mem: Unify delayed packet deletion
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46 #include "base/bitfield.hh"
47 #include "base/trace.hh"
48 #include "debug/DRAM.hh"
49 #include "debug/DRAMPower.hh"
50 #include "debug/DRAMState.hh"
51 #include "debug/Drain.hh"
52 #include "mem/dram_ctrl.hh"
53 #include "sim/system.hh"
54
55 using namespace std;
56 using namespace Data;
57
58 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
63 nextReqEvent(this), respondEvent(this),
64 deviceSize(p->device_size),
65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66 deviceRowBufferSize(p->device_rowbuffer_size),
67 devicesPerRank(p->devices_per_rank),
68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69 rowBufferSize(devicesPerRank * deviceRowBufferSize),
70 columnsPerRowBuffer(rowBufferSize / burstSize),
71 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
72 ranksPerChannel(p->ranks_per_channel),
73 bankGroupsPerRank(p->bank_groups_per_rank),
74 bankGroupArch(p->bank_groups_per_rank > 0),
75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
76 readBufferSize(p->read_buffer_size),
77 writeBufferSize(p->write_buffer_size),
78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80 minWritesPerSwitch(p->min_writes_per_switch),
81 writesThisTime(0), readsThisTime(0),
82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
87 pageMgmt(p->page_policy),
88 maxAccessesPerRow(p->max_accesses_per_row),
89 frontendLatency(p->static_frontend_latency),
90 backendLatency(p->static_backend_latency),
91 busBusyUntil(0), prevArrival(0),
92 nextReqTime(0), activeRank(0), timeStampOffset(0)
93 {
94 // sanity check the ranks since we rely on bit slicing for the
95 // address decoding
96 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
97 "allowed, must be a power of two\n", ranksPerChannel);
98
99 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
100 "must be a power of two\n", burstSize);
101
102 for (int i = 0; i < ranksPerChannel; i++) {
103 Rank* rank = new Rank(*this, p);
104 ranks.push_back(rank);
105
106 rank->actTicks.resize(activationLimit, 0);
107 rank->banks.resize(banksPerRank);
108 rank->rank = i;
109
110 for (int b = 0; b < banksPerRank; b++) {
111 rank->banks[b].bank = b;
112 // GDDR addressing of banks to BG is linear.
113 // Here we assume that all DRAM generations address bank groups as
114 // follows:
115 if (bankGroupArch) {
116 // Simply assign lower bits to bank group in order to
117 // rotate across bank groups as banks are incremented
118 // e.g. with 4 banks per bank group and 16 banks total:
119 // banks 0,4,8,12 are in bank group 0
120 // banks 1,5,9,13 are in bank group 1
121 // banks 2,6,10,14 are in bank group 2
122 // banks 3,7,11,15 are in bank group 3
123 rank->banks[b].bankgr = b % bankGroupsPerRank;
124 } else {
125 // No bank groups; simply assign to bank number
126 rank->banks[b].bankgr = b;
127 }
128 }
129 }
130
131 // perform a basic check of the write thresholds
132 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
133 fatal("Write buffer low threshold %d must be smaller than the "
134 "high threshold %d\n", p->write_low_thresh_perc,
135 p->write_high_thresh_perc);
136
137 // determine the rows per bank by looking at the total capacity
138 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
139
140 // determine the dram actual capacity from the DRAM config in Mbytes
141 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
142 ranksPerChannel;
143
144 // if actual DRAM size does not match memory capacity in system warn!
145 if (deviceCapacity != capacity / (1024 * 1024))
146 warn("DRAM device capacity (%d Mbytes) does not match the "
147 "address range assigned (%d Mbytes)\n", deviceCapacity,
148 capacity / (1024 * 1024));
149
150 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
151 AbstractMemory::size());
152
153 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
154 rowBufferSize, columnsPerRowBuffer);
155
156 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
157
158 // some basic sanity checks
159 if (tREFI <= tRP || tREFI <= tRFC) {
160 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
161 tREFI, tRP, tRFC);
162 }
163
164 // basic bank group architecture checks ->
165 if (bankGroupArch) {
166 // must have at least one bank per bank group
167 if (bankGroupsPerRank > banksPerRank) {
168 fatal("banks per rank (%d) must be equal to or larger than "
169 "banks groups per rank (%d)\n",
170 banksPerRank, bankGroupsPerRank);
171 }
172 // must have same number of banks in each bank group
173 if ((banksPerRank % bankGroupsPerRank) != 0) {
174 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
175 "per rank (%d) for equal banks per bank group\n",
176 banksPerRank, bankGroupsPerRank);
177 }
178 // tCCD_L should be greater than minimal, back-to-back burst delay
179 if (tCCD_L <= tBURST) {
180 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
181 "bank groups per rank (%d) is greater than 1\n",
182 tCCD_L, tBURST, bankGroupsPerRank);
183 }
184 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
185 // some datasheets might specify it equal to tRRD
186 if (tRRD_L < tRRD) {
187 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
188 "bank groups per rank (%d) is greater than 1\n",
189 tRRD_L, tRRD, bankGroupsPerRank);
190 }
191 }
192
193 }
194
195 void
196 DRAMCtrl::init()
197 {
198 AbstractMemory::init();
199
200 if (!port.isConnected()) {
201 fatal("DRAMCtrl %s is unconnected!\n", name());
202 } else {
203 port.sendRangeChange();
204 }
205
206 // a bit of sanity checks on the interleaving, save it for here to
207 // ensure that the system pointer is initialised
208 if (range.interleaved()) {
209 if (channels != range.stripes())
210 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
211 name(), range.stripes(), channels);
212
213 if (addrMapping == Enums::RoRaBaChCo) {
214 if (rowBufferSize != range.granularity()) {
215 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
216 "address map\n", name());
217 }
218 } else if (addrMapping == Enums::RoRaBaCoCh ||
219 addrMapping == Enums::RoCoRaBaCh) {
220 // for the interleavings with channel bits in the bottom,
221 // if the system uses a channel striping granularity that
222 // is larger than the DRAM burst size, then map the
223 // sequential accesses within a stripe to a number of
224 // columns in the DRAM, effectively placing some of the
225 // lower-order column bits as the least-significant bits
226 // of the address (above the ones denoting the burst size)
227 assert(columnsPerStripe >= 1);
228
229 // channel striping has to be done at a granularity that
230 // is equal or larger to a cache line
231 if (system()->cacheLineSize() > range.granularity()) {
232 fatal("Channel interleaving of %s must be at least as large "
233 "as the cache line size\n", name());
234 }
235
236 // ...and equal or smaller than the row-buffer size
237 if (rowBufferSize < range.granularity()) {
238 fatal("Channel interleaving of %s must be at most as large "
239 "as the row-buffer size\n", name());
240 }
241 // this is essentially the check above, so just to be sure
242 assert(columnsPerStripe <= columnsPerRowBuffer);
243 }
244 }
245 }
246
247 void
248 DRAMCtrl::startup()
249 {
250 // remember the memory system mode of operation
251 isTimingMode = system()->isTimingMode();
252
253 if (isTimingMode) {
254 // timestamp offset should be in clock cycles for DRAMPower
255 timeStampOffset = divCeil(curTick(), tCK);
256
257 // update the start tick for the precharge accounting to the
258 // current tick
259 for (auto r : ranks) {
260 r->startup(curTick() + tREFI - tRP);
261 }
262
263 // shift the bus busy time sufficiently far ahead that we never
264 // have to worry about negative values when computing the time for
265 // the next request, this will add an insignificant bubble at the
266 // start of simulation
267 busBusyUntil = curTick() + tRP + tRCD + tCL;
268 }
269 }
270
271 Tick
272 DRAMCtrl::recvAtomic(PacketPtr pkt)
273 {
274 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
275
276 // do the actual memory access and turn the packet into a response
277 access(pkt);
278
279 Tick latency = 0;
280 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
281 // this value is not supposed to be accurate, just enough to
282 // keep things going, mimic a closed page
283 latency = tRP + tRCD + tCL;
284 }
285 return latency;
286 }
287
288 bool
289 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
290 {
291 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
292 readBufferSize, readQueue.size() + respQueue.size(),
293 neededEntries);
294
295 return
296 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
297 }
298
299 bool
300 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
301 {
302 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
303 writeBufferSize, writeQueue.size(), neededEntries);
304 return (writeQueue.size() + neededEntries) > writeBufferSize;
305 }
306
307 DRAMCtrl::DRAMPacket*
308 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
309 bool isRead)
310 {
311 // decode the address based on the address mapping scheme, with
312 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
313 // channel, respectively
314 uint8_t rank;
315 uint8_t bank;
316 // use a 64-bit unsigned during the computations as the row is
317 // always the top bits, and check before creating the DRAMPacket
318 uint64_t row;
319
320 // truncate the address to a DRAM burst, which makes it unique to
321 // a specific column, row, bank, rank and channel
322 Addr addr = dramPktAddr / burstSize;
323
324 // we have removed the lowest order address bits that denote the
325 // position within the column
326 if (addrMapping == Enums::RoRaBaChCo) {
327 // the lowest order bits denote the column to ensure that
328 // sequential cache lines occupy the same row
329 addr = addr / columnsPerRowBuffer;
330
331 // take out the channel part of the address
332 addr = addr / channels;
333
334 // after the channel bits, get the bank bits to interleave
335 // over the banks
336 bank = addr % banksPerRank;
337 addr = addr / banksPerRank;
338
339 // after the bank, we get the rank bits which thus interleaves
340 // over the ranks
341 rank = addr % ranksPerChannel;
342 addr = addr / ranksPerChannel;
343
344 // lastly, get the row bits, no need to remove them from addr
345 row = addr % rowsPerBank;
346 } else if (addrMapping == Enums::RoRaBaCoCh) {
347 // take out the lower-order column bits
348 addr = addr / columnsPerStripe;
349
350 // take out the channel part of the address
351 addr = addr / channels;
352
353 // next, the higher-order column bites
354 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
355
356 // after the column bits, we get the bank bits to interleave
357 // over the banks
358 bank = addr % banksPerRank;
359 addr = addr / banksPerRank;
360
361 // after the bank, we get the rank bits which thus interleaves
362 // over the ranks
363 rank = addr % ranksPerChannel;
364 addr = addr / ranksPerChannel;
365
366 // lastly, get the row bits, no need to remove them from addr
367 row = addr % rowsPerBank;
368 } else if (addrMapping == Enums::RoCoRaBaCh) {
369 // optimise for closed page mode and utilise maximum
370 // parallelism of the DRAM (at the cost of power)
371
372 // take out the lower-order column bits
373 addr = addr / columnsPerStripe;
374
375 // take out the channel part of the address, not that this has
376 // to match with how accesses are interleaved between the
377 // controllers in the address mapping
378 addr = addr / channels;
379
380 // start with the bank bits, as this provides the maximum
381 // opportunity for parallelism between requests
382 bank = addr % banksPerRank;
383 addr = addr / banksPerRank;
384
385 // next get the rank bits
386 rank = addr % ranksPerChannel;
387 addr = addr / ranksPerChannel;
388
389 // next, the higher-order column bites
390 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392 // lastly, get the row bits, no need to remove them from addr
393 row = addr % rowsPerBank;
394 } else
395 panic("Unknown address mapping policy chosen!");
396
397 assert(rank < ranksPerChannel);
398 assert(bank < banksPerRank);
399 assert(row < rowsPerBank);
400 assert(row < Bank::NO_ROW);
401
402 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
403 dramPktAddr, rank, bank, row);
404
405 // create the corresponding DRAM packet with the entry time and
406 // ready time set to the current tick, the latter will be updated
407 // later
408 uint16_t bank_id = banksPerRank * rank + bank;
409 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
410 size, ranks[rank]->banks[bank], *ranks[rank]);
411 }
412
413 void
414 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
415 {
416 // only add to the read queue here. whenever the request is
417 // eventually done, set the readyTime, and call schedule()
418 assert(!pkt->isWrite());
419
420 assert(pktCount != 0);
421
422 // if the request size is larger than burst size, the pkt is split into
423 // multiple DRAM packets
424 // Note if the pkt starting address is not aligened to burst size, the
425 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
426 // are aligned to burst size boundaries. This is to ensure we accurately
427 // check read packets against packets in write queue.
428 Addr addr = pkt->getAddr();
429 unsigned pktsServicedByWrQ = 0;
430 BurstHelper* burst_helper = NULL;
431 for (int cnt = 0; cnt < pktCount; ++cnt) {
432 unsigned size = std::min((addr | (burstSize - 1)) + 1,
433 pkt->getAddr() + pkt->getSize()) - addr;
434 readPktSize[ceilLog2(size)]++;
435 readBursts++;
436
437 // First check write buffer to see if the data is already at
438 // the controller
439 bool foundInWrQ = false;
440 Addr burst_addr = burstAlign(addr);
441 // if the burst address is not present then there is no need
442 // looking any further
443 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
444 for (const auto& p : writeQueue) {
445 // check if the read is subsumed in the write queue
446 // packet we are looking at
447 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
448 foundInWrQ = true;
449 servicedByWrQ++;
450 pktsServicedByWrQ++;
451 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
452 "write queue\n", addr, size);
453 bytesReadWrQ += burstSize;
454 break;
455 }
456 }
457 }
458
459 // If not found in the write q, make a DRAM packet and
460 // push it onto the read queue
461 if (!foundInWrQ) {
462
463 // Make the burst helper for split packets
464 if (pktCount > 1 && burst_helper == NULL) {
465 DPRINTF(DRAM, "Read to addr %lld translates to %d "
466 "dram requests\n", pkt->getAddr(), pktCount);
467 burst_helper = new BurstHelper(pktCount);
468 }
469
470 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
471 dram_pkt->burstHelper = burst_helper;
472
473 assert(!readQueueFull(1));
474 rdQLenPdf[readQueue.size() + respQueue.size()]++;
475
476 DPRINTF(DRAM, "Adding to read queue\n");
477
478 readQueue.push_back(dram_pkt);
479
480 // Update stats
481 avgRdQLen = readQueue.size() + respQueue.size();
482 }
483
484 // Starting address of next dram pkt (aligend to burstSize boundary)
485 addr = (addr | (burstSize - 1)) + 1;
486 }
487
488 // If all packets are serviced by write queue, we send the repsonse back
489 if (pktsServicedByWrQ == pktCount) {
490 accessAndRespond(pkt, frontendLatency);
491 return;
492 }
493
494 // Update how many split packets are serviced by write queue
495 if (burst_helper != NULL)
496 burst_helper->burstsServiced = pktsServicedByWrQ;
497
498 // If we are not already scheduled to get a request out of the
499 // queue, do so now
500 if (!nextReqEvent.scheduled()) {
501 DPRINTF(DRAM, "Request scheduled immediately\n");
502 schedule(nextReqEvent, curTick());
503 }
504 }
505
506 void
507 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
508 {
509 // only add to the write queue here. whenever the request is
510 // eventually done, set the readyTime, and call schedule()
511 assert(pkt->isWrite());
512
513 // if the request size is larger than burst size, the pkt is split into
514 // multiple DRAM packets
515 Addr addr = pkt->getAddr();
516 for (int cnt = 0; cnt < pktCount; ++cnt) {
517 unsigned size = std::min((addr | (burstSize - 1)) + 1,
518 pkt->getAddr() + pkt->getSize()) - addr;
519 writePktSize[ceilLog2(size)]++;
520 writeBursts++;
521
522 // see if we can merge with an existing item in the write
523 // queue and keep track of whether we have merged or not
524 bool merged = isInWriteQueue.find(burstAlign(addr)) !=
525 isInWriteQueue.end();
526
527 // if the item was not merged we need to create a new write
528 // and enqueue it
529 if (!merged) {
530 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
531
532 assert(writeQueue.size() < writeBufferSize);
533 wrQLenPdf[writeQueue.size()]++;
534
535 DPRINTF(DRAM, "Adding to write queue\n");
536
537 writeQueue.push_back(dram_pkt);
538 isInWriteQueue.insert(burstAlign(addr));
539 assert(writeQueue.size() == isInWriteQueue.size());
540
541 // Update stats
542 avgWrQLen = writeQueue.size();
543 } else {
544 DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
545
546 // keep track of the fact that this burst effectively
547 // disappeared as it was merged with an existing one
548 mergedWrBursts++;
549 }
550
551 // Starting address of next dram pkt (aligend to burstSize boundary)
552 addr = (addr | (burstSize - 1)) + 1;
553 }
554
555 // we do not wait for the writes to be send to the actual memory,
556 // but instead take responsibility for the consistency here and
557 // snoop the write queue for any upcoming reads
558 // @todo, if a pkt size is larger than burst size, we might need a
559 // different front end latency
560 accessAndRespond(pkt, frontendLatency);
561
562 // If we are not already scheduled to get a request out of the
563 // queue, do so now
564 if (!nextReqEvent.scheduled()) {
565 DPRINTF(DRAM, "Request scheduled immediately\n");
566 schedule(nextReqEvent, curTick());
567 }
568 }
569
570 void
571 DRAMCtrl::printQs() const {
572 DPRINTF(DRAM, "===READ QUEUE===\n\n");
573 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
574 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
575 }
576 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
577 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
578 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
579 }
580 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
581 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
582 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
583 }
584 }
585
586 bool
587 DRAMCtrl::recvTimingReq(PacketPtr pkt)
588 {
589 // This is where we enter from the outside world
590 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
591 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
592
593 // simply drop inhibited packets and clean evictions
594 if (pkt->memInhibitAsserted() ||
595 pkt->cmd == MemCmd::CleanEvict) {
596 DPRINTF(DRAM, "Inhibited packet or clean evict -- Dropping it now\n");
597 pendingDelete.reset(pkt);
598 return true;
599 }
600
601 // Calc avg gap between requests
602 if (prevArrival != 0) {
603 totGap += curTick() - prevArrival;
604 }
605 prevArrival = curTick();
606
607
608 // Find out how many dram packets a pkt translates to
609 // If the burst size is equal or larger than the pkt size, then a pkt
610 // translates to only one dram packet. Otherwise, a pkt translates to
611 // multiple dram packets
612 unsigned size = pkt->getSize();
613 unsigned offset = pkt->getAddr() & (burstSize - 1);
614 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
615
616 // check local buffers and do not accept if full
617 if (pkt->isRead()) {
618 assert(size != 0);
619 if (readQueueFull(dram_pkt_count)) {
620 DPRINTF(DRAM, "Read queue full, not accepting\n");
621 // remember that we have to retry this port
622 retryRdReq = true;
623 numRdRetry++;
624 return false;
625 } else {
626 addToReadQueue(pkt, dram_pkt_count);
627 readReqs++;
628 bytesReadSys += size;
629 }
630 } else if (pkt->isWrite()) {
631 assert(size != 0);
632 if (writeQueueFull(dram_pkt_count)) {
633 DPRINTF(DRAM, "Write queue full, not accepting\n");
634 // remember that we have to retry this port
635 retryWrReq = true;
636 numWrRetry++;
637 return false;
638 } else {
639 addToWriteQueue(pkt, dram_pkt_count);
640 writeReqs++;
641 bytesWrittenSys += size;
642 }
643 } else {
644 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
645 neitherReadNorWrite++;
646 accessAndRespond(pkt, 1);
647 }
648
649 return true;
650 }
651
652 void
653 DRAMCtrl::processRespondEvent()
654 {
655 DPRINTF(DRAM,
656 "processRespondEvent(): Some req has reached its readyTime\n");
657
658 DRAMPacket* dram_pkt = respQueue.front();
659
660 if (dram_pkt->burstHelper) {
661 // it is a split packet
662 dram_pkt->burstHelper->burstsServiced++;
663 if (dram_pkt->burstHelper->burstsServiced ==
664 dram_pkt->burstHelper->burstCount) {
665 // we have now serviced all children packets of a system packet
666 // so we can now respond to the requester
667 // @todo we probably want to have a different front end and back
668 // end latency for split packets
669 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
670 delete dram_pkt->burstHelper;
671 dram_pkt->burstHelper = NULL;
672 }
673 } else {
674 // it is not a split packet
675 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
676 }
677
678 delete respQueue.front();
679 respQueue.pop_front();
680
681 if (!respQueue.empty()) {
682 assert(respQueue.front()->readyTime >= curTick());
683 assert(!respondEvent.scheduled());
684 schedule(respondEvent, respQueue.front()->readyTime);
685 } else {
686 // if there is nothing left in any queue, signal a drain
687 if (drainState() == DrainState::Draining &&
688 writeQueue.empty() && readQueue.empty()) {
689
690 DPRINTF(Drain, "DRAM controller done draining\n");
691 signalDrainDone();
692 }
693 }
694
695 // We have made a location in the queue available at this point,
696 // so if there is a read that was forced to wait, retry now
697 if (retryRdReq) {
698 retryRdReq = false;
699 port.sendRetryReq();
700 }
701 }
702
703 bool
704 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
705 {
706 // This method does the arbitration between requests. The chosen
707 // packet is simply moved to the head of the queue. The other
708 // methods know that this is the place to look. For example, with
709 // FCFS, this method does nothing
710 assert(!queue.empty());
711
712 // bool to indicate if a packet to an available rank is found
713 bool found_packet = false;
714 if (queue.size() == 1) {
715 DRAMPacket* dram_pkt = queue.front();
716 // available rank corresponds to state refresh idle
717 if (ranks[dram_pkt->rank]->isAvailable()) {
718 found_packet = true;
719 DPRINTF(DRAM, "Single request, going to a free rank\n");
720 } else {
721 DPRINTF(DRAM, "Single request, going to a busy rank\n");
722 }
723 return found_packet;
724 }
725
726 if (memSchedPolicy == Enums::fcfs) {
727 // check if there is a packet going to a free rank
728 for(auto i = queue.begin(); i != queue.end() ; ++i) {
729 DRAMPacket* dram_pkt = *i;
730 if (ranks[dram_pkt->rank]->isAvailable()) {
731 queue.erase(i);
732 queue.push_front(dram_pkt);
733 found_packet = true;
734 break;
735 }
736 }
737 } else if (memSchedPolicy == Enums::frfcfs) {
738 found_packet = reorderQueue(queue, extra_col_delay);
739 } else
740 panic("No scheduling policy chosen\n");
741 return found_packet;
742 }
743
744 bool
745 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
746 {
747 // Only determine this if needed
748 uint64_t earliest_banks = 0;
749 bool hidden_bank_prep = false;
750
751 // search for seamless row hits first, if no seamless row hit is
752 // found then determine if there are other packets that can be issued
753 // without incurring additional bus delay due to bank timing
754 // Will select closed rows first to enable more open row possibilies
755 // in future selections
756 bool found_hidden_bank = false;
757
758 // remember if we found a row hit, not seamless, but bank prepped
759 // and ready
760 bool found_prepped_pkt = false;
761
762 // if we have no row hit, prepped or not, and no seamless packet,
763 // just go for the earliest possible
764 bool found_earliest_pkt = false;
765
766 auto selected_pkt_it = queue.end();
767
768 // time we need to issue a column command to be seamless
769 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
770 curTick());
771
772 for (auto i = queue.begin(); i != queue.end() ; ++i) {
773 DRAMPacket* dram_pkt = *i;
774 const Bank& bank = dram_pkt->bankRef;
775
776 // check if rank is available, if not, jump to the next packet
777 if (dram_pkt->rankRef.isAvailable()) {
778 // check if it is a row hit
779 if (bank.openRow == dram_pkt->row) {
780 // no additional rank-to-rank or same bank-group
781 // delays, or we switched read/write and might as well
782 // go for the row hit
783 if (bank.colAllowedAt <= min_col_at) {
784 // FCFS within the hits, giving priority to
785 // commands that can issue seamlessly, without
786 // additional delay, such as same rank accesses
787 // and/or different bank-group accesses
788 DPRINTF(DRAM, "Seamless row buffer hit\n");
789 selected_pkt_it = i;
790 // no need to look through the remaining queue entries
791 break;
792 } else if (!found_hidden_bank && !found_prepped_pkt) {
793 // if we did not find a packet to a closed row that can
794 // issue the bank commands without incurring delay, and
795 // did not yet find a packet to a prepped row, remember
796 // the current one
797 selected_pkt_it = i;
798 found_prepped_pkt = true;
799 DPRINTF(DRAM, "Prepped row buffer hit\n");
800 }
801 } else if (!found_earliest_pkt) {
802 // if we have not initialised the bank status, do it
803 // now, and only once per scheduling decisions
804 if (earliest_banks == 0) {
805 // determine entries with earliest bank delay
806 pair<uint64_t, bool> bankStatus =
807 minBankPrep(queue, min_col_at);
808 earliest_banks = bankStatus.first;
809 hidden_bank_prep = bankStatus.second;
810 }
811
812 // bank is amongst first available banks
813 // minBankPrep will give priority to packets that can
814 // issue seamlessly
815 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
816 found_earliest_pkt = true;
817 found_hidden_bank = hidden_bank_prep;
818
819 // give priority to packets that can issue
820 // bank commands 'behind the scenes'
821 // any additional delay if any will be due to
822 // col-to-col command requirements
823 if (hidden_bank_prep || !found_prepped_pkt)
824 selected_pkt_it = i;
825 }
826 }
827 }
828 }
829
830 if (selected_pkt_it != queue.end()) {
831 DRAMPacket* selected_pkt = *selected_pkt_it;
832 queue.erase(selected_pkt_it);
833 queue.push_front(selected_pkt);
834 return true;
835 }
836
837 return false;
838 }
839
840 void
841 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
842 {
843 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
844
845 bool needsResponse = pkt->needsResponse();
846 // do the actual memory access which also turns the packet into a
847 // response
848 access(pkt);
849
850 // turn packet around to go back to requester if response expected
851 if (needsResponse) {
852 // access already turned the packet into a response
853 assert(pkt->isResponse());
854 // response_time consumes the static latency and is charged also
855 // with headerDelay that takes into account the delay provided by
856 // the xbar and also the payloadDelay that takes into account the
857 // number of data beats.
858 Tick response_time = curTick() + static_latency + pkt->headerDelay +
859 pkt->payloadDelay;
860 // Here we reset the timing of the packet before sending it out.
861 pkt->headerDelay = pkt->payloadDelay = 0;
862
863 // queue the packet in the response queue to be sent out after
864 // the static latency has passed
865 port.schedTimingResp(pkt, response_time);
866 } else {
867 // @todo the packet is going to be deleted, and the DRAMPacket
868 // is still having a pointer to it
869 pendingDelete.reset(pkt);
870 }
871
872 DPRINTF(DRAM, "Done\n");
873
874 return;
875 }
876
877 void
878 DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
879 Tick act_tick, uint32_t row)
880 {
881 assert(rank_ref.actTicks.size() == activationLimit);
882
883 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
884
885 // update the open row
886 assert(bank_ref.openRow == Bank::NO_ROW);
887 bank_ref.openRow = row;
888
889 // start counting anew, this covers both the case when we
890 // auto-precharged, and when this access is forced to
891 // precharge
892 bank_ref.bytesAccessed = 0;
893 bank_ref.rowAccesses = 0;
894
895 ++rank_ref.numBanksActive;
896 assert(rank_ref.numBanksActive <= banksPerRank);
897
898 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
899 bank_ref.bank, rank_ref.rank, act_tick,
900 ranks[rank_ref.rank]->numBanksActive);
901
902 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
903 divCeil(act_tick, tCK) -
904 timeStampOffset);
905
906 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
907 timeStampOffset, bank_ref.bank, rank_ref.rank);
908
909 // The next access has to respect tRAS for this bank
910 bank_ref.preAllowedAt = act_tick + tRAS;
911
912 // Respect the row-to-column command delay
913 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
914
915 // start by enforcing tRRD
916 for(int i = 0; i < banksPerRank; i++) {
917 // next activate to any bank in this rank must not happen
918 // before tRRD
919 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
920 // bank group architecture requires longer delays between
921 // ACT commands within the same bank group. Use tRRD_L
922 // in this case
923 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
924 rank_ref.banks[i].actAllowedAt);
925 } else {
926 // use shorter tRRD value when either
927 // 1) bank group architecture is not supportted
928 // 2) bank is in a different bank group
929 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
930 rank_ref.banks[i].actAllowedAt);
931 }
932 }
933
934 // next, we deal with tXAW, if the activation limit is disabled
935 // then we directly schedule an activate power event
936 if (!rank_ref.actTicks.empty()) {
937 // sanity check
938 if (rank_ref.actTicks.back() &&
939 (act_tick - rank_ref.actTicks.back()) < tXAW) {
940 panic("Got %d activates in window %d (%llu - %llu) which "
941 "is smaller than %llu\n", activationLimit, act_tick -
942 rank_ref.actTicks.back(), act_tick,
943 rank_ref.actTicks.back(), tXAW);
944 }
945
946 // shift the times used for the book keeping, the last element
947 // (highest index) is the oldest one and hence the lowest value
948 rank_ref.actTicks.pop_back();
949
950 // record an new activation (in the future)
951 rank_ref.actTicks.push_front(act_tick);
952
953 // cannot activate more than X times in time window tXAW, push the
954 // next one (the X + 1'st activate) to be tXAW away from the
955 // oldest in our window of X
956 if (rank_ref.actTicks.back() &&
957 (act_tick - rank_ref.actTicks.back()) < tXAW) {
958 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
959 "no earlier than %llu\n", activationLimit,
960 rank_ref.actTicks.back() + tXAW);
961 for(int j = 0; j < banksPerRank; j++)
962 // next activate must not happen before end of window
963 rank_ref.banks[j].actAllowedAt =
964 std::max(rank_ref.actTicks.back() + tXAW,
965 rank_ref.banks[j].actAllowedAt);
966 }
967 }
968
969 // at the point when this activate takes place, make sure we
970 // transition to the active power state
971 if (!rank_ref.activateEvent.scheduled())
972 schedule(rank_ref.activateEvent, act_tick);
973 else if (rank_ref.activateEvent.when() > act_tick)
974 // move it sooner in time
975 reschedule(rank_ref.activateEvent, act_tick);
976 }
977
978 void
979 DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
980 {
981 // make sure the bank has an open row
982 assert(bank.openRow != Bank::NO_ROW);
983
984 // sample the bytes per activate here since we are closing
985 // the page
986 bytesPerActivate.sample(bank.bytesAccessed);
987
988 bank.openRow = Bank::NO_ROW;
989
990 // no precharge allowed before this one
991 bank.preAllowedAt = pre_at;
992
993 Tick pre_done_at = pre_at + tRP;
994
995 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
996
997 assert(rank_ref.numBanksActive != 0);
998 --rank_ref.numBanksActive;
999
1000 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1001 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1002 rank_ref.numBanksActive);
1003
1004 if (trace) {
1005
1006 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1007 divCeil(pre_at, tCK) -
1008 timeStampOffset);
1009 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1010 timeStampOffset, bank.bank, rank_ref.rank);
1011 }
1012 // if we look at the current number of active banks we might be
1013 // tempted to think the DRAM is now idle, however this can be
1014 // undone by an activate that is scheduled to happen before we
1015 // would have reached the idle state, so schedule an event and
1016 // rather check once we actually make it to the point in time when
1017 // the (last) precharge takes place
1018 if (!rank_ref.prechargeEvent.scheduled())
1019 schedule(rank_ref.prechargeEvent, pre_done_at);
1020 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1021 reschedule(rank_ref.prechargeEvent, pre_done_at);
1022 }
1023
1024 void
1025 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1026 {
1027 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1028 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1029
1030 // get the rank
1031 Rank& rank = dram_pkt->rankRef;
1032
1033 // get the bank
1034 Bank& bank = dram_pkt->bankRef;
1035
1036 // for the state we need to track if it is a row hit or not
1037 bool row_hit = true;
1038
1039 // respect any constraints on the command (e.g. tRCD or tCCD)
1040 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1041
1042 // Determine the access latency and update the bank state
1043 if (bank.openRow == dram_pkt->row) {
1044 // nothing to do
1045 } else {
1046 row_hit = false;
1047
1048 // If there is a page open, precharge it.
1049 if (bank.openRow != Bank::NO_ROW) {
1050 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1051 }
1052
1053 // next we need to account for the delay in activating the
1054 // page
1055 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1056
1057 // Record the activation and deal with all the global timing
1058 // constraints caused be a new activation (tRRD and tXAW)
1059 activateBank(rank, bank, act_tick, dram_pkt->row);
1060
1061 // issue the command as early as possible
1062 cmd_at = bank.colAllowedAt;
1063 }
1064
1065 // we need to wait until the bus is available before we can issue
1066 // the command
1067 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1068
1069 // update the packet ready time
1070 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1071
1072 // only one burst can use the bus at any one point in time
1073 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1074
1075 // update the time for the next read/write burst for each
1076 // bank (add a max with tCCD/tCCD_L here)
1077 Tick cmd_dly;
1078 for(int j = 0; j < ranksPerChannel; j++) {
1079 for(int i = 0; i < banksPerRank; i++) {
1080 // next burst to same bank group in this rank must not happen
1081 // before tCCD_L. Different bank group timing requirement is
1082 // tBURST; Add tCS for different ranks
1083 if (dram_pkt->rank == j) {
1084 if (bankGroupArch &&
1085 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1086 // bank group architecture requires longer delays between
1087 // RD/WR burst commands to the same bank group.
1088 // Use tCCD_L in this case
1089 cmd_dly = tCCD_L;
1090 } else {
1091 // use tBURST (equivalent to tCCD_S), the shorter
1092 // cas-to-cas delay value, when either:
1093 // 1) bank group architecture is not supportted
1094 // 2) bank is in a different bank group
1095 cmd_dly = tBURST;
1096 }
1097 } else {
1098 // different rank is by default in a different bank group
1099 // use tBURST (equivalent to tCCD_S), which is the shorter
1100 // cas-to-cas delay in this case
1101 // Add tCS to account for rank-to-rank bus delay requirements
1102 cmd_dly = tBURST + tCS;
1103 }
1104 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1105 ranks[j]->banks[i].colAllowedAt);
1106 }
1107 }
1108
1109 // Save rank of current access
1110 activeRank = dram_pkt->rank;
1111
1112 // If this is a write, we also need to respect the write recovery
1113 // time before a precharge, in the case of a read, respect the
1114 // read to precharge constraint
1115 bank.preAllowedAt = std::max(bank.preAllowedAt,
1116 dram_pkt->isRead ? cmd_at + tRTP :
1117 dram_pkt->readyTime + tWR);
1118
1119 // increment the bytes accessed and the accesses per row
1120 bank.bytesAccessed += burstSize;
1121 ++bank.rowAccesses;
1122
1123 // if we reached the max, then issue with an auto-precharge
1124 bool auto_precharge = pageMgmt == Enums::close ||
1125 bank.rowAccesses == maxAccessesPerRow;
1126
1127 // if we did not hit the limit, we might still want to
1128 // auto-precharge
1129 if (!auto_precharge &&
1130 (pageMgmt == Enums::open_adaptive ||
1131 pageMgmt == Enums::close_adaptive)) {
1132 // a twist on the open and close page policies:
1133 // 1) open_adaptive page policy does not blindly keep the
1134 // page open, but close it if there are no row hits, and there
1135 // are bank conflicts in the queue
1136 // 2) close_adaptive page policy does not blindly close the
1137 // page, but closes it only if there are no row hits in the queue.
1138 // In this case, only force an auto precharge when there
1139 // are no same page hits in the queue
1140 bool got_more_hits = false;
1141 bool got_bank_conflict = false;
1142
1143 // either look at the read queue or write queue
1144 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1145 writeQueue;
1146 auto p = queue.begin();
1147 // make sure we are not considering the packet that we are
1148 // currently dealing with (which is the head of the queue)
1149 ++p;
1150
1151 // keep on looking until we find a hit or reach the end of the queue
1152 // 1) if a hit is found, then both open and close adaptive policies keep
1153 // the page open
1154 // 2) if no hit is found, got_bank_conflict is set to true if a bank
1155 // conflict request is waiting in the queue
1156 while (!got_more_hits && p != queue.end()) {
1157 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1158 (dram_pkt->bank == (*p)->bank);
1159 bool same_row = dram_pkt->row == (*p)->row;
1160 got_more_hits |= same_rank_bank && same_row;
1161 got_bank_conflict |= same_rank_bank && !same_row;
1162 ++p;
1163 }
1164
1165 // auto pre-charge when either
1166 // 1) open_adaptive policy, we have not got any more hits, and
1167 // have a bank conflict
1168 // 2) close_adaptive policy and we have not got any more hits
1169 auto_precharge = !got_more_hits &&
1170 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1171 }
1172
1173 // DRAMPower trace command to be written
1174 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1175
1176 // MemCommand required for DRAMPower library
1177 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1178 MemCommand::WR;
1179
1180 // if this access should use auto-precharge, then we are
1181 // closing the row
1182 if (auto_precharge) {
1183 // if auto-precharge push a PRE command at the correct tick to the
1184 // list used by DRAMPower library to calculate power
1185 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1186
1187 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1188 }
1189
1190 // Update bus state
1191 busBusyUntil = dram_pkt->readyTime;
1192
1193 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1194 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1195
1196 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1197 divCeil(cmd_at, tCK) -
1198 timeStampOffset);
1199
1200 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1201 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1202
1203 // Update the minimum timing between the requests, this is a
1204 // conservative estimate of when we have to schedule the next
1205 // request to not introduce any unecessary bubbles. In most cases
1206 // we will wake up sooner than we have to.
1207 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1208
1209 // Update the stats and schedule the next request
1210 if (dram_pkt->isRead) {
1211 ++readsThisTime;
1212 if (row_hit)
1213 readRowHits++;
1214 bytesReadDRAM += burstSize;
1215 perBankRdBursts[dram_pkt->bankId]++;
1216
1217 // Update latency stats
1218 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1219 totBusLat += tBURST;
1220 totQLat += cmd_at - dram_pkt->entryTime;
1221 } else {
1222 ++writesThisTime;
1223 if (row_hit)
1224 writeRowHits++;
1225 bytesWritten += burstSize;
1226 perBankWrBursts[dram_pkt->bankId]++;
1227 }
1228 }
1229
1230 void
1231 DRAMCtrl::processNextReqEvent()
1232 {
1233 int busyRanks = 0;
1234 for (auto r : ranks) {
1235 if (!r->isAvailable()) {
1236 // rank is busy refreshing
1237 busyRanks++;
1238
1239 // let the rank know that if it was waiting to drain, it
1240 // is now done and ready to proceed
1241 r->checkDrainDone();
1242 }
1243 }
1244
1245 if (busyRanks == ranksPerChannel) {
1246 // if all ranks are refreshing wait for them to finish
1247 // and stall this state machine without taking any further
1248 // action, and do not schedule a new nextReqEvent
1249 return;
1250 }
1251
1252 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1253 // or WRITE_TO_READ state
1254 bool switched_cmd_type = false;
1255 if (busState == READ_TO_WRITE) {
1256 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1257 "waiting\n", readsThisTime, readQueue.size());
1258
1259 // sample and reset the read-related stats as we are now
1260 // transitioning to writes, and all reads are done
1261 rdPerTurnAround.sample(readsThisTime);
1262 readsThisTime = 0;
1263
1264 // now proceed to do the actual writes
1265 busState = WRITE;
1266 switched_cmd_type = true;
1267 } else if (busState == WRITE_TO_READ) {
1268 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1269 "waiting\n", writesThisTime, writeQueue.size());
1270
1271 wrPerTurnAround.sample(writesThisTime);
1272 writesThisTime = 0;
1273
1274 busState = READ;
1275 switched_cmd_type = true;
1276 }
1277
1278 // when we get here it is either a read or a write
1279 if (busState == READ) {
1280
1281 // track if we should switch or not
1282 bool switch_to_writes = false;
1283
1284 if (readQueue.empty()) {
1285 // In the case there is no read request to go next,
1286 // trigger writes if we have passed the low threshold (or
1287 // if we are draining)
1288 if (!writeQueue.empty() &&
1289 (drainState() == DrainState::Draining ||
1290 writeQueue.size() > writeLowThreshold)) {
1291
1292 switch_to_writes = true;
1293 } else {
1294 // check if we are drained
1295 if (drainState() == DrainState::Draining &&
1296 respQueue.empty()) {
1297
1298 DPRINTF(Drain, "DRAM controller done draining\n");
1299 signalDrainDone();
1300 }
1301
1302 // nothing to do, not even any point in scheduling an
1303 // event for the next request
1304 return;
1305 }
1306 } else {
1307 // bool to check if there is a read to a free rank
1308 bool found_read = false;
1309
1310 // Figure out which read request goes next, and move it to the
1311 // front of the read queue
1312 // If we are changing command type, incorporate the minimum
1313 // bus turnaround delay which will be tCS (different rank) case
1314 found_read = chooseNext(readQueue,
1315 switched_cmd_type ? tCS : 0);
1316
1317 // if no read to an available rank is found then return
1318 // at this point. There could be writes to the available ranks
1319 // which are above the required threshold. However, to
1320 // avoid adding more complexity to the code, return and wait
1321 // for a refresh event to kick things into action again.
1322 if (!found_read)
1323 return;
1324
1325 DRAMPacket* dram_pkt = readQueue.front();
1326 assert(dram_pkt->rankRef.isAvailable());
1327 // here we get a bit creative and shift the bus busy time not
1328 // just the tWTR, but also a CAS latency to capture the fact
1329 // that we are allowed to prepare a new bank, but not issue a
1330 // read command until after tWTR, in essence we capture a
1331 // bubble on the data bus that is tWTR + tCL
1332 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1333 busBusyUntil += tWTR + tCL;
1334 }
1335
1336 doDRAMAccess(dram_pkt);
1337
1338 // At this point we're done dealing with the request
1339 readQueue.pop_front();
1340
1341 // sanity check
1342 assert(dram_pkt->size <= burstSize);
1343 assert(dram_pkt->readyTime >= curTick());
1344
1345 // Insert into response queue. It will be sent back to the
1346 // requestor at its readyTime
1347 if (respQueue.empty()) {
1348 assert(!respondEvent.scheduled());
1349 schedule(respondEvent, dram_pkt->readyTime);
1350 } else {
1351 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1352 assert(respondEvent.scheduled());
1353 }
1354
1355 respQueue.push_back(dram_pkt);
1356
1357 // we have so many writes that we have to transition
1358 if (writeQueue.size() > writeHighThreshold) {
1359 switch_to_writes = true;
1360 }
1361 }
1362
1363 // switching to writes, either because the read queue is empty
1364 // and the writes have passed the low threshold (or we are
1365 // draining), or because the writes hit the hight threshold
1366 if (switch_to_writes) {
1367 // transition to writing
1368 busState = READ_TO_WRITE;
1369 }
1370 } else {
1371 // bool to check if write to free rank is found
1372 bool found_write = false;
1373
1374 // If we are changing command type, incorporate the minimum
1375 // bus turnaround delay
1376 found_write = chooseNext(writeQueue,
1377 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1378
1379 // if no writes to an available rank are found then return.
1380 // There could be reads to the available ranks. However, to avoid
1381 // adding more complexity to the code, return at this point and wait
1382 // for a refresh event to kick things into action again.
1383 if (!found_write)
1384 return;
1385
1386 DRAMPacket* dram_pkt = writeQueue.front();
1387 assert(dram_pkt->rankRef.isAvailable());
1388 // sanity check
1389 assert(dram_pkt->size <= burstSize);
1390
1391 // add a bubble to the data bus, as defined by the
1392 // tRTW when access is to the same rank as previous burst
1393 // Different rank timing is handled with tCS, which is
1394 // applied to colAllowedAt
1395 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1396 busBusyUntil += tRTW;
1397 }
1398
1399 doDRAMAccess(dram_pkt);
1400
1401 writeQueue.pop_front();
1402 isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1403 delete dram_pkt;
1404
1405 // If we emptied the write queue, or got sufficiently below the
1406 // threshold (using the minWritesPerSwitch as the hysteresis) and
1407 // are not draining, or we have reads waiting and have done enough
1408 // writes, then switch to reads.
1409 if (writeQueue.empty() ||
1410 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1411 drainState() != DrainState::Draining) ||
1412 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1413 // turn the bus back around for reads again
1414 busState = WRITE_TO_READ;
1415
1416 // note that the we switch back to reads also in the idle
1417 // case, which eventually will check for any draining and
1418 // also pause any further scheduling if there is really
1419 // nothing to do
1420 }
1421 }
1422 // It is possible that a refresh to another rank kicks things back into
1423 // action before reaching this point.
1424 if (!nextReqEvent.scheduled())
1425 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1426
1427 // If there is space available and we have writes waiting then let
1428 // them retry. This is done here to ensure that the retry does not
1429 // cause a nextReqEvent to be scheduled before we do so as part of
1430 // the next request processing
1431 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1432 retryWrReq = false;
1433 port.sendRetryReq();
1434 }
1435 }
1436
1437 pair<uint64_t, bool>
1438 DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1439 Tick min_col_at) const
1440 {
1441 uint64_t bank_mask = 0;
1442 Tick min_act_at = MaxTick;
1443
1444 // latest Tick for which ACT can occur without incurring additoinal
1445 // delay on the data bus
1446 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1447
1448 // Flag condition when burst can issue back-to-back with previous burst
1449 bool found_seamless_bank = false;
1450
1451 // Flag condition when bank can be opened without incurring additional
1452 // delay on the data bus
1453 bool hidden_bank_prep = false;
1454
1455 // determine if we have queued transactions targetting the
1456 // bank in question
1457 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1458 for (const auto& p : queue) {
1459 if(p->rankRef.isAvailable())
1460 got_waiting[p->bankId] = true;
1461 }
1462
1463 // Find command with optimal bank timing
1464 // Will prioritize commands that can issue seamlessly.
1465 for (int i = 0; i < ranksPerChannel; i++) {
1466 for (int j = 0; j < banksPerRank; j++) {
1467 uint16_t bank_id = i * banksPerRank + j;
1468
1469 // if we have waiting requests for the bank, and it is
1470 // amongst the first available, update the mask
1471 if (got_waiting[bank_id]) {
1472 // make sure this rank is not currently refreshing.
1473 assert(ranks[i]->isAvailable());
1474 // simplistic approximation of when the bank can issue
1475 // an activate, ignoring any rank-to-rank switching
1476 // cost in this calculation
1477 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1478 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1479 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1480
1481 // When is the earliest the R/W burst can issue?
1482 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1483 act_at + tRCD);
1484
1485 // bank can issue burst back-to-back (seamlessly) with
1486 // previous burst
1487 bool new_seamless_bank = col_at <= min_col_at;
1488
1489 // if we found a new seamless bank or we have no
1490 // seamless banks, and got a bank with an earlier
1491 // activate time, it should be added to the bit mask
1492 if (new_seamless_bank ||
1493 (!found_seamless_bank && act_at <= min_act_at)) {
1494 // if we did not have a seamless bank before, and
1495 // we do now, reset the bank mask, also reset it
1496 // if we have not yet found a seamless bank and
1497 // the activate time is smaller than what we have
1498 // seen so far
1499 if (!found_seamless_bank &&
1500 (new_seamless_bank || act_at < min_act_at)) {
1501 bank_mask = 0;
1502 }
1503
1504 found_seamless_bank |= new_seamless_bank;
1505
1506 // ACT can occur 'behind the scenes'
1507 hidden_bank_prep = act_at <= hidden_act_max;
1508
1509 // set the bit corresponding to the available bank
1510 replaceBits(bank_mask, bank_id, bank_id, 1);
1511 min_act_at = act_at;
1512 }
1513 }
1514 }
1515 }
1516
1517 return make_pair(bank_mask, hidden_bank_prep);
1518 }
1519
1520 DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1521 : EventManager(&_memory), memory(_memory),
1522 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1523 refreshState(REF_IDLE), refreshDueAt(0),
1524 power(_p, false), numBanksActive(0),
1525 activateEvent(*this), prechargeEvent(*this),
1526 refreshEvent(*this), powerEvent(*this)
1527 { }
1528
1529 void
1530 DRAMCtrl::Rank::startup(Tick ref_tick)
1531 {
1532 assert(ref_tick > curTick());
1533
1534 pwrStateTick = curTick();
1535
1536 // kick off the refresh, and give ourselves enough time to
1537 // precharge
1538 schedule(refreshEvent, ref_tick);
1539 }
1540
1541 void
1542 DRAMCtrl::Rank::suspend()
1543 {
1544 deschedule(refreshEvent);
1545 }
1546
1547 void
1548 DRAMCtrl::Rank::checkDrainDone()
1549 {
1550 // if this rank was waiting to drain it is now able to proceed to
1551 // precharge
1552 if (refreshState == REF_DRAIN) {
1553 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1554
1555 refreshState = REF_PRE;
1556
1557 // hand control back to the refresh event loop
1558 schedule(refreshEvent, curTick());
1559 }
1560 }
1561
1562 void
1563 DRAMCtrl::Rank::processActivateEvent()
1564 {
1565 // we should transition to the active state as soon as any bank is active
1566 if (pwrState != PWR_ACT)
1567 // note that at this point numBanksActive could be back at
1568 // zero again due to a precharge scheduled in the future
1569 schedulePowerEvent(PWR_ACT, curTick());
1570 }
1571
1572 void
1573 DRAMCtrl::Rank::processPrechargeEvent()
1574 {
1575 // if we reached zero, then special conditions apply as we track
1576 // if all banks are precharged for the power models
1577 if (numBanksActive == 0) {
1578 // we should transition to the idle state when the last bank
1579 // is precharged
1580 schedulePowerEvent(PWR_IDLE, curTick());
1581 }
1582 }
1583
1584 void
1585 DRAMCtrl::Rank::processRefreshEvent()
1586 {
1587 // when first preparing the refresh, remember when it was due
1588 if (refreshState == REF_IDLE) {
1589 // remember when the refresh is due
1590 refreshDueAt = curTick();
1591
1592 // proceed to drain
1593 refreshState = REF_DRAIN;
1594
1595 DPRINTF(DRAM, "Refresh due\n");
1596 }
1597
1598 // let any scheduled read or write to the same rank go ahead,
1599 // after which it will
1600 // hand control back to this event loop
1601 if (refreshState == REF_DRAIN) {
1602 // if a request is at the moment being handled and this request is
1603 // accessing the current rank then wait for it to finish
1604 if ((rank == memory.activeRank)
1605 && (memory.nextReqEvent.scheduled())) {
1606 // hand control over to the request loop until it is
1607 // evaluated next
1608 DPRINTF(DRAM, "Refresh awaiting draining\n");
1609
1610 return;
1611 } else {
1612 refreshState = REF_PRE;
1613 }
1614 }
1615
1616 // at this point, ensure that all banks are precharged
1617 if (refreshState == REF_PRE) {
1618 // precharge any active bank if we are not already in the idle
1619 // state
1620 if (pwrState != PWR_IDLE) {
1621 // at the moment, we use a precharge all even if there is
1622 // only a single bank open
1623 DPRINTF(DRAM, "Precharging all\n");
1624
1625 // first determine when we can precharge
1626 Tick pre_at = curTick();
1627
1628 for (auto &b : banks) {
1629 // respect both causality and any existing bank
1630 // constraints, some banks could already have a
1631 // (auto) precharge scheduled
1632 pre_at = std::max(b.preAllowedAt, pre_at);
1633 }
1634
1635 // make sure all banks per rank are precharged, and for those that
1636 // already are, update their availability
1637 Tick act_allowed_at = pre_at + memory.tRP;
1638
1639 for (auto &b : banks) {
1640 if (b.openRow != Bank::NO_ROW) {
1641 memory.prechargeBank(*this, b, pre_at, false);
1642 } else {
1643 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1644 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1645 }
1646 }
1647
1648 // precharge all banks in rank
1649 power.powerlib.doCommand(MemCommand::PREA, 0,
1650 divCeil(pre_at, memory.tCK) -
1651 memory.timeStampOffset);
1652
1653 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1654 divCeil(pre_at, memory.tCK) -
1655 memory.timeStampOffset, rank);
1656 } else {
1657 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1658
1659 // go ahead and kick the power state machine into gear if
1660 // we are already idle
1661 schedulePowerEvent(PWR_REF, curTick());
1662 }
1663
1664 refreshState = REF_RUN;
1665 assert(numBanksActive == 0);
1666
1667 // wait for all banks to be precharged, at which point the
1668 // power state machine will transition to the idle state, and
1669 // automatically move to a refresh, at that point it will also
1670 // call this method to get the refresh event loop going again
1671 return;
1672 }
1673
1674 // last but not least we perform the actual refresh
1675 if (refreshState == REF_RUN) {
1676 // should never get here with any banks active
1677 assert(numBanksActive == 0);
1678 assert(pwrState == PWR_REF);
1679
1680 Tick ref_done_at = curTick() + memory.tRFC;
1681
1682 for (auto &b : banks) {
1683 b.actAllowedAt = ref_done_at;
1684 }
1685
1686 // at the moment this affects all ranks
1687 power.powerlib.doCommand(MemCommand::REF, 0,
1688 divCeil(curTick(), memory.tCK) -
1689 memory.timeStampOffset);
1690
1691 // at the moment sort the list of commands and update the counters
1692 // for DRAMPower libray when doing a refresh
1693 sort(power.powerlib.cmdList.begin(),
1694 power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1695
1696 // update the counters for DRAMPower, passing false to
1697 // indicate that this is not the last command in the
1698 // list. DRAMPower requires this information for the
1699 // correct calculation of the background energy at the end
1700 // of the simulation. Ideally we would want to call this
1701 // function with true once at the end of the
1702 // simulation. However, the discarded energy is extremly
1703 // small and does not effect the final results.
1704 power.powerlib.updateCounters(false);
1705
1706 // call the energy function
1707 power.powerlib.calcEnergy();
1708
1709 // Update the stats
1710 updatePowerStats();
1711
1712 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1713 memory.timeStampOffset, rank);
1714
1715 // make sure we did not wait so long that we cannot make up
1716 // for it
1717 if (refreshDueAt + memory.tREFI < ref_done_at) {
1718 fatal("Refresh was delayed so long we cannot catch up\n");
1719 }
1720
1721 // compensate for the delay in actually performing the refresh
1722 // when scheduling the next one
1723 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1724
1725 assert(!powerEvent.scheduled());
1726
1727 // move to the idle power state once the refresh is done, this
1728 // will also move the refresh state machine to the refresh
1729 // idle state
1730 schedulePowerEvent(PWR_IDLE, ref_done_at);
1731
1732 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1733 ref_done_at, refreshDueAt + memory.tREFI);
1734 }
1735 }
1736
1737 void
1738 DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1739 {
1740 // respect causality
1741 assert(tick >= curTick());
1742
1743 if (!powerEvent.scheduled()) {
1744 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1745 tick, pwr_state);
1746
1747 // insert the new transition
1748 pwrStateTrans = pwr_state;
1749
1750 schedule(powerEvent, tick);
1751 } else {
1752 panic("Scheduled power event at %llu to state %d, "
1753 "with scheduled event at %llu to %d\n", tick, pwr_state,
1754 powerEvent.when(), pwrStateTrans);
1755 }
1756 }
1757
1758 void
1759 DRAMCtrl::Rank::processPowerEvent()
1760 {
1761 // remember where we were, and for how long
1762 Tick duration = curTick() - pwrStateTick;
1763 PowerState prev_state = pwrState;
1764
1765 // update the accounting
1766 pwrStateTime[prev_state] += duration;
1767
1768 pwrState = pwrStateTrans;
1769 pwrStateTick = curTick();
1770
1771 if (pwrState == PWR_IDLE) {
1772 DPRINTF(DRAMState, "All banks precharged\n");
1773
1774 // if we were refreshing, make sure we start scheduling requests again
1775 if (prev_state == PWR_REF) {
1776 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1777 assert(pwrState == PWR_IDLE);
1778
1779 // kick things into action again
1780 refreshState = REF_IDLE;
1781 // a request event could be already scheduled by the state
1782 // machine of the other rank
1783 if (!memory.nextReqEvent.scheduled())
1784 schedule(memory.nextReqEvent, curTick());
1785 } else {
1786 assert(prev_state == PWR_ACT);
1787
1788 // if we have a pending refresh, and are now moving to
1789 // the idle state, direclty transition to a refresh
1790 if (refreshState == REF_RUN) {
1791 // there should be nothing waiting at this point
1792 assert(!powerEvent.scheduled());
1793
1794 // update the state in zero time and proceed below
1795 pwrState = PWR_REF;
1796 }
1797 }
1798 }
1799
1800 // we transition to the refresh state, let the refresh state
1801 // machine know of this state update and let it deal with the
1802 // scheduling of the next power state transition as well as the
1803 // following refresh
1804 if (pwrState == PWR_REF) {
1805 DPRINTF(DRAMState, "Refreshing\n");
1806 // kick the refresh event loop into action again, and that
1807 // in turn will schedule a transition to the idle power
1808 // state once the refresh is done
1809 assert(refreshState == REF_RUN);
1810 processRefreshEvent();
1811 }
1812 }
1813
1814 void
1815 DRAMCtrl::Rank::updatePowerStats()
1816 {
1817 // Get the energy and power from DRAMPower
1818 Data::MemoryPowerModel::Energy energy =
1819 power.powerlib.getEnergy();
1820 Data::MemoryPowerModel::Power rank_power =
1821 power.powerlib.getPower();
1822
1823 actEnergy = energy.act_energy * memory.devicesPerRank;
1824 preEnergy = energy.pre_energy * memory.devicesPerRank;
1825 readEnergy = energy.read_energy * memory.devicesPerRank;
1826 writeEnergy = energy.write_energy * memory.devicesPerRank;
1827 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1828 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1829 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1830 totalEnergy = energy.total_energy * memory.devicesPerRank;
1831 averagePower = rank_power.average_power * memory.devicesPerRank;
1832 }
1833
1834 void
1835 DRAMCtrl::Rank::regStats()
1836 {
1837 using namespace Stats;
1838
1839 pwrStateTime
1840 .init(5)
1841 .name(name() + ".memoryStateTime")
1842 .desc("Time in different power states");
1843 pwrStateTime.subname(0, "IDLE");
1844 pwrStateTime.subname(1, "REF");
1845 pwrStateTime.subname(2, "PRE_PDN");
1846 pwrStateTime.subname(3, "ACT");
1847 pwrStateTime.subname(4, "ACT_PDN");
1848
1849 actEnergy
1850 .name(name() + ".actEnergy")
1851 .desc("Energy for activate commands per rank (pJ)");
1852
1853 preEnergy
1854 .name(name() + ".preEnergy")
1855 .desc("Energy for precharge commands per rank (pJ)");
1856
1857 readEnergy
1858 .name(name() + ".readEnergy")
1859 .desc("Energy for read commands per rank (pJ)");
1860
1861 writeEnergy
1862 .name(name() + ".writeEnergy")
1863 .desc("Energy for write commands per rank (pJ)");
1864
1865 refreshEnergy
1866 .name(name() + ".refreshEnergy")
1867 .desc("Energy for refresh commands per rank (pJ)");
1868
1869 actBackEnergy
1870 .name(name() + ".actBackEnergy")
1871 .desc("Energy for active background per rank (pJ)");
1872
1873 preBackEnergy
1874 .name(name() + ".preBackEnergy")
1875 .desc("Energy for precharge background per rank (pJ)");
1876
1877 totalEnergy
1878 .name(name() + ".totalEnergy")
1879 .desc("Total energy per rank (pJ)");
1880
1881 averagePower
1882 .name(name() + ".averagePower")
1883 .desc("Core power per rank (mW)");
1884 }
1885 void
1886 DRAMCtrl::regStats()
1887 {
1888 using namespace Stats;
1889
1890 AbstractMemory::regStats();
1891
1892 for (auto r : ranks) {
1893 r->regStats();
1894 }
1895
1896 readReqs
1897 .name(name() + ".readReqs")
1898 .desc("Number of read requests accepted");
1899
1900 writeReqs
1901 .name(name() + ".writeReqs")
1902 .desc("Number of write requests accepted");
1903
1904 readBursts
1905 .name(name() + ".readBursts")
1906 .desc("Number of DRAM read bursts, "
1907 "including those serviced by the write queue");
1908
1909 writeBursts
1910 .name(name() + ".writeBursts")
1911 .desc("Number of DRAM write bursts, "
1912 "including those merged in the write queue");
1913
1914 servicedByWrQ
1915 .name(name() + ".servicedByWrQ")
1916 .desc("Number of DRAM read bursts serviced by the write queue");
1917
1918 mergedWrBursts
1919 .name(name() + ".mergedWrBursts")
1920 .desc("Number of DRAM write bursts merged with an existing one");
1921
1922 neitherReadNorWrite
1923 .name(name() + ".neitherReadNorWriteReqs")
1924 .desc("Number of requests that are neither read nor write");
1925
1926 perBankRdBursts
1927 .init(banksPerRank * ranksPerChannel)
1928 .name(name() + ".perBankRdBursts")
1929 .desc("Per bank write bursts");
1930
1931 perBankWrBursts
1932 .init(banksPerRank * ranksPerChannel)
1933 .name(name() + ".perBankWrBursts")
1934 .desc("Per bank write bursts");
1935
1936 avgRdQLen
1937 .name(name() + ".avgRdQLen")
1938 .desc("Average read queue length when enqueuing")
1939 .precision(2);
1940
1941 avgWrQLen
1942 .name(name() + ".avgWrQLen")
1943 .desc("Average write queue length when enqueuing")
1944 .precision(2);
1945
1946 totQLat
1947 .name(name() + ".totQLat")
1948 .desc("Total ticks spent queuing");
1949
1950 totBusLat
1951 .name(name() + ".totBusLat")
1952 .desc("Total ticks spent in databus transfers");
1953
1954 totMemAccLat
1955 .name(name() + ".totMemAccLat")
1956 .desc("Total ticks spent from burst creation until serviced "
1957 "by the DRAM");
1958
1959 avgQLat
1960 .name(name() + ".avgQLat")
1961 .desc("Average queueing delay per DRAM burst")
1962 .precision(2);
1963
1964 avgQLat = totQLat / (readBursts - servicedByWrQ);
1965
1966 avgBusLat
1967 .name(name() + ".avgBusLat")
1968 .desc("Average bus latency per DRAM burst")
1969 .precision(2);
1970
1971 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1972
1973 avgMemAccLat
1974 .name(name() + ".avgMemAccLat")
1975 .desc("Average memory access latency per DRAM burst")
1976 .precision(2);
1977
1978 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1979
1980 numRdRetry
1981 .name(name() + ".numRdRetry")
1982 .desc("Number of times read queue was full causing retry");
1983
1984 numWrRetry
1985 .name(name() + ".numWrRetry")
1986 .desc("Number of times write queue was full causing retry");
1987
1988 readRowHits
1989 .name(name() + ".readRowHits")
1990 .desc("Number of row buffer hits during reads");
1991
1992 writeRowHits
1993 .name(name() + ".writeRowHits")
1994 .desc("Number of row buffer hits during writes");
1995
1996 readRowHitRate
1997 .name(name() + ".readRowHitRate")
1998 .desc("Row buffer hit rate for reads")
1999 .precision(2);
2000
2001 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2002
2003 writeRowHitRate
2004 .name(name() + ".writeRowHitRate")
2005 .desc("Row buffer hit rate for writes")
2006 .precision(2);
2007
2008 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2009
2010 readPktSize
2011 .init(ceilLog2(burstSize) + 1)
2012 .name(name() + ".readPktSize")
2013 .desc("Read request sizes (log2)");
2014
2015 writePktSize
2016 .init(ceilLog2(burstSize) + 1)
2017 .name(name() + ".writePktSize")
2018 .desc("Write request sizes (log2)");
2019
2020 rdQLenPdf
2021 .init(readBufferSize)
2022 .name(name() + ".rdQLenPdf")
2023 .desc("What read queue length does an incoming req see");
2024
2025 wrQLenPdf
2026 .init(writeBufferSize)
2027 .name(name() + ".wrQLenPdf")
2028 .desc("What write queue length does an incoming req see");
2029
2030 bytesPerActivate
2031 .init(maxAccessesPerRow)
2032 .name(name() + ".bytesPerActivate")
2033 .desc("Bytes accessed per row activation")
2034 .flags(nozero);
2035
2036 rdPerTurnAround
2037 .init(readBufferSize)
2038 .name(name() + ".rdPerTurnAround")
2039 .desc("Reads before turning the bus around for writes")
2040 .flags(nozero);
2041
2042 wrPerTurnAround
2043 .init(writeBufferSize)
2044 .name(name() + ".wrPerTurnAround")
2045 .desc("Writes before turning the bus around for reads")
2046 .flags(nozero);
2047
2048 bytesReadDRAM
2049 .name(name() + ".bytesReadDRAM")
2050 .desc("Total number of bytes read from DRAM");
2051
2052 bytesReadWrQ
2053 .name(name() + ".bytesReadWrQ")
2054 .desc("Total number of bytes read from write queue");
2055
2056 bytesWritten
2057 .name(name() + ".bytesWritten")
2058 .desc("Total number of bytes written to DRAM");
2059
2060 bytesReadSys
2061 .name(name() + ".bytesReadSys")
2062 .desc("Total read bytes from the system interface side");
2063
2064 bytesWrittenSys
2065 .name(name() + ".bytesWrittenSys")
2066 .desc("Total written bytes from the system interface side");
2067
2068 avgRdBW
2069 .name(name() + ".avgRdBW")
2070 .desc("Average DRAM read bandwidth in MiByte/s")
2071 .precision(2);
2072
2073 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2074
2075 avgWrBW
2076 .name(name() + ".avgWrBW")
2077 .desc("Average achieved write bandwidth in MiByte/s")
2078 .precision(2);
2079
2080 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2081
2082 avgRdBWSys
2083 .name(name() + ".avgRdBWSys")
2084 .desc("Average system read bandwidth in MiByte/s")
2085 .precision(2);
2086
2087 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2088
2089 avgWrBWSys
2090 .name(name() + ".avgWrBWSys")
2091 .desc("Average system write bandwidth in MiByte/s")
2092 .precision(2);
2093
2094 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2095
2096 peakBW
2097 .name(name() + ".peakBW")
2098 .desc("Theoretical peak bandwidth in MiByte/s")
2099 .precision(2);
2100
2101 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2102
2103 busUtil
2104 .name(name() + ".busUtil")
2105 .desc("Data bus utilization in percentage")
2106 .precision(2);
2107 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2108
2109 totGap
2110 .name(name() + ".totGap")
2111 .desc("Total gap between requests");
2112
2113 avgGap
2114 .name(name() + ".avgGap")
2115 .desc("Average gap between requests")
2116 .precision(2);
2117
2118 avgGap = totGap / (readReqs + writeReqs);
2119
2120 // Stats for DRAM Power calculation based on Micron datasheet
2121 busUtilRead
2122 .name(name() + ".busUtilRead")
2123 .desc("Data bus utilization in percentage for reads")
2124 .precision(2);
2125
2126 busUtilRead = avgRdBW / peakBW * 100;
2127
2128 busUtilWrite
2129 .name(name() + ".busUtilWrite")
2130 .desc("Data bus utilization in percentage for writes")
2131 .precision(2);
2132
2133 busUtilWrite = avgWrBW / peakBW * 100;
2134
2135 pageHitRate
2136 .name(name() + ".pageHitRate")
2137 .desc("Row buffer hit rate, read and write combined")
2138 .precision(2);
2139
2140 pageHitRate = (writeRowHits + readRowHits) /
2141 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2142 }
2143
2144 void
2145 DRAMCtrl::recvFunctional(PacketPtr pkt)
2146 {
2147 // rely on the abstract memory
2148 functionalAccess(pkt);
2149 }
2150
2151 BaseSlavePort&
2152 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2153 {
2154 if (if_name != "port") {
2155 return MemObject::getSlavePort(if_name, idx);
2156 } else {
2157 return port;
2158 }
2159 }
2160
2161 DrainState
2162 DRAMCtrl::drain()
2163 {
2164 // if there is anything in any of our internal queues, keep track
2165 // of that as well
2166 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) {
2167 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2168 " resp: %d\n", writeQueue.size(), readQueue.size(),
2169 respQueue.size());
2170
2171 // the only part that is not drained automatically over time
2172 // is the write queue, thus kick things into action if needed
2173 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2174 schedule(nextReqEvent, curTick());
2175 }
2176 return DrainState::Draining;
2177 } else {
2178 return DrainState::Drained;
2179 }
2180 }
2181
2182 void
2183 DRAMCtrl::drainResume()
2184 {
2185 if (!isTimingMode && system()->isTimingMode()) {
2186 // if we switched to timing mode, kick things into action,
2187 // and behave as if we restored from a checkpoint
2188 startup();
2189 } else if (isTimingMode && !system()->isTimingMode()) {
2190 // if we switch from timing mode, stop the refresh events to
2191 // not cause issues with KVM
2192 for (auto r : ranks) {
2193 r->suspend();
2194 }
2195 }
2196
2197 // update the mode
2198 isTimingMode = system()->isTimingMode();
2199 }
2200
2201 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2202 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2203 memory(_memory)
2204 { }
2205
2206 AddrRangeList
2207 DRAMCtrl::MemoryPort::getAddrRanges() const
2208 {
2209 AddrRangeList ranges;
2210 ranges.push_back(memory.getAddrRange());
2211 return ranges;
2212 }
2213
2214 void
2215 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2216 {
2217 pkt->pushLabel(memory.name());
2218
2219 if (!queue.checkFunctional(pkt)) {
2220 // Default implementation of SimpleTimingPort::recvFunctional()
2221 // calls recvAtomic() and throws away the latency; we can save a
2222 // little here by just not calculating the latency.
2223 memory.recvFunctional(pkt);
2224 }
2225
2226 pkt->popLabel();
2227 }
2228
2229 Tick
2230 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2231 {
2232 return memory.recvAtomic(pkt);
2233 }
2234
2235 bool
2236 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2237 {
2238 // pass it to the memory controller
2239 return memory.recvTimingReq(pkt);
2240 }
2241
2242 DRAMCtrl*
2243 DRAMCtrlParams::create()
2244 {
2245 return new DRAMCtrl(this);
2246 }