"
46 #include "base/trace.hh"
47 #include "debug/DRAM.hh"
48 #include "debug/DRAMState.hh"
49 #include "debug/Drain.hh"
50 #include "mem/dram_ctrl.hh"
51 #include "sim/system.hh"
52
53 using namespace std;
54
55 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56 AbstractMemory(p),
57 port(name() + ".port", *this),
58 retryRdReq(false), retryWrReq(false),
59 busState(READ),
60 nextReqEvent(this), respondEvent(this), activateEvent(this),
61 prechargeEvent(this), refreshEvent(this), powerEvent(this),
62 drainManager(NULL),
63 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
64 deviceRowBufferSize(p->device_rowbuffer_size),
65 devicesPerRank(p->devices_per_rank),
66 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
67 rowBufferSize(devicesPerRank * deviceRowBufferSize),
68 columnsPerRowBuffer(rowBufferSize / burstSize),
69 ranksPerChannel(p->ranks_per_channel),
70 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
71 readBufferSize(p->read_buffer_size),
72 writeBufferSize(p->write_buffer_size),
73 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
74 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
75 minWritesPerSwitch(p->min_writes_per_switch),
76 writesThisTime(0), readsThisTime(0),
77 tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
78 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
79 tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
80 tXAW(p->tXAW), activationLimit(p->activation_limit),
81 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
82 pageMgmt(p->page_policy),
83 maxAccessesPerRow(p->max_accesses_per_row),
84 frontendLatency(p->static_frontend_latency),
85 backendLatency(p->static_backend_latency),
86 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
87 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
88 nextReqTime(0), pwrStateTick(0), numBanksActive(0)
89 {
90 // create the bank states based on the dimensions of the ranks and
91 // banks
92 banks.resize(ranksPerChannel);
93 actTicks.resize(ranksPerChannel);
94 for (size_t c = 0; c < ranksPerChannel; ++c) {
95 banks[c].resize(banksPerRank);
96 actTicks[c].resize(activationLimit, 0);
97 }
98
99 // perform a basic check of the write thresholds
100 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
101 fatal("Write buffer low threshold %d must be smaller than the "
102 "high threshold %d\n", p->write_low_thresh_perc,
103 p->write_high_thresh_perc);
104
105 // determine the rows per bank by looking at the total capacity
106 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
107
108 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
109 AbstractMemory::size());
110
111 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
112 rowBufferSize, columnsPerRowBuffer);
113
114 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
115
116 if (range.interleaved()) {
117 if (channels != range.stripes())
118 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
119 name(), range.stripes(), channels);
120
121 if (addrMapping == Enums::RoRaBaChCo) {
122 if (rowBufferSize != range.granularity()) {
123 fatal("Interleaving of %s doesn't match RoRaBaChCo "
124 "address map\n", name());
125 }
126 } else if (addrMapping == Enums::RoRaBaCoCh) {
127 if (system()->cacheLineSize() != range.granularity()) {
128 fatal("Interleaving of %s doesn't match RoRaBaCoCh "
129 "address map\n", name());
130 }
131 } else if (addrMapping == Enums::RoCoRaBaCh) {
132 if (system()->cacheLineSize() != range.granularity())
133 fatal("Interleaving of %s doesn't match RoCoRaBaCh "
134 "address map\n", name());
135 }
136 }
137
138 // some basic sanity checks
139 if (tREFI <= tRP || tREFI <= tRFC) {
140 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
141 tREFI, tRP, tRFC);
142 }
143 }
144
145 void
146 DRAMCtrl::init()
147 {
148 if (!port.isConnected()) {
149 fatal("DRAMCtrl %s is unconnected!\n", name());
150 } else {
151 port.sendRangeChange();
152 }
153 }
154
155 void
156 DRAMCtrl::startup()
157 {
158 // update the start tick for the precharge accounting to the
159 // current tick
160 pwrStateTick = curTick();
161
162 // shift the bus busy time sufficiently far ahead that we never
163 // have to worry about negative values when computing the time for
164 // the next request, this will add an insignificant bubble at the
165 // start of simulation
166 busBusyUntil = curTick() + tRP + tRCD + tCL;
167
168 // print the configuration of the controller
169 printParams();
170
171 // kick off the refresh, and give ourselves enough time to
172 // precharge
173 schedule(refreshEvent, curTick() + tREFI - tRP);
174 }
175
176 Tick
177 DRAMCtrl::recvAtomic(PacketPtr pkt)
178 {
179 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
180
181 // do the actual memory access and turn the packet into a response
182 access(pkt);
183
184 Tick latency = 0;
185 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
186 // this value is not supposed to be accurate, just enough to
187 // keep things going, mimic a closed page
188 latency = tRP + tRCD + tCL;
189 }
190 return latency;
191 }
192
193 bool
194 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
195 {
196 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
197 readBufferSize, readQueue.size() + respQueue.size(),
198 neededEntries);
199
200 return
201 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
202 }
203
204 bool
205 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
206 {
207 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
208 writeBufferSize, writeQueue.size(), neededEntries);
209 return (writeQueue.size() + neededEntries) > writeBufferSize;
210 }
211
212 DRAMCtrl::DRAMPacket*
213 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
214 bool isRead)
215 {
216 // decode the address based on the address mapping scheme, with
217 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
218 // channel, respectively
219 uint8_t rank;
220 uint8_t bank;
221 uint16_t row;
222
223 // truncate the address to the access granularity
224 Addr addr = dramPktAddr / burstSize;
225
226 // we have removed the lowest order address bits that denote the
227 // position within the column
228 if (addrMapping == Enums::RoRaBaChCo) {
229 // the lowest order bits denote the column to ensure that
230 // sequential cache lines occupy the same row
231 addr = addr / columnsPerRowBuffer;
232
233 // take out the channel part of the address
234 addr = addr / channels;
235
236 // after the channel bits, get the bank bits to interleave
237 // over the banks
238 bank = addr % banksPerRank;
239 addr = addr / banksPerRank;
240
241 // after the bank, we get the rank bits which thus interleaves
242 // over the ranks
243 rank = addr % ranksPerChannel;
244 addr = addr / ranksPerChannel;
245
246 // lastly, get the row bits
247 row = addr % rowsPerBank;
248 addr = addr / rowsPerBank;
249 } else if (addrMapping == Enums::RoRaBaCoCh) {
250 // take out the channel part of the address
251 addr = addr / channels;
252
253 // next, the column
254 addr = addr / columnsPerRowBuffer;
255
256 // after the column bits, we get the bank bits to interleave
257 // over the banks
258 bank = addr % banksPerRank;
259 addr = addr / banksPerRank;
260
261 // after the bank, we get the rank bits which thus interleaves
262 // over the ranks
263 rank = addr % ranksPerChannel;
264 addr = addr / ranksPerChannel;
265
266 // lastly, get the row bits
267 row = addr % rowsPerBank;
268 addr = addr / rowsPerBank;
269 } else if (addrMapping == Enums::RoCoRaBaCh) {
270 // optimise for closed page mode and utilise maximum
271 // parallelism of the DRAM (at the cost of power)
272
273 // take out the channel part of the address, not that this has
274 // to match with how accesses are interleaved between the
275 // controllers in the address mapping
276 addr = addr / channels;
277
278 // start with the bank bits, as this provides the maximum
279 // opportunity for parallelism between requests
280 bank = addr % banksPerRank;
281 addr = addr / banksPerRank;
282
283 // next get the rank bits
284 rank = addr % ranksPerChannel;
285 addr = addr / ranksPerChannel;
286
287 // next the column bits which we do not need to keep track of
288 // and simply skip past
289 addr = addr / columnsPerRowBuffer;
290
291 // lastly, get the row bits
292 row = addr % rowsPerBank;
293 addr = addr / rowsPerBank;
294 } else
295 panic("Unknown address mapping policy chosen!");
296
297 assert(rank < ranksPerChannel);
298 assert(bank < banksPerRank);
299 assert(row < rowsPerBank);
300
301 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
302 dramPktAddr, rank, bank, row);
303
304 // create the corresponding DRAM packet with the entry time and
305 // ready time set to the current tick, the latter will be updated
306 // later
307 uint16_t bank_id = banksPerRank * rank + bank;
308 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
309 size, banks[rank][bank]);
310 }
311
312 void
313 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
314 {
315 // only add to the read queue here. whenever the request is
316 // eventually done, set the readyTime, and call schedule()
317 assert(!pkt->isWrite());
318
319 assert(pktCount != 0);
320
321 // if the request size is larger than burst size, the pkt is split into
322 // multiple DRAM packets
323 // Note if the pkt starting address is not aligened to burst size, the
324 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
325 // are aligned to burst size boundaries. This is to ensure we accurately
326 // check read packets against packets in write queue.
327 Addr addr = pkt->getAddr();
328 unsigned pktsServicedByWrQ = 0;
329 BurstHelper* burst_helper = NULL;
330 for (int cnt = 0; cnt < pktCount; ++cnt) {
331 unsigned size = std::min((addr | (burstSize - 1)) + 1,
332 pkt->getAddr() + pkt->getSize()) - addr;
333 readPktSize[ceilLog2(size)]++;
334 readBursts++;
335
336 // First check write buffer to see if the data is already at
337 // the controller
338 bool foundInWrQ = false;
339 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
340 // check if the read is subsumed in the write entry we are
341 // looking at
342 if ((*i)->addr <= addr &&
343 (addr + size) <= ((*i)->addr + (*i)->size)) {
344 foundInWrQ = true;
345 servicedByWrQ++;
346 pktsServicedByWrQ++;
347 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
348 "write queue\n", addr, size);
349 bytesReadWrQ += burstSize;
350 break;
351 }
352 }
353
354 // If not found in the write q, make a DRAM packet and
355 // push it onto the read queue
356 if (!foundInWrQ) {
357
358 // Make the burst helper for split packets
359 if (pktCount > 1 && burst_helper == NULL) {
360 DPRINTF(DRAM, "Read to addr %lld translates to %d "
361 "dram requests\n", pkt->getAddr(), pktCount);
362 burst_helper = new BurstHelper(pktCount);
363 }
364
365 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
366 dram_pkt->burstHelper = burst_helper;
367
368 assert(!readQueueFull(1));
369 rdQLenPdf[readQueue.size() + respQueue.size()]++;
370
371 DPRINTF(DRAM, "Adding to read queue\n");
372
373 readQueue.push_back(dram_pkt);
374
375 // Update stats
376 avgRdQLen = readQueue.size() + respQueue.size();
377 }
378
379 // Starting address of next dram pkt (aligend to burstSize boundary)
380 addr = (addr | (burstSize - 1)) + 1;
381 }
382
383 // If all packets are serviced by write queue, we send the repsonse back
384 if (pktsServicedByWrQ == pktCount) {
385 accessAndRespond(pkt, frontendLatency);
386 return;
387 }
388
389 // Update how many split packets are serviced by write queue
390 if (burst_helper != NULL)
391 burst_helper->burstsServiced = pktsServicedByWrQ;
392
393 // If we are not already scheduled to get a request out of the
394 // queue, do so now
395 if (!nextReqEvent.scheduled()) {
396 DPRINTF(DRAM, "Request scheduled immediately\n");
397 schedule(nextReqEvent, curTick());
398 }
399 }
400
401 void
402 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
403 {
404 // only add to the write queue here. whenever the request is
405 // eventually done, set the readyTime, and call schedule()
406 assert(pkt->isWrite());
407
408 // if the request size is larger than burst size, the pkt is split into
409 // multiple DRAM packets
410 Addr addr = pkt->getAddr();
411 for (int cnt = 0; cnt < pktCount; ++cnt) {
412 unsigned size = std::min((addr | (burstSize - 1)) + 1,
413 pkt->getAddr() + pkt->getSize()) - addr;
414 writePktSize[ceilLog2(size)]++;
415 writeBursts++;
416
417 // see if we can merge with an existing item in the write
418 // queue and keep track of whether we have merged or not so we
419 // can stop at that point and also avoid enqueueing a new
420 // request
421 bool merged = false;
422 auto w = writeQueue.begin();
423
424 while(!merged && w != writeQueue.end()) {
425 // either of the two could be first, if they are the same
426 // it does not matter which way we go
427 if ((*w)->addr >= addr) {
428 // the existing one starts after the new one, figure
429 // out where the new one ends with respect to the
430 // existing one
431 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
432 // check if the existing one is completely
433 // subsumed in the new one
434 DPRINTF(DRAM, "Merging write covering existing burst\n");
435 merged = true;
436 // update both the address and the size
437 (*w)->addr = addr;
438 (*w)->size = size;
439 } else if ((addr + size) >= (*w)->addr &&
440 ((*w)->addr + (*w)->size - addr) <= burstSize) {
441 // the new one is just before or partially
442 // overlapping with the existing one, and together
443 // they fit within a burst
444 DPRINTF(DRAM, "Merging write before existing burst\n");
445 merged = true;
446 // the existing queue item needs to be adjusted with
447 // respect to both address and size
448 (*w)->size = (*w)->addr + (*w)->size - addr;
449 (*w)->addr = addr;
450 }
451 } else {
452 // the new one starts after the current one, figure
453 // out where the existing one ends with respect to the
454 // new one
455 if (((*w)->addr + (*w)->size) >= (addr + size)) {
456 // check if the new one is completely subsumed in the
457 // existing one
458 DPRINTF(DRAM, "Merging write into existing burst\n");
459 merged = true;
460 // no adjustments necessary
461 } else if (((*w)->addr + (*w)->size) >= addr &&
462 (addr + size - (*w)->addr) <= burstSize) {
463 // the existing one is just before or partially
464 // overlapping with the new one, and together
465 // they fit within a burst
466 DPRINTF(DRAM, "Merging write after existing burst\n");
467 merged = true;
468 // the address is right, and only the size has
469 // to be adjusted
470 (*w)->size = addr + size - (*w)->addr;
471 }
472 }
473 ++w;
474 }
475
476 // if the item was not merged we need to create a new write
477 // and enqueue it
478 if (!merged) {
479 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
480
481 assert(writeQueue.size() < writeBufferSize);
482 wrQLenPdf[writeQueue.size()]++;
483
484 DPRINTF(DRAM, "Adding to write queue\n");
485
486 writeQueue.push_back(dram_pkt);
487
488 // Update stats
489 avgWrQLen = writeQueue.size();
490 } else {
491 // keep track of the fact that this burst effectively
492 // disappeared as it was merged with an existing one
493 mergedWrBursts++;
494 }
495
496 // Starting address of next dram pkt (aligend to burstSize boundary)
497 addr = (addr | (burstSize - 1)) + 1;
498 }
499
500 // we do not wait for the writes to be send to the actual memory,
501 // but instead take responsibility for the consistency here and
502 // snoop the write queue for any upcoming reads
503 // @todo, if a pkt size is larger than burst size, we might need a
504 // different front end latency
505 accessAndRespond(pkt, frontendLatency);
506
507 // If we are not already scheduled to get a request out of the
508 // queue, do so now
509 if (!nextReqEvent.scheduled()) {
510 DPRINTF(DRAM, "Request scheduled immediately\n");
511 schedule(nextReqEvent, curTick());
512 }
513 }
514
515 void
516 DRAMCtrl::printParams() const
517 {
518 // Sanity check print of important parameters
519 DPRINTF(DRAM,
520 "Memory controller %s physical organization\n" \
521 "Number of devices per rank %d\n" \
522 "Device bus width (in bits) %d\n" \
523 "DRAM data bus burst (bytes) %d\n" \
524 "Row buffer size (bytes) %d\n" \
525 "Columns per row buffer %d\n" \
526 "Rows per bank %d\n" \
527 "Banks per rank %d\n" \
528 "Ranks per channel %d\n" \
529 "Total mem capacity (bytes) %u\n",
530 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
531 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
532 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
533
534 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
535 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
536 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
537 string page_policy = pageMgmt == Enums::open ? "OPEN" :
538 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
539 (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
540
541 DPRINTF(DRAM,
542 "Memory controller %s characteristics\n" \
543 "Read buffer size %d\n" \
544 "Write buffer size %d\n" \
545 "Write high thresh %d\n" \
546 "Write low thresh %d\n" \
547 "Scheduler %s\n" \
548 "Address mapping %s\n" \
549 "Page policy %s\n",
550 name(), readBufferSize, writeBufferSize, writeHighThreshold,
551 writeLowThreshold, scheduler, address_mapping, page_policy);
552
553 DPRINTF(DRAM, "Memory controller %s timing specs\n" \
554 "tRCD %d ticks\n" \
555 "tCL %d ticks\n" \
556 "tRP %d ticks\n" \
557 "tBURST %d ticks\n" \
558 "tRFC %d ticks\n" \
559 "tREFI %d ticks\n" \
560 "tWTR %d ticks\n" \
561 "tRTW %d ticks\n" \
562 "tWR %d ticks\n" \
563 "tRTP %d ticks\n" \
564 "tXAW (%d) %d ticks\n",
565 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
566 tRTW, tWR, tRTP, activationLimit, tXAW);
567 }
568
569 void
570 DRAMCtrl::printQs() const {
571 DPRINTF(DRAM, "===READ QUEUE===\n\n");
572 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
573 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
574 }
575 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
576 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
577 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
578 }
579 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
580 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
581 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
582 }
583 }
584
585 bool
586 DRAMCtrl::recvTimingReq(PacketPtr pkt)
587 {
588 /// @todo temporary hack to deal with memory corruption issues until
589 /// 4-phase transactions are complete
590 for (int x = 0; x < pendingDelete.size(); x++)
591 delete pendingDelete[x];
592 pendingDelete.clear();
593
594 // This is where we enter from the outside world
595 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
596 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
597
598 // simply drop inhibited packets for now
599 if (pkt->memInhibitAsserted()) {
600 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
601 pendingDelete.push_back(pkt);
602 return true;
603 }
604
605 // Calc avg gap between requests
606 if (prevArrival != 0) {
607 totGap += curTick() - prevArrival;
608 }
609 prevArrival = curTick();
610
611
612 // Find out how many dram packets a pkt translates to
613 // If the burst size is equal or larger than the pkt size, then a pkt
614 // translates to only one dram packet. Otherwise, a pkt translates to
615 // multiple dram packets
616 unsigned size = pkt->getSize();
617 unsigned offset = pkt->getAddr() & (burstSize - 1);
618 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
619
620 // check local buffers and do not accept if full
621 if (pkt->isRead()) {
622 assert(size != 0);
623 if (readQueueFull(dram_pkt_count)) {
624 DPRINTF(DRAM, "Read queue full, not accepting\n");
625 // remember that we have to retry this port
626 retryRdReq = true;
627 numRdRetry++;
628 return false;
629 } else {
630 addToReadQueue(pkt, dram_pkt_count);
631 readReqs++;
632 bytesReadSys += size;
633 }
634 } else if (pkt->isWrite()) {
635 assert(size != 0);
636 if (writeQueueFull(dram_pkt_count)) {
637 DPRINTF(DRAM, "Write queue full, not accepting\n");
638 // remember that we have to retry this port
639 retryWrReq = true;
640 numWrRetry++;
641 return false;
642 } else {
643 addToWriteQueue(pkt, dram_pkt_count);
644 writeReqs++;
645 bytesWrittenSys += size;
646 }
647 } else {
648 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
649 neitherReadNorWrite++;
650 accessAndRespond(pkt, 1);
651 }
652
653 return true;
654 }
655
656 void
657 DRAMCtrl::processRespondEvent()
658 {
659 DPRINTF(DRAM,
660 "processRespondEvent(): Some req has reached its readyTime\n");
661
662 DRAMPacket* dram_pkt = respQueue.front();
663
664 if (dram_pkt->burstHelper) {
665 // it is a split packet
666 dram_pkt->burstHelper->burstsServiced++;
667 if (dram_pkt->burstHelper->burstsServiced ==
668 dram_pkt->burstHelper->burstCount) {
669 // we have now serviced all children packets of a system packet
670 // so we can now respond to the requester
671 // @todo we probably want to have a different front end and back
672 // end latency for split packets
673 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
674 delete dram_pkt->burstHelper;
675 dram_pkt->burstHelper = NULL;
676 }
677 } else {
678 // it is not a split packet
679 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
680 }
681
682 delete respQueue.front();
683 respQueue.pop_front();
684
685 if (!respQueue.empty()) {
686 assert(respQueue.front()->readyTime >= curTick());
687 assert(!respondEvent.scheduled());
688 schedule(respondEvent, respQueue.front()->readyTime);
689 } else {
690 // if there is nothing left in any queue, signal a drain
691 if (writeQueue.empty() && readQueue.empty() &&
692 drainManager) {
693 drainManager->signalDrainDone();
694 drainManager = NULL;
695 }
696 }
697
698 // We have made a location in the queue available at this point,
699 // so if there is a read that was forced to wait, retry now
700 if (retryRdReq) {
701 retryRdReq = false;
702 port.sendRetry();
703 }
704 }
705
706 void
707 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
708 {
709 // This method does the arbitration between requests. The chosen
710 // packet is simply moved to the head of the queue. The other
711 // methods know that this is the place to look. For example, with
712 // FCFS, this method does nothing
713 assert(!queue.empty());
714
715 if (queue.size() == 1) {
716 DPRINTF(DRAM, "Single request, nothing to do\n");
717 return;
718 }
719
720 if (memSchedPolicy == Enums::fcfs) {
721 // Do nothing, since the correct request is already head
722 } else if (memSchedPolicy == Enums::frfcfs) {
723 reorderQueue(queue);
724 } else
725 panic("No scheduling policy chosen\n");
726 }
727
728 void
729 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
730 {
731 // Only determine this when needed
732 uint64_t earliest_banks = 0;
733
734 // Search for row hits first, if no row hit is found then schedule the
735 // packet to one of the earliest banks available
736 bool found_earliest_pkt = false;
737 auto selected_pkt_it = queue.begin();
738
739 for (auto i = queue.begin(); i != queue.end() ; ++i) {
740 DRAMPacket* dram_pkt = *i;
741 const Bank& bank = dram_pkt->bankRef;
742 // Check if it is a row hit
743 if (bank.openRow == dram_pkt->row) {
744 // FCFS within the hits
745 DPRINTF(DRAM, "Row buffer hit\n");
746 selected_pkt_it = i;
747 break;
748 } else if (!found_earliest_pkt) {
749 // No row hit, go for first ready
750 if (earliest_banks == 0)
751 earliest_banks = minBankActAt(queue);
752
753 // simplistic approximation of when the bank can issue an
754 // activate, this is calculated in minBankActAt and could
755 // be cached
756 Tick act_at = bank.openRow == Bank::NO_ROW ?
757 bank.actAllowedAt :
758 std::max(bank.preAllowedAt, curTick()) + tRP;
759
760 // Bank is ready or is the first available bank
761 if (act_at <= curTick() ||
762 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
763 // Remember the packet to be scheduled to one of the earliest
764 // banks available, FCFS amongst the earliest banks
765 selected_pkt_it = i;
766 found_earliest_pkt = true;
767 }
768 }
769 }
770
771 DRAMPacket* selected_pkt = *selected_pkt_it;
772 queue.erase(selected_pkt_it);
773 queue.push_front(selected_pkt);
774 }
775
776 void
777 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
778 {
779 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
780
781 bool needsResponse = pkt->needsResponse();
782 // do the actual memory access which also turns the packet into a
783 // response
784 access(pkt);
785
786 // turn packet around to go back to requester if response expected
787 if (needsResponse) {
788 // access already turned the packet into a response
789 assert(pkt->isResponse());
790
791 // @todo someone should pay for this
792 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
793
794 // queue the packet in the response queue to be sent out after
795 // the static latency has passed
796 port.schedTimingResp(pkt, curTick() + static_latency);
797 } else {
798 // @todo the packet is going to be deleted, and the DRAMPacket
799 // is still having a pointer to it
800 pendingDelete.push_back(pkt);
801 }
802
803 DPRINTF(DRAM, "Done\n");
804
805 return;
806 }
807
808 void
809 DRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank,
810 uint16_t row, Bank& bank_ref)
811 {
812 assert(0 <= rank && rank < ranksPerChannel);
813 assert(actTicks[rank].size() == activationLimit);
814
815 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
816
817 // update the open row
818 assert(bank_ref.openRow == Bank::NO_ROW);
819 bank_ref.openRow = row;
820
821 // start counting anew, this covers both the case when we
822 // auto-precharged, and when this access is forced to
823 // precharge
824 bank_ref.bytesAccessed = 0;
825 bank_ref.rowAccesses = 0;
826
827 ++numBanksActive;
828 assert(numBanksActive <= banksPerRank * ranksPerChannel);
829
830 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
831 act_tick, numBanksActive);
832
833 // The next access has to respect tRAS for this bank
834 bank_ref.preAllowedAt = act_tick + tRAS;
835
836 // Respect the row-to-column command delay
837 bank_ref.colAllowedAt = act_tick + tRCD;
838
839 // start by enforcing tRRD
840 for(int i = 0; i < banksPerRank; i++) {
841 // next activate to any bank in this rank must not happen
842 // before tRRD
843 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
844 banks[rank][i].actAllowedAt);
845 }
846
847 // next, we deal with tXAW, if the activation limit is disabled
848 // then we are done
849 if (actTicks[rank].empty())
850 return;
851
852 // sanity check
853 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
854 panic("Got %d activates in window %d (%llu - %llu) which is smaller "
855 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
856 act_tick, actTicks[rank].back(), tXAW);
857 }
858
859 // shift the times used for the book keeping, the last element
860 // (highest index) is the oldest one and hence the lowest value
861 actTicks[rank].pop_back();
862
863 // record an new activation (in the future)
864 actTicks[rank].push_front(act_tick);
865
866 // cannot activate more than X times in time window tXAW, push the
867 // next one (the X + 1'st activate) to be tXAW away from the
868 // oldest in our window of X
869 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
870 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
871 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
872 for(int j = 0; j < banksPerRank; j++)
873 // next activate must not happen before end of window
874 banks[rank][j].actAllowedAt =
875 std::max(actTicks[rank].back() + tXAW,
876 banks[rank][j].actAllowedAt);
877 }
878
879 // at the point when this activate takes place, make sure we
880 // transition to the active power state
881 if (!activateEvent.scheduled())
882 schedule(activateEvent, act_tick);
883 else if (activateEvent.when() > act_tick)
884 // move it sooner in time
885 reschedule(activateEvent, act_tick);
886 }
887
888 void
889 DRAMCtrl::processActivateEvent()
890 {
891 // we should transition to the active state as soon as any bank is active
892 if (pwrState != PWR_ACT)
893 // note that at this point numBanksActive could be back at
894 // zero again due to a precharge scheduled in the future
895 schedulePowerEvent(PWR_ACT, curTick());
896 }
897
898 void
899 DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at)
900 {
901 // make sure the bank has an open row
902 assert(bank.openRow != Bank::NO_ROW);
903
904 // sample the bytes per activate here since we are closing
905 // the page
906 bytesPerActivate.sample(bank.bytesAccessed);
907
908 bank.openRow = Bank::NO_ROW;
909
910 Tick pre_done_at = pre_at + tRP;
911
912 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
913
914 assert(numBanksActive != 0);
915 --numBanksActive;
916
917 DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n",
918 pre_at, numBanksActive);
919
920 // if we look at the current number of active banks we might be
921 // tempted to think the DRAM is now idle, however this can be
922 // undone by an activate that is scheduled to happen before we
923 // would have reached the idle state, so schedule an event and
924 // rather check once we actually make it to the point in time when
925 // the (last) precharge takes place
926 if (!prechargeEvent.scheduled())
927 schedule(prechargeEvent, pre_done_at);
928 else if (prechargeEvent.when() < pre_done_at)
929 reschedule(prechargeEvent, pre_done_at);
930 }
931
932 void
933 DRAMCtrl::processPrechargeEvent()
934 {
935 // if we reached zero, then special conditions apply as we track
936 // if all banks are precharged for the power models
937 if (numBanksActive == 0) {
938 // we should transition to the idle state when the last bank
939 // is precharged
940 schedulePowerEvent(PWR_IDLE, curTick());
941 }
942 }
943
944 void
945 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
946 {
947 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
948 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
949
950 // get the bank
951 Bank& bank = dram_pkt->bankRef;
952
953 // for the state we need to track if it is a row hit or not
954 bool row_hit = true;
955
956 // respect any constraints on the command (e.g. tRCD or tCCD)
957 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
958
959 // Determine the access latency and update the bank state
960 if (bank.openRow == dram_pkt->row) {
961 // nothing to do
962 } else {
963 row_hit = false;
964
965 // If there is a page open, precharge it.
966 if (bank.openRow != Bank::NO_ROW) {
967 prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
968 }
969
970 // next we need to account for the delay in activating the
971 // page
972 Tick act_tick = std::max(bank.actAllowedAt, curTick());
973
974 // Record the activation and deal with all the global timing
975 // constraints caused be a new activation (tRRD and tXAW)
976 activateBank(act_tick, dram_pkt->rank, dram_pkt->bank,
977 dram_pkt->row, bank);
978
979 // issue the command as early as possible
980 cmd_at = bank.colAllowedAt;
981 }
982
983 // we need to wait until the bus is available before we can issue
984 // the command
985 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
986
987 // update the packet ready time
988 dram_pkt->readyTime = cmd_at + tCL + tBURST;
989
990 // only one burst can use the bus at any one point in time
991 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
992
993 // not strictly necessary, but update the time for the next
994 // read/write (add a max with tCCD here)
995 bank.colAllowedAt = cmd_at + tBURST;
996
997 // If this is a write, we also need to respect the write recovery
998 // time before a precharge, in the case of a read, respect the
999 // read to precharge constraint
1000 bank.preAllowedAt = std::max(bank.preAllowedAt,
1001 dram_pkt->isRead ? cmd_at + tRTP :
1002 dram_pkt->readyTime + tWR);
1003
1004 // increment the bytes accessed and the accesses per row
1005 bank.bytesAccessed += burstSize;
1006 ++bank.rowAccesses;
1007
1008 // if we reached the max, then issue with an auto-precharge
1009 bool auto_precharge = pageMgmt == Enums::close ||
1010 bank.rowAccesses == maxAccessesPerRow;
1011
1012 // if we did not hit the limit, we might still want to
1013 // auto-precharge
1014 if (!auto_precharge &&
1015 (pageMgmt == Enums::open_adaptive ||
1016 pageMgmt == Enums::close_adaptive)) {
1017 // a twist on the open and close page policies:
1018 // 1) open_adaptive page policy does not blindly keep the
1019 // page open, but close it if there are no row hits, and there
1020 // are bank conflicts in the queue
1021 // 2) close_adaptive page policy does not blindly close the
1022 // page, but closes it only if there are no row hits in the queue.
1023 // In this case, only force an auto precharge when there
1024 // are no same page hits in the queue
1025 bool got_more_hits = false;
1026 bool got_bank_conflict = false;
1027
1028 // either look at the read queue or write queue
1029 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1030 writeQueue;
1031 auto p = queue.begin();
1032 // make sure we are not considering the packet that we are
1033 // currently dealing with (which is the head of the queue)
1034 ++p;
1035
1036 // keep on looking until we have found required condition or
1037 // reached the end
1038 while (!(got_more_hits &&
1039 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1040 p != queue.end()) {
1041 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1042 (dram_pkt->bank == (*p)->bank);
1043 bool same_row = dram_pkt->row == (*p)->row;
1044 got_more_hits |= same_rank_bank && same_row;
1045 got_bank_conflict |= same_rank_bank && !same_row;
1046 ++p;
1047 }
1048
1049 // auto pre-charge when either
1050 // 1) open_adaptive policy, we have not got any more hits, and
1051 // have a bank conflict
1052 // 2) close_adaptive policy and we have not got any more hits
1053 auto_precharge = !got_more_hits &&
1054 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1055 }
1056
1057 // if this access should use auto-precharge, then we are
1058 // closing the row
1059 if (auto_precharge) {
1060 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1061
1062 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1063 }
1064
1065 // Update bus state
1066 busBusyUntil = dram_pkt->readyTime;
1067
1068 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1069 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1070
1071 // Update the minimum timing between the requests, this is a
1072 // conservative estimate of when we have to schedule the next
1073 // request to not introduce any unecessary bubbles. In most cases
1074 // we will wake up sooner than we have to.
1075 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1076
1077 // Update the stats and schedule the next request
1078 if (dram_pkt->isRead) {
1079 ++readsThisTime;
1080 if (row_hit)
1081 readRowHits++;
1082 bytesReadDRAM += burstSize;
1083 perBankRdBursts[dram_pkt->bankId]++;
1084
1085 // Update latency stats
1086 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1087 totBusLat += tBURST;
1088 totQLat += cmd_at - dram_pkt->entryTime;
1089 } else {
1090 ++writesThisTime;
1091 if (row_hit)
1092 writeRowHits++;
1093 bytesWritten += burstSize;
1094 perBankWrBursts[dram_pkt->bankId]++;
1095 }
1096 }
1097
1098 void
1099 DRAMCtrl::moveToRespQ()
1100 {
1101 // Remove from read queue
1102 DRAMPacket* dram_pkt = readQueue.front();
1103 readQueue.pop_front();
1104
1105 // sanity check
1106 assert(dram_pkt->size <= burstSize);
1107
1108 // Insert into response queue sorted by readyTime
1109 // It will be sent back to the requestor at its
1110 // readyTime
1111 if (respQueue.empty()) {
1112 respQueue.push_front(dram_pkt);
1113 assert(!respondEvent.scheduled());
1114 assert(dram_pkt->readyTime >= curTick());
1115 schedule(respondEvent, dram_pkt->readyTime);
1116 } else {
1117 bool done = false;
1118 auto i = respQueue.begin();
1119 while (!done && i != respQueue.end()) {
1120 if ((*i)->readyTime > dram_pkt->readyTime) {
1121 respQueue.insert(i, dram_pkt);
1122 done = true;
1123 }
1124 ++i;
1125 }
1126
1127 if (!done)
1128 respQueue.push_back(dram_pkt);
1129
1130 assert(respondEvent.scheduled());
1131
1132 if (respQueue.front()->readyTime < respondEvent.when()) {
1133 assert(respQueue.front()->readyTime >= curTick());
1134 reschedule(respondEvent, respQueue.front()->readyTime);
1135 }
1136 }
1137 }
1138
1139 void
1140 DRAMCtrl::processNextReqEvent()
1141 {
1142 if (busState == READ_TO_WRITE) {
1143 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1144 "waiting\n", readsThisTime, readQueue.size());
1145
1146 // sample and reset the read-related stats as we are now
1147 // transitioning to writes, and all reads are done
1148 rdPerTurnAround.sample(readsThisTime);
1149 readsThisTime = 0;
1150
1151 // now proceed to do the actual writes
1152 busState = WRITE;
1153 } else if (busState == WRITE_TO_READ) {
1154 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1155 "waiting\n", writesThisTime, writeQueue.size());
1156
1157 wrPerTurnAround.sample(writesThisTime);
1158 writesThisTime = 0;
1159
1160 busState = READ;
1161 }
1162
1163 if (refreshState != REF_IDLE) {
1164 // if a refresh waiting for this event loop to finish, then hand
1165 // over now, and do not schedule a new nextReqEvent
1166 if (refreshState == REF_DRAIN) {
1167 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1168
1169 refreshState = REF_PRE;
1170
1171 // hand control back to the refresh event loop
1172 schedule(refreshEvent, curTick());
1173 }
1174
1175 // let the refresh finish before issuing any further requests
1176 return;
1177 }
1178
1179 // when we get here it is either a read or a write
1180 if (busState == READ) {
1181
1182 // track if we should switch or not
1183 bool switch_to_writes = false;
1184
1185 if (readQueue.empty()) {
1186 // In the case there is no read request to go next,
1187 // trigger writes if we have passed the low threshold (or
1188 // if we are draining)
1189 if (!writeQueue.empty() &&
1190 (drainManager || writeQueue.size() > writeLowThreshold)) {
1191
1192 switch_to_writes = true;
1193 } else {
1194 // check if we are drained
1195 if (respQueue.empty () && drainManager) {
1196 drainManager->signalDrainDone();
1197 drainManager = NULL;
1198 }
1199
1200 // nothing to do, not even any point in scheduling an
1201 // event for the next request
1202 return;
1203 }
1204 } else {
1205 // Figure out which read request goes next, and move it to the
1206 // front of the read queue
1207 chooseNext(readQueue);
1208
1209 doDRAMAccess(readQueue.front());
1210
1211 // At this point we're done dealing with the request
1212 // It will be moved to a separate response queue with a
1213 // correct readyTime, and eventually be sent back at that
1214 // time
1215 moveToRespQ();
1216
1217 // we have so many writes that we have to transition
1218 if (writeQueue.size() > writeHighThreshold) {
1219 switch_to_writes = true;
1220 }
1221 }
1222
1223 // switching to writes, either because the read queue is empty
1224 // and the writes have passed the low threshold (or we are
1225 // draining), or because the writes hit the hight threshold
1226 if (switch_to_writes) {
1227 // transition to writing
1228 busState = READ_TO_WRITE;
1229
1230 // add a bubble to the data bus, as defined by the
1231 // tRTW parameter
1232 busBusyUntil += tRTW;
1233
1234 // update the minimum timing between the requests,
1235 // this shifts us back in time far enough to do any
1236 // bank preparation
1237 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1238 }
1239 } else {
1240 chooseNext(writeQueue);
1241 DRAMPacket* dram_pkt = writeQueue.front();
1242 // sanity check
1243 assert(dram_pkt->size <= burstSize);
1244 doDRAMAccess(dram_pkt);
1245
1246 writeQueue.pop_front();
1247 delete dram_pkt;
1248
1249 // If we emptied the write queue, or got sufficiently below the
1250 // threshold (using the minWritesPerSwitch as the hysteresis) and
1251 // are not draining, or we have reads waiting and have done enough
1252 // writes, then switch to reads.
1253 if (writeQueue.empty() ||
1254 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1255 !drainManager) ||
1256 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1257 // turn the bus back around for reads again
1258 busState = WRITE_TO_READ;
1259
1260 // note that the we switch back to reads also in the idle
1261 // case, which eventually will check for any draining and
1262 // also pause any further scheduling if there is really
1263 // nothing to do
1264
1265 // here we get a bit creative and shift the bus busy time not
1266 // just the tWTR, but also a CAS latency to capture the fact
1267 // that we are allowed to prepare a new bank, but not issue a
1268 // read command until after tWTR, in essence we capture a
1269 // bubble on the data bus that is tWTR + tCL
1270 busBusyUntil += tWTR + tCL;
1271
1272 // update the minimum timing between the requests, this shifts
1273 // us back in time far enough to do any bank preparation
1274 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1275 }
1276 }
1277
1278 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1279
1280 // If there is space available and we have writes waiting then let
1281 // them retry. This is done here to ensure that the retry does not
1282 // cause a nextReqEvent to be scheduled before we do so as part of
1283 // the next request processing
1284 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1285 retryWrReq = false;
1286 port.sendRetry();
1287 }
1288 }
1289
1290 uint64_t
1291 DRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const
1292 {
1293 uint64_t bank_mask = 0;
1294 Tick min_act_at = MaxTick;
1295
1296 // deterimne if we have queued transactions targetting a
1297 // bank in question
1298 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1299 for (auto p = queue.begin(); p != queue.end(); ++p) {
1300 got_waiting[(*p)->bankId] = true;
1301 }
1302
1303 for (int i = 0; i < ranksPerChannel; i++) {
1304 for (int j = 0; j < banksPerRank; j++) {
1305 uint8_t bank_id = i * banksPerRank + j;
1306
1307 // if we have waiting requests for the bank, and it is
1308 // amongst the first available, update the mask
1309 if (got_waiting[bank_id]) {
1310 // simplistic approximation of when the bank can issue
1311 // an activate, ignoring any rank-to-rank switching
1312 // cost
1313 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1314 banks[i][j].actAllowedAt :
1315 std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1316
1317 if (act_at <= min_act_at) {
1318 // reset bank mask if new minimum is found
1319 if (act_at < min_act_at)
1320 bank_mask = 0;
1321 // set the bit corresponding to the available bank
1322 replaceBits(bank_mask, bank_id, bank_id, 1);
1323 min_act_at = act_at;
1324 }
1325 }
1326 }
1327 }
1328
1329 return bank_mask;
1330 }
1331
1332 void
1333 DRAMCtrl::processRefreshEvent()
1334 {
1335 // when first preparing the refresh, remember when it was due
1336 if (refreshState == REF_IDLE) {
1337 // remember when the refresh is due
1338 refreshDueAt = curTick();
1339
1340 // proceed to drain
1341 refreshState = REF_DRAIN;
1342
1343 DPRINTF(DRAM, "Refresh due\n");
1344 }
1345
1346 // let any scheduled read or write go ahead, after which it will
1347 // hand control back to this event loop
1348 if (refreshState == REF_DRAIN) {
1349 if (nextReqEvent.scheduled()) {
1350 // hand control over to the request loop until it is
1351 // evaluated next
1352 DPRINTF(DRAM, "Refresh awaiting draining\n");
1353
1354 return;
1355 } else {
1356 refreshState = REF_PRE;
1357 }
1358 }
1359
1360 // at this point, ensure that all banks are precharged
1361 if (refreshState == REF_PRE) {
1362 // precharge any active bank if we are not already in the idle
1363 // state
1364 if (pwrState != PWR_IDLE) {
1365 DPRINTF(DRAM, "Precharging all\n");
1366 for (int i = 0; i < ranksPerChannel; i++) {
1367 for (int j = 0; j < banksPerRank; j++) {
1368 if (banks[i][j].openRow != Bank::NO_ROW) {
1369 // respect both causality and any existing bank
1370 // constraints
1371 Tick pre_at = std::max(banks[i][j].preAllowedAt,
1372 curTick());
1373
1374 prechargeBank(banks[i][j], pre_at);
1375 }
1376 }
1377 }
1378 } else {
1379 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1380
1381 // go ahead and kick the power state machine into gear if
1382 // we are already idle
1383 schedulePowerEvent(PWR_REF, curTick());
1384 }
1385
1386 refreshState = REF_RUN;
1387 assert(numBanksActive == 0);
1388
1389 // wait for all banks to be precharged, at which point the
1390 // power state machine will transition to the idle state, and
1391 // automatically move to a refresh, at that point it will also
1392 // call this method to get the refresh event loop going again
1393 return;
1394 }
1395
1396 // last but not least we perform the actual refresh
1397 if (refreshState == REF_RUN) {
1398 // should never get here with any banks active
1399 assert(numBanksActive == 0);
1400 assert(pwrState == PWR_REF);
1401
1402 Tick ref_done_at = curTick() + tRFC;
1403
1404 for (int i = 0; i < ranksPerChannel; i++) {
1405 for (int j = 0; j < banksPerRank; j++) {
1406 banks[i][j].actAllowedAt = ref_done_at;
1407 }
1408 }
1409
1410 // make sure we did not wait so long that we cannot make up
1411 // for it
1412 if (refreshDueAt + tREFI < ref_done_at) {
1413 fatal("Refresh was delayed so long we cannot catch up\n");
1414 }
1415
1416 // compensate for the delay in actually performing the refresh
1417 // when scheduling the next one
1418 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1419
1420 assert(!powerEvent.scheduled());
1421
1422 // move to the idle power state once the refresh is done, this
1423 // will also move the refresh state machine to the refresh
1424 // idle state
1425 schedulePowerEvent(PWR_IDLE, ref_done_at);
1426
1427 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1428 ref_done_at, refreshDueAt + tREFI);
1429 }
1430 }
1431
1432 void
1433 DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1434 {
1435 // respect causality
1436 assert(tick >= curTick());
1437
1438 if (!powerEvent.scheduled()) {
1439 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1440 tick, pwr_state);
1441
1442 // insert the new transition
1443 pwrStateTrans = pwr_state;
1444
1445 schedule(powerEvent, tick);
1446 } else {
1447 panic("Scheduled power event at %llu to state %d, "
1448 "with scheduled event at %llu to %d\n", tick, pwr_state,
1449 powerEvent.when(), pwrStateTrans);
1450 }
1451 }
1452
1453 void
1454 DRAMCtrl::processPowerEvent()
1455 {
1456 // remember where we were, and for how long
1457 Tick duration = curTick() - pwrStateTick;
1458 PowerState prev_state = pwrState;
1459
1460 // update the accounting
1461 pwrStateTime[prev_state] += duration;
1462
1463 pwrState = pwrStateTrans;
1464 pwrStateTick = curTick();
1465
1466 if (pwrState == PWR_IDLE) {
1467 DPRINTF(DRAMState, "All banks precharged\n");
1468
1469 // if we were refreshing, make sure we start scheduling requests again
1470 if (prev_state == PWR_REF) {
1471 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1472 assert(pwrState == PWR_IDLE);
1473
1474 // kick things into action again
1475 refreshState = REF_IDLE;
1476 assert(!nextReqEvent.scheduled());
1477 schedule(nextReqEvent, curTick());
1478 } else {
1479 assert(prev_state == PWR_ACT);
1480
1481 // if we have a pending refresh, and are now moving to
1482 // the idle state, direclty transition to a refresh
1483 if (refreshState == REF_RUN) {
1484 // there should be nothing waiting at this point
1485 assert(!powerEvent.scheduled());
1486
1487 // update the state in zero time and proceed below
1488 pwrState = PWR_REF;
1489 }
1490 }
1491 }
1492
1493 // we transition to the refresh state, let the refresh state
1494 // machine know of this state update and let it deal with the
1495 // scheduling of the next power state transition as well as the
1496 // following refresh
1497 if (pwrState == PWR_REF) {
1498 DPRINTF(DRAMState, "Refreshing\n");
1499 // kick the refresh event loop into action again, and that
1500 // in turn will schedule a transition to the idle power
1501 // state once the refresh is done
1502 assert(refreshState == REF_RUN);
1503 processRefreshEvent();
1504 }
1505 }
1506
1507 void
1508 DRAMCtrl::regStats()
1509 {
1510 using namespace Stats;
1511
1512 AbstractMemory::regStats();
1513
1514 readReqs
1515 .name(name() + ".readReqs")
1516 .desc("Number of read requests accepted");
1517
1518 writeReqs
1519 .name(name() + ".writeReqs")
1520 .desc("Number of write requests accepted");
1521
1522 readBursts
1523 .name(name() + ".readBursts")
1524 .desc("Number of DRAM read bursts, "
1525 "including those serviced by the write queue");
1526
1527 writeBursts
1528 .name(name() + ".writeBursts")
1529 .desc("Number of DRAM write bursts, "
1530 "including those merged in the write queue");
1531
1532 servicedByWrQ
1533 .name(name() + ".servicedByWrQ")
1534 .desc("Number of DRAM read bursts serviced by the write queue");
1535
1536 mergedWrBursts
1537 .name(name() + ".mergedWrBursts")
1538 .desc("Number of DRAM write bursts merged with an existing one");
1539
1540 neitherReadNorWrite
1541 .name(name() + ".neitherReadNorWriteReqs")
1542 .desc("Number of requests that are neither read nor write");
1543
1544 perBankRdBursts
1545 .init(banksPerRank * ranksPerChannel)
1546 .name(name() + ".perBankRdBursts")
1547 .desc("Per bank write bursts");
1548
1549 perBankWrBursts
1550 .init(banksPerRank * ranksPerChannel)
1551 .name(name() + ".perBankWrBursts")
1552 .desc("Per bank write bursts");
1553
1554 avgRdQLen
1555 .name(name() + ".avgRdQLen")
1556 .desc("Average read queue length when enqueuing")
1557 .precision(2);
1558
1559 avgWrQLen
1560 .name(name() + ".avgWrQLen")
1561 .desc("Average write queue length when enqueuing")
1562 .precision(2);
1563
1564 totQLat
1565 .name(name() + ".totQLat")
1566 .desc("Total ticks spent queuing");
1567
1568 totBusLat
1569 .name(name() + ".totBusLat")
1570 .desc("Total ticks spent in databus transfers");
1571
1572 totMemAccLat
1573 .name(name() + ".totMemAccLat")
1574 .desc("Total ticks spent from burst creation until serviced "
1575 "by the DRAM");
1576
1577 avgQLat
1578 .name(name() + ".avgQLat")
1579 .desc("Average queueing delay per DRAM burst")
1580 .precision(2);
1581
1582 avgQLat = totQLat / (readBursts - servicedByWrQ);
1583
1584 avgBusLat
1585 .name(name() + ".avgBusLat")
1586 .desc("Average bus latency per DRAM burst")
1587 .precision(2);
1588
1589 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1590
1591 avgMemAccLat
1592 .name(name() + ".avgMemAccLat")
1593 .desc("Average memory access latency per DRAM burst")
1594 .precision(2);
1595
1596 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1597
1598 numRdRetry
1599 .name(name() + ".numRdRetry")
1600 .desc("Number of times read queue was full causing retry");
1601
1602 numWrRetry
1603 .name(name() + ".numWrRetry")
1604 .desc("Number of times write queue was full causing retry");
1605
1606 readRowHits
1607 .name(name() + ".readRowHits")
1608 .desc("Number of row buffer hits during reads");
1609
1610 writeRowHits
1611 .name(name() + ".writeRowHits")
1612 .desc("Number of row buffer hits during writes");
1613
1614 readRowHitRate
1615 .name(name() + ".readRowHitRate")
1616 .desc("Row buffer hit rate for reads")
1617 .precision(2);
1618
1619 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1620
1621 writeRowHitRate
1622 .name(name() + ".writeRowHitRate")
1623 .desc("Row buffer hit rate for writes")
1624 .precision(2);
1625
1626 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1627
1628 readPktSize
1629 .init(ceilLog2(burstSize) + 1)
1630 .name(name() + ".readPktSize")
1631 .desc("Read request sizes (log2)");
1632
1633 writePktSize
1634 .init(ceilLog2(burstSize) + 1)
1635 .name(name() + ".writePktSize")
1636 .desc("Write request sizes (log2)");
1637
1638 rdQLenPdf
1639 .init(readBufferSize)
1640 .name(name() + ".rdQLenPdf")
1641 .desc("What read queue length does an incoming req see");
1642
1643 wrQLenPdf
1644 .init(writeBufferSize)
1645 .name(name() + ".wrQLenPdf")
1646 .desc("What write queue length does an incoming req see");
1647
1648 bytesPerActivate
1649 .init(maxAccessesPerRow)
1650 .name(name() + ".bytesPerActivate")
1651 .desc("Bytes accessed per row activation")
1652 .flags(nozero);
1653
1654 rdPerTurnAround
1655 .init(readBufferSize)
1656 .name(name() + ".rdPerTurnAround")
1657 .desc("Reads before turning the bus around for writes")
1658 .flags(nozero);
1659
1660 wrPerTurnAround
1661 .init(writeBufferSize)
1662 .name(name() + ".wrPerTurnAround")
1663 .desc("Writes before turning the bus around for reads")
1664 .flags(nozero);
1665
1666 bytesReadDRAM
1667 .name(name() + ".bytesReadDRAM")
1668 .desc("Total number of bytes read from DRAM");
1669
1670 bytesReadWrQ
1671 .name(name() + ".bytesReadWrQ")
1672 .desc("Total number of bytes read from write queue");
1673
1674 bytesWritten
1675 .name(name() + ".bytesWritten")
1676 .desc("Total number of bytes written to DRAM");
1677
1678 bytesReadSys
1679 .name(name() + ".bytesReadSys")
1680 .desc("Total read bytes from the system interface side");
1681
1682 bytesWrittenSys
1683 .name(name() + ".bytesWrittenSys")
1684 .desc("Total written bytes from the system interface side");
1685
1686 avgRdBW
1687 .name(name() + ".avgRdBW")
1688 .desc("Average DRAM read bandwidth in MiByte/s")
1689 .precision(2);
1690
1691 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1692
1693 avgWrBW
1694 .name(name() + ".avgWrBW")
1695 .desc("Average achieved write bandwidth in MiByte/s")
1696 .precision(2);
1697
1698 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1699
1700 avgRdBWSys
1701 .name(name() + ".avgRdBWSys")
1702 .desc("Average system read bandwidth in MiByte/s")
1703 .precision(2);
1704
1705 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1706
1707 avgWrBWSys
1708 .name(name() + ".avgWrBWSys")
1709 .desc("Average system write bandwidth in MiByte/s")
1710 .precision(2);
1711
1712 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1713
1714 peakBW
1715 .name(name() + ".peakBW")
1716 .desc("Theoretical peak bandwidth in MiByte/s")
1717 .precision(2);
1718
1719 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1720
1721 busUtil
1722 .name(name() + ".busUtil")
1723 .desc("Data bus utilization in percentage")
1724 .precision(2);
1725
1726 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1727
1728 totGap
1729 .name(name() + ".totGap")
1730 .desc("Total gap between requests");
1731
1732 avgGap
1733 .name(name() + ".avgGap")
1734 .desc("Average gap between requests")
1735 .precision(2);
1736
1737 avgGap = totGap / (readReqs + writeReqs);
1738
1739 // Stats for DRAM Power calculation based on Micron datasheet
1740 busUtilRead
1741 .name(name() + ".busUtilRead")
1742 .desc("Data bus utilization in percentage for reads")
1743 .precision(2);
1744
1745 busUtilRead = avgRdBW / peakBW * 100;
1746
1747 busUtilWrite
1748 .name(name() + ".busUtilWrite")
1749 .desc("Data bus utilization in percentage for writes")
1750 .precision(2);
1751
1752 busUtilWrite = avgWrBW / peakBW * 100;
1753
1754 pageHitRate
1755 .name(name() + ".pageHitRate")
1756 .desc("Row buffer hit rate, read and write combined")
1757 .precision(2);
1758
1759 pageHitRate = (writeRowHits + readRowHits) /
1760 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1761
1762 pwrStateTime
1763 .init(5)
1764 .name(name() + ".memoryStateTime")
1765 .desc("Time in different power states");
1766 pwrStateTime.subname(0, "IDLE");
1767 pwrStateTime.subname(1, "REF");
1768 pwrStateTime.subname(2, "PRE_PDN");
1769 pwrStateTime.subname(3, "ACT");
1770 pwrStateTime.subname(4, "ACT_PDN");
1771 }
1772
1773 void
1774 DRAMCtrl::recvFunctional(PacketPtr pkt)
1775 {
1776 // rely on the abstract memory
1777 functionalAccess(pkt);
1778 }
1779
1780 BaseSlavePort&
1781 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1782 {
1783 if (if_name != "port") {
1784 return MemObject::getSlavePort(if_name, idx);
1785 } else {
1786 return port;
1787 }
1788 }
1789
1790 unsigned int
1791 DRAMCtrl::drain(DrainManager *dm)
1792 {
1793 unsigned int count = port.drain(dm);
1794
1795 // if there is anything in any of our internal queues, keep track
1796 // of that as well
1797 if (!(writeQueue.empty() && readQueue.empty() &&
1798 respQueue.empty())) {
1799 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1800 " resp: %d\n", writeQueue.size(), readQueue.size(),
1801 respQueue.size());
1802 ++count;
1803 drainManager = dm;
1804
1805 // the only part that is not drained automatically over time
1806 // is the write queue, thus kick things into action if needed
1807 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1808 schedule(nextReqEvent, curTick());
1809 }
1810 }
1811
1812 if (count)
1813 setDrainState(Drainable::Draining);
1814 else
1815 setDrainState(Drainable::Drained);
1816 return count;
1817 }
1818
1819 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1820 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1821 memory(_memory)
1822 { }
1823
1824 AddrRangeList
1825 DRAMCtrl::MemoryPort::getAddrRanges() const
1826 {
1827 AddrRangeList ranges;
1828 ranges.push_back(memory.getAddrRange());
1829 return ranges;
1830 }
1831
1832 void
1833 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1834 {
1835 pkt->pushLabel(memory.name());
1836
1837 if (!queue.checkFunctional(pkt)) {
1838 // Default implementation of SimpleTimingPort::recvFunctional()
1839 // calls recvAtomic() and throws away the latency; we can save a
1840 // little here by just not calculating the latency.
1841 memory.recvFunctional(pkt);
1842 }
1843
1844 pkt->popLabel();
1845 }
1846
1847 Tick
1848 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1849 {
1850 return memory.recvAtomic(pkt);
1851 }
1852
1853 bool
1854 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1855 {
1856 // pass it to the memory controller
1857 return memory.recvTimingReq(pkt);
1858 }
1859
1860 DRAMCtrl*
1861 DRAMCtrlParams::create()
1862 {
1863 return new DRAMCtrl(this);
1864 }