mem: DRAMPower integration for on-line DRAM power stats
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45 #include "base/bitfield.hh"
46 #include "base/trace.hh"
47 #include "debug/DRAM.hh"
48 #include "debug/DRAMPower.hh"
49 #include "debug/DRAMState.hh"
50 #include "debug/Drain.hh"
51 #include "mem/dram_ctrl.hh"
52 #include "sim/system.hh"
53
54 using namespace std;
55 using namespace Data;
56
57 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
58 AbstractMemory(p),
59 port(name() + ".port", *this),
60 retryRdReq(false), retryWrReq(false),
61 busState(READ),
62 nextReqEvent(this), respondEvent(this), activateEvent(this),
63 prechargeEvent(this), refreshEvent(this), powerEvent(this),
64 drainManager(NULL),
65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66 deviceRowBufferSize(p->device_rowbuffer_size),
67 devicesPerRank(p->devices_per_rank),
68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69 rowBufferSize(devicesPerRank * deviceRowBufferSize),
70 columnsPerRowBuffer(rowBufferSize / burstSize),
71 columnsPerStripe(range.granularity() / burstSize),
72 ranksPerChannel(p->ranks_per_channel),
73 bankGroupsPerRank(p->bank_groups_per_rank),
74 bankGroupArch(p->bank_groups_per_rank > 0),
75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
76 readBufferSize(p->read_buffer_size),
77 writeBufferSize(p->write_buffer_size),
78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80 minWritesPerSwitch(p->min_writes_per_switch),
81 writesThisTime(0), readsThisTime(0),
82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
87 pageMgmt(p->page_policy),
88 maxAccessesPerRow(p->max_accesses_per_row),
89 frontendLatency(p->static_frontend_latency),
90 backendLatency(p->static_backend_latency),
91 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
92 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
93 nextReqTime(0), pwrStateTick(0), numBanksActive(0),
94 activeRank(0), timeStampOffset(0)
95 {
96 // create the bank states based on the dimensions of the ranks and
97 // banks
98 banks.resize(ranksPerChannel);
99
100 //create list of drampower objects. For each rank 1 drampower instance.
101 for (int i = 0; i < ranksPerChannel; i++) {
102 DRAMPower drampower = DRAMPower(p, false);
103 rankPower.emplace_back(drampower);
104 }
105
106 actTicks.resize(ranksPerChannel);
107 for (size_t c = 0; c < ranksPerChannel; ++c) {
108 banks[c].resize(banksPerRank);
109 actTicks[c].resize(activationLimit, 0);
110 }
111
112 // set the bank indices
113 for (int r = 0; r < ranksPerChannel; r++) {
114 for (int b = 0; b < banksPerRank; b++) {
115 banks[r][b].rank = r;
116 banks[r][b].bank = b;
117 if (bankGroupArch) {
118 // Simply assign lower bits to bank group in order to
119 // rotate across bank groups as banks are incremented
120 // e.g. with 4 banks per bank group and 16 banks total:
121 // banks 0,4,8,12 are in bank group 0
122 // banks 1,5,9,13 are in bank group 1
123 // banks 2,6,10,14 are in bank group 2
124 // banks 3,7,11,15 are in bank group 3
125 banks[r][b].bankgr = b % bankGroupsPerRank;
126 } else {
127 // No bank groups; simply assign to bank number
128 banks[r][b].bankgr = b;
129 }
130 }
131 }
132
133 // perform a basic check of the write thresholds
134 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
135 fatal("Write buffer low threshold %d must be smaller than the "
136 "high threshold %d\n", p->write_low_thresh_perc,
137 p->write_high_thresh_perc);
138
139 // determine the rows per bank by looking at the total capacity
140 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
141
142 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
143 AbstractMemory::size());
144
145 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
146 rowBufferSize, columnsPerRowBuffer);
147
148 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
149
150 // a bit of sanity checks on the interleaving
151 if (range.interleaved()) {
152 if (channels != range.stripes())
153 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
154 name(), range.stripes(), channels);
155
156 if (addrMapping == Enums::RoRaBaChCo) {
157 if (rowBufferSize != range.granularity()) {
158 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
159 "address map\n", name());
160 }
161 } else if (addrMapping == Enums::RoRaBaCoCh ||
162 addrMapping == Enums::RoCoRaBaCh) {
163 // for the interleavings with channel bits in the bottom,
164 // if the system uses a channel striping granularity that
165 // is larger than the DRAM burst size, then map the
166 // sequential accesses within a stripe to a number of
167 // columns in the DRAM, effectively placing some of the
168 // lower-order column bits as the least-significant bits
169 // of the address (above the ones denoting the burst size)
170 assert(columnsPerStripe >= 1);
171
172 // channel striping has to be done at a granularity that
173 // is equal or larger to a cache line
174 if (system()->cacheLineSize() > range.granularity()) {
175 fatal("Channel interleaving of %s must be at least as large "
176 "as the cache line size\n", name());
177 }
178
179 // ...and equal or smaller than the row-buffer size
180 if (rowBufferSize < range.granularity()) {
181 fatal("Channel interleaving of %s must be at most as large "
182 "as the row-buffer size\n", name());
183 }
184 // this is essentially the check above, so just to be sure
185 assert(columnsPerStripe <= columnsPerRowBuffer);
186 }
187 }
188
189 // some basic sanity checks
190 if (tREFI <= tRP || tREFI <= tRFC) {
191 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
192 tREFI, tRP, tRFC);
193 }
194
195 // basic bank group architecture checks ->
196 if (bankGroupArch) {
197 // must have at least one bank per bank group
198 if (bankGroupsPerRank > banksPerRank) {
199 fatal("banks per rank (%d) must be equal to or larger than "
200 "banks groups per rank (%d)\n",
201 banksPerRank, bankGroupsPerRank);
202 }
203 // must have same number of banks in each bank group
204 if ((banksPerRank % bankGroupsPerRank) != 0) {
205 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
206 "per rank (%d) for equal banks per bank group\n",
207 banksPerRank, bankGroupsPerRank);
208 }
209 // tCCD_L should be greater than minimal, back-to-back burst delay
210 if (tCCD_L <= tBURST) {
211 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
212 "bank groups per rank (%d) is greater than 1\n",
213 tCCD_L, tBURST, bankGroupsPerRank);
214 }
215 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
216 if (tRRD_L <= tRRD) {
217 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
218 "bank groups per rank (%d) is greater than 1\n",
219 tRRD_L, tRRD, bankGroupsPerRank);
220 }
221 }
222
223 }
224
225 void
226 DRAMCtrl::init()
227 {
228 if (!port.isConnected()) {
229 fatal("DRAMCtrl %s is unconnected!\n", name());
230 } else {
231 port.sendRangeChange();
232 }
233 }
234
235 void
236 DRAMCtrl::startup()
237 {
238 // timestamp offset should be in clock cycles for DRAMPower
239 timeStampOffset = divCeil(curTick(), tCK);
240 // update the start tick for the precharge accounting to the
241 // current tick
242 pwrStateTick = curTick();
243
244 // shift the bus busy time sufficiently far ahead that we never
245 // have to worry about negative values when computing the time for
246 // the next request, this will add an insignificant bubble at the
247 // start of simulation
248 busBusyUntil = curTick() + tRP + tRCD + tCL;
249
250 // kick off the refresh, and give ourselves enough time to
251 // precharge
252 schedule(refreshEvent, curTick() + tREFI - tRP);
253 }
254
255 Tick
256 DRAMCtrl::recvAtomic(PacketPtr pkt)
257 {
258 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
259
260 // do the actual memory access and turn the packet into a response
261 access(pkt);
262
263 Tick latency = 0;
264 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
265 // this value is not supposed to be accurate, just enough to
266 // keep things going, mimic a closed page
267 latency = tRP + tRCD + tCL;
268 }
269 return latency;
270 }
271
272 bool
273 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
274 {
275 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
276 readBufferSize, readQueue.size() + respQueue.size(),
277 neededEntries);
278
279 return
280 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
281 }
282
283 bool
284 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
285 {
286 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
287 writeBufferSize, writeQueue.size(), neededEntries);
288 return (writeQueue.size() + neededEntries) > writeBufferSize;
289 }
290
291 DRAMCtrl::DRAMPacket*
292 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
293 bool isRead)
294 {
295 // decode the address based on the address mapping scheme, with
296 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
297 // channel, respectively
298 uint8_t rank;
299 uint8_t bank;
300 // use a 64-bit unsigned during the computations as the row is
301 // always the top bits, and check before creating the DRAMPacket
302 uint64_t row;
303
304 // truncate the address to a DRAM burst, which makes it unique to
305 // a specific column, row, bank, rank and channel
306 Addr addr = dramPktAddr / burstSize;
307
308 // we have removed the lowest order address bits that denote the
309 // position within the column
310 if (addrMapping == Enums::RoRaBaChCo) {
311 // the lowest order bits denote the column to ensure that
312 // sequential cache lines occupy the same row
313 addr = addr / columnsPerRowBuffer;
314
315 // take out the channel part of the address
316 addr = addr / channels;
317
318 // after the channel bits, get the bank bits to interleave
319 // over the banks
320 bank = addr % banksPerRank;
321 addr = addr / banksPerRank;
322
323 // after the bank, we get the rank bits which thus interleaves
324 // over the ranks
325 rank = addr % ranksPerChannel;
326 addr = addr / ranksPerChannel;
327
328 // lastly, get the row bits
329 row = addr % rowsPerBank;
330 addr = addr / rowsPerBank;
331 } else if (addrMapping == Enums::RoRaBaCoCh) {
332 // take out the lower-order column bits
333 addr = addr / columnsPerStripe;
334
335 // take out the channel part of the address
336 addr = addr / channels;
337
338 // next, the higher-order column bites
339 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
340
341 // after the column bits, we get the bank bits to interleave
342 // over the banks
343 bank = addr % banksPerRank;
344 addr = addr / banksPerRank;
345
346 // after the bank, we get the rank bits which thus interleaves
347 // over the ranks
348 rank = addr % ranksPerChannel;
349 addr = addr / ranksPerChannel;
350
351 // lastly, get the row bits
352 row = addr % rowsPerBank;
353 addr = addr / rowsPerBank;
354 } else if (addrMapping == Enums::RoCoRaBaCh) {
355 // optimise for closed page mode and utilise maximum
356 // parallelism of the DRAM (at the cost of power)
357
358 // take out the lower-order column bits
359 addr = addr / columnsPerStripe;
360
361 // take out the channel part of the address, not that this has
362 // to match with how accesses are interleaved between the
363 // controllers in the address mapping
364 addr = addr / channels;
365
366 // start with the bank bits, as this provides the maximum
367 // opportunity for parallelism between requests
368 bank = addr % banksPerRank;
369 addr = addr / banksPerRank;
370
371 // next get the rank bits
372 rank = addr % ranksPerChannel;
373 addr = addr / ranksPerChannel;
374
375 // next, the higher-order column bites
376 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
377
378 // lastly, get the row bits
379 row = addr % rowsPerBank;
380 addr = addr / rowsPerBank;
381 } else
382 panic("Unknown address mapping policy chosen!");
383
384 assert(rank < ranksPerChannel);
385 assert(bank < banksPerRank);
386 assert(row < rowsPerBank);
387 assert(row < Bank::NO_ROW);
388
389 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
390 dramPktAddr, rank, bank, row);
391
392 // create the corresponding DRAM packet with the entry time and
393 // ready time set to the current tick, the latter will be updated
394 // later
395 uint16_t bank_id = banksPerRank * rank + bank;
396 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
397 size, banks[rank][bank]);
398 }
399
400 void
401 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
402 {
403 // only add to the read queue here. whenever the request is
404 // eventually done, set the readyTime, and call schedule()
405 assert(!pkt->isWrite());
406
407 assert(pktCount != 0);
408
409 // if the request size is larger than burst size, the pkt is split into
410 // multiple DRAM packets
411 // Note if the pkt starting address is not aligened to burst size, the
412 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
413 // are aligned to burst size boundaries. This is to ensure we accurately
414 // check read packets against packets in write queue.
415 Addr addr = pkt->getAddr();
416 unsigned pktsServicedByWrQ = 0;
417 BurstHelper* burst_helper = NULL;
418 for (int cnt = 0; cnt < pktCount; ++cnt) {
419 unsigned size = std::min((addr | (burstSize - 1)) + 1,
420 pkt->getAddr() + pkt->getSize()) - addr;
421 readPktSize[ceilLog2(size)]++;
422 readBursts++;
423
424 // First check write buffer to see if the data is already at
425 // the controller
426 bool foundInWrQ = false;
427 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
428 // check if the read is subsumed in the write entry we are
429 // looking at
430 if ((*i)->addr <= addr &&
431 (addr + size) <= ((*i)->addr + (*i)->size)) {
432 foundInWrQ = true;
433 servicedByWrQ++;
434 pktsServicedByWrQ++;
435 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
436 "write queue\n", addr, size);
437 bytesReadWrQ += burstSize;
438 break;
439 }
440 }
441
442 // If not found in the write q, make a DRAM packet and
443 // push it onto the read queue
444 if (!foundInWrQ) {
445
446 // Make the burst helper for split packets
447 if (pktCount > 1 && burst_helper == NULL) {
448 DPRINTF(DRAM, "Read to addr %lld translates to %d "
449 "dram requests\n", pkt->getAddr(), pktCount);
450 burst_helper = new BurstHelper(pktCount);
451 }
452
453 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
454 dram_pkt->burstHelper = burst_helper;
455
456 assert(!readQueueFull(1));
457 rdQLenPdf[readQueue.size() + respQueue.size()]++;
458
459 DPRINTF(DRAM, "Adding to read queue\n");
460
461 readQueue.push_back(dram_pkt);
462
463 // Update stats
464 avgRdQLen = readQueue.size() + respQueue.size();
465 }
466
467 // Starting address of next dram pkt (aligend to burstSize boundary)
468 addr = (addr | (burstSize - 1)) + 1;
469 }
470
471 // If all packets are serviced by write queue, we send the repsonse back
472 if (pktsServicedByWrQ == pktCount) {
473 accessAndRespond(pkt, frontendLatency);
474 return;
475 }
476
477 // Update how many split packets are serviced by write queue
478 if (burst_helper != NULL)
479 burst_helper->burstsServiced = pktsServicedByWrQ;
480
481 // If we are not already scheduled to get a request out of the
482 // queue, do so now
483 if (!nextReqEvent.scheduled()) {
484 DPRINTF(DRAM, "Request scheduled immediately\n");
485 schedule(nextReqEvent, curTick());
486 }
487 }
488
489 void
490 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
491 {
492 // only add to the write queue here. whenever the request is
493 // eventually done, set the readyTime, and call schedule()
494 assert(pkt->isWrite());
495
496 // if the request size is larger than burst size, the pkt is split into
497 // multiple DRAM packets
498 Addr addr = pkt->getAddr();
499 for (int cnt = 0; cnt < pktCount; ++cnt) {
500 unsigned size = std::min((addr | (burstSize - 1)) + 1,
501 pkt->getAddr() + pkt->getSize()) - addr;
502 writePktSize[ceilLog2(size)]++;
503 writeBursts++;
504
505 // see if we can merge with an existing item in the write
506 // queue and keep track of whether we have merged or not so we
507 // can stop at that point and also avoid enqueueing a new
508 // request
509 bool merged = false;
510 auto w = writeQueue.begin();
511
512 while(!merged && w != writeQueue.end()) {
513 // either of the two could be first, if they are the same
514 // it does not matter which way we go
515 if ((*w)->addr >= addr) {
516 // the existing one starts after the new one, figure
517 // out where the new one ends with respect to the
518 // existing one
519 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
520 // check if the existing one is completely
521 // subsumed in the new one
522 DPRINTF(DRAM, "Merging write covering existing burst\n");
523 merged = true;
524 // update both the address and the size
525 (*w)->addr = addr;
526 (*w)->size = size;
527 } else if ((addr + size) >= (*w)->addr &&
528 ((*w)->addr + (*w)->size - addr) <= burstSize) {
529 // the new one is just before or partially
530 // overlapping with the existing one, and together
531 // they fit within a burst
532 DPRINTF(DRAM, "Merging write before existing burst\n");
533 merged = true;
534 // the existing queue item needs to be adjusted with
535 // respect to both address and size
536 (*w)->size = (*w)->addr + (*w)->size - addr;
537 (*w)->addr = addr;
538 }
539 } else {
540 // the new one starts after the current one, figure
541 // out where the existing one ends with respect to the
542 // new one
543 if (((*w)->addr + (*w)->size) >= (addr + size)) {
544 // check if the new one is completely subsumed in the
545 // existing one
546 DPRINTF(DRAM, "Merging write into existing burst\n");
547 merged = true;
548 // no adjustments necessary
549 } else if (((*w)->addr + (*w)->size) >= addr &&
550 (addr + size - (*w)->addr) <= burstSize) {
551 // the existing one is just before or partially
552 // overlapping with the new one, and together
553 // they fit within a burst
554 DPRINTF(DRAM, "Merging write after existing burst\n");
555 merged = true;
556 // the address is right, and only the size has
557 // to be adjusted
558 (*w)->size = addr + size - (*w)->addr;
559 }
560 }
561 ++w;
562 }
563
564 // if the item was not merged we need to create a new write
565 // and enqueue it
566 if (!merged) {
567 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
568
569 assert(writeQueue.size() < writeBufferSize);
570 wrQLenPdf[writeQueue.size()]++;
571
572 DPRINTF(DRAM, "Adding to write queue\n");
573
574 writeQueue.push_back(dram_pkt);
575
576 // Update stats
577 avgWrQLen = writeQueue.size();
578 } else {
579 // keep track of the fact that this burst effectively
580 // disappeared as it was merged with an existing one
581 mergedWrBursts++;
582 }
583
584 // Starting address of next dram pkt (aligend to burstSize boundary)
585 addr = (addr | (burstSize - 1)) + 1;
586 }
587
588 // we do not wait for the writes to be send to the actual memory,
589 // but instead take responsibility for the consistency here and
590 // snoop the write queue for any upcoming reads
591 // @todo, if a pkt size is larger than burst size, we might need a
592 // different front end latency
593 accessAndRespond(pkt, frontendLatency);
594
595 // If we are not already scheduled to get a request out of the
596 // queue, do so now
597 if (!nextReqEvent.scheduled()) {
598 DPRINTF(DRAM, "Request scheduled immediately\n");
599 schedule(nextReqEvent, curTick());
600 }
601 }
602
603 void
604 DRAMCtrl::printQs() const {
605 DPRINTF(DRAM, "===READ QUEUE===\n\n");
606 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
607 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
608 }
609 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
610 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
611 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
612 }
613 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
614 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
615 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
616 }
617 }
618
619 bool
620 DRAMCtrl::recvTimingReq(PacketPtr pkt)
621 {
622 /// @todo temporary hack to deal with memory corruption issues until
623 /// 4-phase transactions are complete
624 for (int x = 0; x < pendingDelete.size(); x++)
625 delete pendingDelete[x];
626 pendingDelete.clear();
627
628 // This is where we enter from the outside world
629 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
630 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
631
632 // simply drop inhibited packets for now
633 if (pkt->memInhibitAsserted()) {
634 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
635 pendingDelete.push_back(pkt);
636 return true;
637 }
638
639 // Calc avg gap between requests
640 if (prevArrival != 0) {
641 totGap += curTick() - prevArrival;
642 }
643 prevArrival = curTick();
644
645
646 // Find out how many dram packets a pkt translates to
647 // If the burst size is equal or larger than the pkt size, then a pkt
648 // translates to only one dram packet. Otherwise, a pkt translates to
649 // multiple dram packets
650 unsigned size = pkt->getSize();
651 unsigned offset = pkt->getAddr() & (burstSize - 1);
652 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
653
654 // check local buffers and do not accept if full
655 if (pkt->isRead()) {
656 assert(size != 0);
657 if (readQueueFull(dram_pkt_count)) {
658 DPRINTF(DRAM, "Read queue full, not accepting\n");
659 // remember that we have to retry this port
660 retryRdReq = true;
661 numRdRetry++;
662 return false;
663 } else {
664 addToReadQueue(pkt, dram_pkt_count);
665 readReqs++;
666 bytesReadSys += size;
667 }
668 } else if (pkt->isWrite()) {
669 assert(size != 0);
670 if (writeQueueFull(dram_pkt_count)) {
671 DPRINTF(DRAM, "Write queue full, not accepting\n");
672 // remember that we have to retry this port
673 retryWrReq = true;
674 numWrRetry++;
675 return false;
676 } else {
677 addToWriteQueue(pkt, dram_pkt_count);
678 writeReqs++;
679 bytesWrittenSys += size;
680 }
681 } else {
682 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
683 neitherReadNorWrite++;
684 accessAndRespond(pkt, 1);
685 }
686
687 return true;
688 }
689
690 void
691 DRAMCtrl::processRespondEvent()
692 {
693 DPRINTF(DRAM,
694 "processRespondEvent(): Some req has reached its readyTime\n");
695
696 DRAMPacket* dram_pkt = respQueue.front();
697
698 if (dram_pkt->burstHelper) {
699 // it is a split packet
700 dram_pkt->burstHelper->burstsServiced++;
701 if (dram_pkt->burstHelper->burstsServiced ==
702 dram_pkt->burstHelper->burstCount) {
703 // we have now serviced all children packets of a system packet
704 // so we can now respond to the requester
705 // @todo we probably want to have a different front end and back
706 // end latency for split packets
707 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
708 delete dram_pkt->burstHelper;
709 dram_pkt->burstHelper = NULL;
710 }
711 } else {
712 // it is not a split packet
713 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
714 }
715
716 delete respQueue.front();
717 respQueue.pop_front();
718
719 if (!respQueue.empty()) {
720 assert(respQueue.front()->readyTime >= curTick());
721 assert(!respondEvent.scheduled());
722 schedule(respondEvent, respQueue.front()->readyTime);
723 } else {
724 // if there is nothing left in any queue, signal a drain
725 if (writeQueue.empty() && readQueue.empty() &&
726 drainManager) {
727 drainManager->signalDrainDone();
728 drainManager = NULL;
729 }
730 }
731
732 // We have made a location in the queue available at this point,
733 // so if there is a read that was forced to wait, retry now
734 if (retryRdReq) {
735 retryRdReq = false;
736 port.sendRetry();
737 }
738 }
739
740 void
741 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
742 {
743 // This method does the arbitration between requests. The chosen
744 // packet is simply moved to the head of the queue. The other
745 // methods know that this is the place to look. For example, with
746 // FCFS, this method does nothing
747 assert(!queue.empty());
748
749 if (queue.size() == 1) {
750 DPRINTF(DRAM, "Single request, nothing to do\n");
751 return;
752 }
753
754 if (memSchedPolicy == Enums::fcfs) {
755 // Do nothing, since the correct request is already head
756 } else if (memSchedPolicy == Enums::frfcfs) {
757 reorderQueue(queue, switched_cmd_type);
758 } else
759 panic("No scheduling policy chosen\n");
760 }
761
762 void
763 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
764 {
765 // Only determine this when needed
766 uint64_t earliest_banks = 0;
767
768 // Search for row hits first, if no row hit is found then schedule the
769 // packet to one of the earliest banks available
770 bool found_earliest_pkt = false;
771 bool found_prepped_diff_rank_pkt = false;
772 auto selected_pkt_it = queue.begin();
773
774 for (auto i = queue.begin(); i != queue.end() ; ++i) {
775 DRAMPacket* dram_pkt = *i;
776 const Bank& bank = dram_pkt->bankRef;
777 // Check if it is a row hit
778 if (bank.openRow == dram_pkt->row) {
779 if (dram_pkt->rank == activeRank || switched_cmd_type) {
780 // FCFS within the hits, giving priority to commands
781 // that access the same rank as the previous burst
782 // to minimize bus turnaround delays
783 // Only give rank prioity when command type is not changing
784 DPRINTF(DRAM, "Row buffer hit\n");
785 selected_pkt_it = i;
786 break;
787 } else if (!found_prepped_diff_rank_pkt) {
788 // found row hit for command on different rank than prev burst
789 selected_pkt_it = i;
790 found_prepped_diff_rank_pkt = true;
791 }
792 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
793 // No row hit and
794 // haven't found an entry with a row hit to a new rank
795 if (earliest_banks == 0)
796 // Determine entries with earliest bank prep delay
797 // Function will give priority to commands that access the
798 // same rank as previous burst and can prep the bank seamlessly
799 earliest_banks = minBankPrep(queue, switched_cmd_type);
800
801 // FCFS - Bank is first available bank
802 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
803 // Remember the packet to be scheduled to one of the earliest
804 // banks available, FCFS amongst the earliest banks
805 selected_pkt_it = i;
806 found_earliest_pkt = true;
807 }
808 }
809 }
810
811 DRAMPacket* selected_pkt = *selected_pkt_it;
812 queue.erase(selected_pkt_it);
813 queue.push_front(selected_pkt);
814 }
815
816 void
817 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
818 {
819 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
820
821 bool needsResponse = pkt->needsResponse();
822 // do the actual memory access which also turns the packet into a
823 // response
824 access(pkt);
825
826 // turn packet around to go back to requester if response expected
827 if (needsResponse) {
828 // access already turned the packet into a response
829 assert(pkt->isResponse());
830
831 // @todo someone should pay for this
832 pkt->firstWordDelay = pkt->lastWordDelay = 0;
833
834 // queue the packet in the response queue to be sent out after
835 // the static latency has passed
836 port.schedTimingResp(pkt, curTick() + static_latency);
837 } else {
838 // @todo the packet is going to be deleted, and the DRAMPacket
839 // is still having a pointer to it
840 pendingDelete.push_back(pkt);
841 }
842
843 DPRINTF(DRAM, "Done\n");
844
845 return;
846 }
847
848 void
849 DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
850 {
851 // get the rank index from the bank
852 uint8_t rank = bank.rank;
853
854 assert(actTicks[rank].size() == activationLimit);
855
856 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
857
858 // update the open row
859 assert(bank.openRow == Bank::NO_ROW);
860 bank.openRow = row;
861
862 // start counting anew, this covers both the case when we
863 // auto-precharged, and when this access is forced to
864 // precharge
865 bank.bytesAccessed = 0;
866 bank.rowAccesses = 0;
867
868 ++numBanksActive;
869 assert(numBanksActive <= banksPerRank * ranksPerChannel);
870
871 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
872 bank.bank, bank.rank, act_tick, numBanksActive);
873
874 rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank,
875 divCeil(act_tick, tCK) -
876 timeStampOffset);
877
878 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
879 timeStampOffset, bank.bank, bank.rank);
880
881 // The next access has to respect tRAS for this bank
882 bank.preAllowedAt = act_tick + tRAS;
883
884 // Respect the row-to-column command delay
885 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt);
886
887 // start by enforcing tRRD
888 for(int i = 0; i < banksPerRank; i++) {
889 // next activate to any bank in this rank must not happen
890 // before tRRD
891 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) {
892 // bank group architecture requires longer delays between
893 // ACT commands within the same bank group. Use tRRD_L
894 // in this case
895 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L,
896 banks[rank][i].actAllowedAt);
897 } else {
898 // use shorter tRRD value when either
899 // 1) bank group architecture is not supportted
900 // 2) bank is in a different bank group
901 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
902 banks[rank][i].actAllowedAt);
903 }
904 }
905
906 // next, we deal with tXAW, if the activation limit is disabled
907 // then we are done
908 if (actTicks[rank].empty())
909 return;
910
911 // sanity check
912 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
913 panic("Got %d activates in window %d (%llu - %llu) which is smaller "
914 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
915 act_tick, actTicks[rank].back(), tXAW);
916 }
917
918 // shift the times used for the book keeping, the last element
919 // (highest index) is the oldest one and hence the lowest value
920 actTicks[rank].pop_back();
921
922 // record an new activation (in the future)
923 actTicks[rank].push_front(act_tick);
924
925 // cannot activate more than X times in time window tXAW, push the
926 // next one (the X + 1'st activate) to be tXAW away from the
927 // oldest in our window of X
928 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
929 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
930 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
931 for(int j = 0; j < banksPerRank; j++)
932 // next activate must not happen before end of window
933 banks[rank][j].actAllowedAt =
934 std::max(actTicks[rank].back() + tXAW,
935 banks[rank][j].actAllowedAt);
936 }
937
938 // at the point when this activate takes place, make sure we
939 // transition to the active power state
940 if (!activateEvent.scheduled())
941 schedule(activateEvent, act_tick);
942 else if (activateEvent.when() > act_tick)
943 // move it sooner in time
944 reschedule(activateEvent, act_tick);
945 }
946
947 void
948 DRAMCtrl::processActivateEvent()
949 {
950 // we should transition to the active state as soon as any bank is active
951 if (pwrState != PWR_ACT)
952 // note that at this point numBanksActive could be back at
953 // zero again due to a precharge scheduled in the future
954 schedulePowerEvent(PWR_ACT, curTick());
955 }
956
957 void
958 DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
959 {
960 // make sure the bank has an open row
961 assert(bank.openRow != Bank::NO_ROW);
962
963 // sample the bytes per activate here since we are closing
964 // the page
965 bytesPerActivate.sample(bank.bytesAccessed);
966
967 bank.openRow = Bank::NO_ROW;
968
969 // no precharge allowed before this one
970 bank.preAllowedAt = pre_at;
971
972 Tick pre_done_at = pre_at + tRP;
973
974 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
975
976 assert(numBanksActive != 0);
977 --numBanksActive;
978
979 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
980 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
981
982 if (trace) {
983
984 rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank,
985 divCeil(pre_at, tCK) -
986 timeStampOffset);
987 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
988 timeStampOffset, bank.bank, bank.rank);
989 }
990 // if we look at the current number of active banks we might be
991 // tempted to think the DRAM is now idle, however this can be
992 // undone by an activate that is scheduled to happen before we
993 // would have reached the idle state, so schedule an event and
994 // rather check once we actually make it to the point in time when
995 // the (last) precharge takes place
996 if (!prechargeEvent.scheduled())
997 schedule(prechargeEvent, pre_done_at);
998 else if (prechargeEvent.when() < pre_done_at)
999 reschedule(prechargeEvent, pre_done_at);
1000 }
1001
1002 void
1003 DRAMCtrl::processPrechargeEvent()
1004 {
1005 // if we reached zero, then special conditions apply as we track
1006 // if all banks are precharged for the power models
1007 if (numBanksActive == 0) {
1008 // we should transition to the idle state when the last bank
1009 // is precharged
1010 schedulePowerEvent(PWR_IDLE, curTick());
1011 }
1012 }
1013
1014 void
1015 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1016 {
1017 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1018 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1019
1020 // get the bank
1021 Bank& bank = dram_pkt->bankRef;
1022
1023 // for the state we need to track if it is a row hit or not
1024 bool row_hit = true;
1025
1026 // respect any constraints on the command (e.g. tRCD or tCCD)
1027 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1028
1029 // Determine the access latency and update the bank state
1030 if (bank.openRow == dram_pkt->row) {
1031 // nothing to do
1032 } else {
1033 row_hit = false;
1034
1035 // If there is a page open, precharge it.
1036 if (bank.openRow != Bank::NO_ROW) {
1037 prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
1038 }
1039
1040 // next we need to account for the delay in activating the
1041 // page
1042 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1043
1044 // Record the activation and deal with all the global timing
1045 // constraints caused be a new activation (tRRD and tXAW)
1046 activateBank(bank, act_tick, dram_pkt->row);
1047
1048 // issue the command as early as possible
1049 cmd_at = bank.colAllowedAt;
1050 }
1051
1052 // we need to wait until the bus is available before we can issue
1053 // the command
1054 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1055
1056 // update the packet ready time
1057 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1058
1059 // only one burst can use the bus at any one point in time
1060 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1061
1062 // update the time for the next read/write burst for each
1063 // bank (add a max with tCCD/tCCD_L here)
1064 Tick cmd_dly;
1065 for(int j = 0; j < ranksPerChannel; j++) {
1066 for(int i = 0; i < banksPerRank; i++) {
1067 // next burst to same bank group in this rank must not happen
1068 // before tCCD_L. Different bank group timing requirement is
1069 // tBURST; Add tCS for different ranks
1070 if (dram_pkt->rank == j) {
1071 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) {
1072 // bank group architecture requires longer delays between
1073 // RD/WR burst commands to the same bank group.
1074 // Use tCCD_L in this case
1075 cmd_dly = tCCD_L;
1076 } else {
1077 // use tBURST (equivalent to tCCD_S), the shorter
1078 // cas-to-cas delay value, when either:
1079 // 1) bank group architecture is not supportted
1080 // 2) bank is in a different bank group
1081 cmd_dly = tBURST;
1082 }
1083 } else {
1084 // different rank is by default in a different bank group
1085 // use tBURST (equivalent to tCCD_S), which is the shorter
1086 // cas-to-cas delay in this case
1087 // Add tCS to account for rank-to-rank bus delay requirements
1088 cmd_dly = tBURST + tCS;
1089 }
1090 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly,
1091 banks[j][i].colAllowedAt);
1092 }
1093 }
1094
1095 // Save rank of current access
1096 activeRank = dram_pkt->rank;
1097
1098 // If this is a write, we also need to respect the write recovery
1099 // time before a precharge, in the case of a read, respect the
1100 // read to precharge constraint
1101 bank.preAllowedAt = std::max(bank.preAllowedAt,
1102 dram_pkt->isRead ? cmd_at + tRTP :
1103 dram_pkt->readyTime + tWR);
1104
1105 // increment the bytes accessed and the accesses per row
1106 bank.bytesAccessed += burstSize;
1107 ++bank.rowAccesses;
1108
1109 // if we reached the max, then issue with an auto-precharge
1110 bool auto_precharge = pageMgmt == Enums::close ||
1111 bank.rowAccesses == maxAccessesPerRow;
1112
1113 // if we did not hit the limit, we might still want to
1114 // auto-precharge
1115 if (!auto_precharge &&
1116 (pageMgmt == Enums::open_adaptive ||
1117 pageMgmt == Enums::close_adaptive)) {
1118 // a twist on the open and close page policies:
1119 // 1) open_adaptive page policy does not blindly keep the
1120 // page open, but close it if there are no row hits, and there
1121 // are bank conflicts in the queue
1122 // 2) close_adaptive page policy does not blindly close the
1123 // page, but closes it only if there are no row hits in the queue.
1124 // In this case, only force an auto precharge when there
1125 // are no same page hits in the queue
1126 bool got_more_hits = false;
1127 bool got_bank_conflict = false;
1128
1129 // either look at the read queue or write queue
1130 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1131 writeQueue;
1132 auto p = queue.begin();
1133 // make sure we are not considering the packet that we are
1134 // currently dealing with (which is the head of the queue)
1135 ++p;
1136
1137 // keep on looking until we have found required condition or
1138 // reached the end
1139 while (!(got_more_hits &&
1140 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1141 p != queue.end()) {
1142 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1143 (dram_pkt->bank == (*p)->bank);
1144 bool same_row = dram_pkt->row == (*p)->row;
1145 got_more_hits |= same_rank_bank && same_row;
1146 got_bank_conflict |= same_rank_bank && !same_row;
1147 ++p;
1148 }
1149
1150 // auto pre-charge when either
1151 // 1) open_adaptive policy, we have not got any more hits, and
1152 // have a bank conflict
1153 // 2) close_adaptive policy and we have not got any more hits
1154 auto_precharge = !got_more_hits &&
1155 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1156 }
1157
1158 // DRAMPower trace command to be written
1159 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1160
1161 // MemCommand required for DRAMPower library
1162 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1163 MemCommand::WR;
1164
1165 // if this access should use auto-precharge, then we are
1166 // closing the row
1167 if (auto_precharge) {
1168 // if auto-precharge push a PRE command at the correct tick to the
1169 // list used by DRAMPower library to calculate power
1170 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1171
1172 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1173 }
1174
1175 // Update bus state
1176 busBusyUntil = dram_pkt->readyTime;
1177
1178 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1179 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1180
1181 rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank,
1182 divCeil(cmd_at, tCK) -
1183 timeStampOffset);
1184
1185 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1186 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1187
1188 // Update the minimum timing between the requests, this is a
1189 // conservative estimate of when we have to schedule the next
1190 // request to not introduce any unecessary bubbles. In most cases
1191 // we will wake up sooner than we have to.
1192 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1193
1194 // Update the stats and schedule the next request
1195 if (dram_pkt->isRead) {
1196 ++readsThisTime;
1197 if (row_hit)
1198 readRowHits++;
1199 bytesReadDRAM += burstSize;
1200 perBankRdBursts[dram_pkt->bankId]++;
1201
1202 // Update latency stats
1203 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1204 totBusLat += tBURST;
1205 totQLat += cmd_at - dram_pkt->entryTime;
1206 } else {
1207 ++writesThisTime;
1208 if (row_hit)
1209 writeRowHits++;
1210 bytesWritten += burstSize;
1211 perBankWrBursts[dram_pkt->bankId]++;
1212 }
1213 }
1214
1215 void
1216 DRAMCtrl::processNextReqEvent()
1217 {
1218 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1219 // or WRITE_TO_READ state
1220 bool switched_cmd_type = false;
1221 if (busState == READ_TO_WRITE) {
1222 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1223 "waiting\n", readsThisTime, readQueue.size());
1224
1225 // sample and reset the read-related stats as we are now
1226 // transitioning to writes, and all reads are done
1227 rdPerTurnAround.sample(readsThisTime);
1228 readsThisTime = 0;
1229
1230 // now proceed to do the actual writes
1231 busState = WRITE;
1232 switched_cmd_type = true;
1233 } else if (busState == WRITE_TO_READ) {
1234 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1235 "waiting\n", writesThisTime, writeQueue.size());
1236
1237 wrPerTurnAround.sample(writesThisTime);
1238 writesThisTime = 0;
1239
1240 busState = READ;
1241 switched_cmd_type = true;
1242 }
1243
1244 if (refreshState != REF_IDLE) {
1245 // if a refresh waiting for this event loop to finish, then hand
1246 // over now, and do not schedule a new nextReqEvent
1247 if (refreshState == REF_DRAIN) {
1248 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1249
1250 refreshState = REF_PRE;
1251
1252 // hand control back to the refresh event loop
1253 schedule(refreshEvent, curTick());
1254 }
1255
1256 // let the refresh finish before issuing any further requests
1257 return;
1258 }
1259
1260 // when we get here it is either a read or a write
1261 if (busState == READ) {
1262
1263 // track if we should switch or not
1264 bool switch_to_writes = false;
1265
1266 if (readQueue.empty()) {
1267 // In the case there is no read request to go next,
1268 // trigger writes if we have passed the low threshold (or
1269 // if we are draining)
1270 if (!writeQueue.empty() &&
1271 (drainManager || writeQueue.size() > writeLowThreshold)) {
1272
1273 switch_to_writes = true;
1274 } else {
1275 // check if we are drained
1276 if (respQueue.empty () && drainManager) {
1277 drainManager->signalDrainDone();
1278 drainManager = NULL;
1279 }
1280
1281 // nothing to do, not even any point in scheduling an
1282 // event for the next request
1283 return;
1284 }
1285 } else {
1286 // Figure out which read request goes next, and move it to the
1287 // front of the read queue
1288 chooseNext(readQueue, switched_cmd_type);
1289
1290 DRAMPacket* dram_pkt = readQueue.front();
1291
1292 // here we get a bit creative and shift the bus busy time not
1293 // just the tWTR, but also a CAS latency to capture the fact
1294 // that we are allowed to prepare a new bank, but not issue a
1295 // read command until after tWTR, in essence we capture a
1296 // bubble on the data bus that is tWTR + tCL
1297 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1298 busBusyUntil += tWTR + tCL;
1299 }
1300
1301 doDRAMAccess(dram_pkt);
1302
1303 // At this point we're done dealing with the request
1304 readQueue.pop_front();
1305
1306 // sanity check
1307 assert(dram_pkt->size <= burstSize);
1308 assert(dram_pkt->readyTime >= curTick());
1309
1310 // Insert into response queue. It will be sent back to the
1311 // requestor at its readyTime
1312 if (respQueue.empty()) {
1313 assert(!respondEvent.scheduled());
1314 schedule(respondEvent, dram_pkt->readyTime);
1315 } else {
1316 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1317 assert(respondEvent.scheduled());
1318 }
1319
1320 respQueue.push_back(dram_pkt);
1321
1322 // we have so many writes that we have to transition
1323 if (writeQueue.size() > writeHighThreshold) {
1324 switch_to_writes = true;
1325 }
1326 }
1327
1328 // switching to writes, either because the read queue is empty
1329 // and the writes have passed the low threshold (or we are
1330 // draining), or because the writes hit the hight threshold
1331 if (switch_to_writes) {
1332 // transition to writing
1333 busState = READ_TO_WRITE;
1334 }
1335 } else {
1336 chooseNext(writeQueue, switched_cmd_type);
1337 DRAMPacket* dram_pkt = writeQueue.front();
1338 // sanity check
1339 assert(dram_pkt->size <= burstSize);
1340
1341 // add a bubble to the data bus, as defined by the
1342 // tRTW when access is to the same rank as previous burst
1343 // Different rank timing is handled with tCS, which is
1344 // applied to colAllowedAt
1345 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1346 busBusyUntil += tRTW;
1347 }
1348
1349 doDRAMAccess(dram_pkt);
1350
1351 writeQueue.pop_front();
1352 delete dram_pkt;
1353
1354 // If we emptied the write queue, or got sufficiently below the
1355 // threshold (using the minWritesPerSwitch as the hysteresis) and
1356 // are not draining, or we have reads waiting and have done enough
1357 // writes, then switch to reads.
1358 if (writeQueue.empty() ||
1359 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1360 !drainManager) ||
1361 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1362 // turn the bus back around for reads again
1363 busState = WRITE_TO_READ;
1364
1365 // note that the we switch back to reads also in the idle
1366 // case, which eventually will check for any draining and
1367 // also pause any further scheduling if there is really
1368 // nothing to do
1369 }
1370 }
1371
1372 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1373
1374 // If there is space available and we have writes waiting then let
1375 // them retry. This is done here to ensure that the retry does not
1376 // cause a nextReqEvent to be scheduled before we do so as part of
1377 // the next request processing
1378 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1379 retryWrReq = false;
1380 port.sendRetry();
1381 }
1382 }
1383
1384 uint64_t
1385 DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1386 bool switched_cmd_type) const
1387 {
1388 uint64_t bank_mask = 0;
1389 Tick min_act_at = MaxTick;
1390
1391 uint64_t bank_mask_same_rank = 0;
1392 Tick min_act_at_same_rank = MaxTick;
1393
1394 // Give precedence to commands that access same rank as previous command
1395 bool same_rank_match = false;
1396
1397 // determine if we have queued transactions targetting the
1398 // bank in question
1399 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1400 for (auto p = queue.begin(); p != queue.end(); ++p) {
1401 got_waiting[(*p)->bankId] = true;
1402 }
1403
1404 for (int i = 0; i < ranksPerChannel; i++) {
1405 for (int j = 0; j < banksPerRank; j++) {
1406 uint8_t bank_id = i * banksPerRank + j;
1407
1408 // if we have waiting requests for the bank, and it is
1409 // amongst the first available, update the mask
1410 if (got_waiting[bank_id]) {
1411 // simplistic approximation of when the bank can issue
1412 // an activate, ignoring any rank-to-rank switching
1413 // cost in this calculation
1414 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1415 banks[i][j].actAllowedAt :
1416 std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1417
1418 // prioritize commands that access the
1419 // same rank as previous burst
1420 // Calculate bank mask separately for the case and
1421 // evaluate after loop iterations complete
1422 if (i == activeRank && ranksPerChannel > 1) {
1423 if (act_at <= min_act_at_same_rank) {
1424 // reset same rank bank mask if new minimum is found
1425 // and previous minimum could not immediately send ACT
1426 if (act_at < min_act_at_same_rank &&
1427 min_act_at_same_rank > curTick())
1428 bank_mask_same_rank = 0;
1429
1430 // Set flag indicating that a same rank
1431 // opportunity was found
1432 same_rank_match = true;
1433
1434 // set the bit corresponding to the available bank
1435 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1436 min_act_at_same_rank = act_at;
1437 }
1438 } else {
1439 if (act_at <= min_act_at) {
1440 // reset bank mask if new minimum is found
1441 // and either previous minimum could not immediately send ACT
1442 if (act_at < min_act_at && min_act_at > curTick())
1443 bank_mask = 0;
1444 // set the bit corresponding to the available bank
1445 replaceBits(bank_mask, bank_id, bank_id, 1);
1446 min_act_at = act_at;
1447 }
1448 }
1449 }
1450 }
1451 }
1452
1453 // Determine the earliest time when the next burst can issue based
1454 // on the current busBusyUntil delay.
1455 // Offset by tRCD to correlate with ACT timing variables
1456 Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1457
1458 // Prioritize same rank accesses that can issue B2B
1459 // Only optimize for same ranks when the command type
1460 // does not change; do not want to unnecessarily incur tWTR
1461 //
1462 // Resulting FCFS prioritization Order is:
1463 // 1) Commands that access the same rank as previous burst
1464 // and can prep the bank seamlessly.
1465 // 2) Commands (any rank) with earliest bank prep
1466 if (!switched_cmd_type && same_rank_match &&
1467 min_act_at_same_rank <= min_cmd_at) {
1468 bank_mask = bank_mask_same_rank;
1469 }
1470
1471 return bank_mask;
1472 }
1473
1474 void
1475 DRAMCtrl::processRefreshEvent()
1476 {
1477 // when first preparing the refresh, remember when it was due
1478 if (refreshState == REF_IDLE) {
1479 // remember when the refresh is due
1480 refreshDueAt = curTick();
1481
1482 // proceed to drain
1483 refreshState = REF_DRAIN;
1484
1485 DPRINTF(DRAM, "Refresh due\n");
1486 }
1487
1488 // let any scheduled read or write go ahead, after which it will
1489 // hand control back to this event loop
1490 if (refreshState == REF_DRAIN) {
1491 if (nextReqEvent.scheduled()) {
1492 // hand control over to the request loop until it is
1493 // evaluated next
1494 DPRINTF(DRAM, "Refresh awaiting draining\n");
1495
1496 return;
1497 } else {
1498 refreshState = REF_PRE;
1499 }
1500 }
1501
1502 // at this point, ensure that all banks are precharged
1503 if (refreshState == REF_PRE) {
1504 // precharge any active bank if we are not already in the idle
1505 // state
1506 if (pwrState != PWR_IDLE) {
1507 // at the moment, we use a precharge all even if there is
1508 // only a single bank open
1509 DPRINTF(DRAM, "Precharging all\n");
1510
1511 // first determine when we can precharge
1512 Tick pre_at = curTick();
1513 for (int i = 0; i < ranksPerChannel; i++) {
1514 for (int j = 0; j < banksPerRank; j++) {
1515 // respect both causality and any existing bank
1516 // constraints, some banks could already have a
1517 // (auto) precharge scheduled
1518 pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
1519 }
1520 }
1521
1522 // make sure all banks are precharged, and for those that
1523 // already are, update their availability
1524 Tick act_allowed_at = pre_at + tRP;
1525
1526 for (int i = 0; i < ranksPerChannel; i++) {
1527 for (int j = 0; j < banksPerRank; j++) {
1528 if (banks[i][j].openRow != Bank::NO_ROW) {
1529 prechargeBank(banks[i][j], pre_at, false);
1530 } else {
1531 banks[i][j].actAllowedAt =
1532 std::max(banks[i][j].actAllowedAt, act_allowed_at);
1533 banks[i][j].preAllowedAt =
1534 std::max(banks[i][j].preAllowedAt, pre_at);
1535 }
1536 }
1537
1538 // at the moment this affects all ranks
1539 rankPower[i].powerlib.doCommand(MemCommand::PREA, 0,
1540 divCeil(pre_at, tCK) -
1541 timeStampOffset);
1542
1543 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) -
1544 timeStampOffset, i);
1545 }
1546 } else {
1547 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1548
1549 // go ahead and kick the power state machine into gear if
1550 // we are already idle
1551 schedulePowerEvent(PWR_REF, curTick());
1552 }
1553
1554 refreshState = REF_RUN;
1555 assert(numBanksActive == 0);
1556
1557 // wait for all banks to be precharged, at which point the
1558 // power state machine will transition to the idle state, and
1559 // automatically move to a refresh, at that point it will also
1560 // call this method to get the refresh event loop going again
1561 return;
1562 }
1563
1564 // last but not least we perform the actual refresh
1565 if (refreshState == REF_RUN) {
1566 // should never get here with any banks active
1567 assert(numBanksActive == 0);
1568 assert(pwrState == PWR_REF);
1569
1570 Tick ref_done_at = curTick() + tRFC;
1571
1572 for (int i = 0; i < ranksPerChannel; i++) {
1573 for (int j = 0; j < banksPerRank; j++) {
1574 banks[i][j].actAllowedAt = ref_done_at;
1575 }
1576
1577 // at the moment this affects all ranks
1578 rankPower[i].powerlib.doCommand(MemCommand::REF, 0,
1579 divCeil(curTick(), tCK) -
1580 timeStampOffset);
1581
1582 // at the moment sort the list of commands and update the counters
1583 // for DRAMPower libray when doing a refresh
1584 sort(rankPower[i].powerlib.cmdList.begin(),
1585 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime);
1586
1587 // update the counters for DRAMPower, passing false to
1588 // indicate that this is not the last command in the
1589 // list. DRAMPower requires this information for the
1590 // correct calculation of the background energy at the end
1591 // of the simulation. Ideally we would want to call this
1592 // function with true once at the end of the
1593 // simulation. However, the discarded energy is extremly
1594 // small and does not effect the final results.
1595 rankPower[i].powerlib.updateCounters(false);
1596
1597 // call the energy function
1598 rankPower[i].powerlib.calcEnergy();
1599
1600 // Update the stats
1601 updatePowerStats(i);
1602
1603 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) -
1604 timeStampOffset, i);
1605 }
1606
1607 // make sure we did not wait so long that we cannot make up
1608 // for it
1609 if (refreshDueAt + tREFI < ref_done_at) {
1610 fatal("Refresh was delayed so long we cannot catch up\n");
1611 }
1612
1613 // compensate for the delay in actually performing the refresh
1614 // when scheduling the next one
1615 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1616
1617 assert(!powerEvent.scheduled());
1618
1619 // move to the idle power state once the refresh is done, this
1620 // will also move the refresh state machine to the refresh
1621 // idle state
1622 schedulePowerEvent(PWR_IDLE, ref_done_at);
1623
1624 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1625 ref_done_at, refreshDueAt + tREFI);
1626 }
1627 }
1628
1629 void
1630 DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1631 {
1632 // respect causality
1633 assert(tick >= curTick());
1634
1635 if (!powerEvent.scheduled()) {
1636 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1637 tick, pwr_state);
1638
1639 // insert the new transition
1640 pwrStateTrans = pwr_state;
1641
1642 schedule(powerEvent, tick);
1643 } else {
1644 panic("Scheduled power event at %llu to state %d, "
1645 "with scheduled event at %llu to %d\n", tick, pwr_state,
1646 powerEvent.when(), pwrStateTrans);
1647 }
1648 }
1649
1650 void
1651 DRAMCtrl::processPowerEvent()
1652 {
1653 // remember where we were, and for how long
1654 Tick duration = curTick() - pwrStateTick;
1655 PowerState prev_state = pwrState;
1656
1657 // update the accounting
1658 pwrStateTime[prev_state] += duration;
1659
1660 pwrState = pwrStateTrans;
1661 pwrStateTick = curTick();
1662
1663 if (pwrState == PWR_IDLE) {
1664 DPRINTF(DRAMState, "All banks precharged\n");
1665
1666 // if we were refreshing, make sure we start scheduling requests again
1667 if (prev_state == PWR_REF) {
1668 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1669 assert(pwrState == PWR_IDLE);
1670
1671 // kick things into action again
1672 refreshState = REF_IDLE;
1673 assert(!nextReqEvent.scheduled());
1674 schedule(nextReqEvent, curTick());
1675 } else {
1676 assert(prev_state == PWR_ACT);
1677
1678 // if we have a pending refresh, and are now moving to
1679 // the idle state, direclty transition to a refresh
1680 if (refreshState == REF_RUN) {
1681 // there should be nothing waiting at this point
1682 assert(!powerEvent.scheduled());
1683
1684 // update the state in zero time and proceed below
1685 pwrState = PWR_REF;
1686 }
1687 }
1688 }
1689
1690 // we transition to the refresh state, let the refresh state
1691 // machine know of this state update and let it deal with the
1692 // scheduling of the next power state transition as well as the
1693 // following refresh
1694 if (pwrState == PWR_REF) {
1695 DPRINTF(DRAMState, "Refreshing\n");
1696 // kick the refresh event loop into action again, and that
1697 // in turn will schedule a transition to the idle power
1698 // state once the refresh is done
1699 assert(refreshState == REF_RUN);
1700 processRefreshEvent();
1701 }
1702 }
1703
1704 void
1705 DRAMCtrl::updatePowerStats(uint8_t rank)
1706 {
1707 // Get the energy and power from DRAMPower
1708 Data::MemoryPowerModel::Energy energy =
1709 rankPower[rank].powerlib.getEnergy();
1710 Data::MemoryPowerModel::Power power =
1711 rankPower[rank].powerlib.getPower();
1712
1713 actEnergy[rank] = energy.act_energy * devicesPerRank;
1714 preEnergy[rank] = energy.pre_energy * devicesPerRank;
1715 readEnergy[rank] = energy.read_energy * devicesPerRank;
1716 writeEnergy[rank] = energy.write_energy * devicesPerRank;
1717 refreshEnergy[rank] = energy.ref_energy * devicesPerRank;
1718 actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank;
1719 preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank;
1720 totalEnergy[rank] = energy.total_energy * devicesPerRank;
1721 averagePower[rank] = power.average_power * devicesPerRank;
1722 }
1723
1724 void
1725 DRAMCtrl::regStats()
1726 {
1727 using namespace Stats;
1728
1729 AbstractMemory::regStats();
1730
1731 readReqs
1732 .name(name() + ".readReqs")
1733 .desc("Number of read requests accepted");
1734
1735 writeReqs
1736 .name(name() + ".writeReqs")
1737 .desc("Number of write requests accepted");
1738
1739 readBursts
1740 .name(name() + ".readBursts")
1741 .desc("Number of DRAM read bursts, "
1742 "including those serviced by the write queue");
1743
1744 writeBursts
1745 .name(name() + ".writeBursts")
1746 .desc("Number of DRAM write bursts, "
1747 "including those merged in the write queue");
1748
1749 servicedByWrQ
1750 .name(name() + ".servicedByWrQ")
1751 .desc("Number of DRAM read bursts serviced by the write queue");
1752
1753 mergedWrBursts
1754 .name(name() + ".mergedWrBursts")
1755 .desc("Number of DRAM write bursts merged with an existing one");
1756
1757 neitherReadNorWrite
1758 .name(name() + ".neitherReadNorWriteReqs")
1759 .desc("Number of requests that are neither read nor write");
1760
1761 perBankRdBursts
1762 .init(banksPerRank * ranksPerChannel)
1763 .name(name() + ".perBankRdBursts")
1764 .desc("Per bank write bursts");
1765
1766 perBankWrBursts
1767 .init(banksPerRank * ranksPerChannel)
1768 .name(name() + ".perBankWrBursts")
1769 .desc("Per bank write bursts");
1770
1771 avgRdQLen
1772 .name(name() + ".avgRdQLen")
1773 .desc("Average read queue length when enqueuing")
1774 .precision(2);
1775
1776 avgWrQLen
1777 .name(name() + ".avgWrQLen")
1778 .desc("Average write queue length when enqueuing")
1779 .precision(2);
1780
1781 totQLat
1782 .name(name() + ".totQLat")
1783 .desc("Total ticks spent queuing");
1784
1785 totBusLat
1786 .name(name() + ".totBusLat")
1787 .desc("Total ticks spent in databus transfers");
1788
1789 totMemAccLat
1790 .name(name() + ".totMemAccLat")
1791 .desc("Total ticks spent from burst creation until serviced "
1792 "by the DRAM");
1793
1794 avgQLat
1795 .name(name() + ".avgQLat")
1796 .desc("Average queueing delay per DRAM burst")
1797 .precision(2);
1798
1799 avgQLat = totQLat / (readBursts - servicedByWrQ);
1800
1801 avgBusLat
1802 .name(name() + ".avgBusLat")
1803 .desc("Average bus latency per DRAM burst")
1804 .precision(2);
1805
1806 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1807
1808 avgMemAccLat
1809 .name(name() + ".avgMemAccLat")
1810 .desc("Average memory access latency per DRAM burst")
1811 .precision(2);
1812
1813 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1814
1815 numRdRetry
1816 .name(name() + ".numRdRetry")
1817 .desc("Number of times read queue was full causing retry");
1818
1819 numWrRetry
1820 .name(name() + ".numWrRetry")
1821 .desc("Number of times write queue was full causing retry");
1822
1823 readRowHits
1824 .name(name() + ".readRowHits")
1825 .desc("Number of row buffer hits during reads");
1826
1827 writeRowHits
1828 .name(name() + ".writeRowHits")
1829 .desc("Number of row buffer hits during writes");
1830
1831 readRowHitRate
1832 .name(name() + ".readRowHitRate")
1833 .desc("Row buffer hit rate for reads")
1834 .precision(2);
1835
1836 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1837
1838 writeRowHitRate
1839 .name(name() + ".writeRowHitRate")
1840 .desc("Row buffer hit rate for writes")
1841 .precision(2);
1842
1843 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1844
1845 readPktSize
1846 .init(ceilLog2(burstSize) + 1)
1847 .name(name() + ".readPktSize")
1848 .desc("Read request sizes (log2)");
1849
1850 writePktSize
1851 .init(ceilLog2(burstSize) + 1)
1852 .name(name() + ".writePktSize")
1853 .desc("Write request sizes (log2)");
1854
1855 rdQLenPdf
1856 .init(readBufferSize)
1857 .name(name() + ".rdQLenPdf")
1858 .desc("What read queue length does an incoming req see");
1859
1860 wrQLenPdf
1861 .init(writeBufferSize)
1862 .name(name() + ".wrQLenPdf")
1863 .desc("What write queue length does an incoming req see");
1864
1865 bytesPerActivate
1866 .init(maxAccessesPerRow)
1867 .name(name() + ".bytesPerActivate")
1868 .desc("Bytes accessed per row activation")
1869 .flags(nozero);
1870
1871 rdPerTurnAround
1872 .init(readBufferSize)
1873 .name(name() + ".rdPerTurnAround")
1874 .desc("Reads before turning the bus around for writes")
1875 .flags(nozero);
1876
1877 wrPerTurnAround
1878 .init(writeBufferSize)
1879 .name(name() + ".wrPerTurnAround")
1880 .desc("Writes before turning the bus around for reads")
1881 .flags(nozero);
1882
1883 bytesReadDRAM
1884 .name(name() + ".bytesReadDRAM")
1885 .desc("Total number of bytes read from DRAM");
1886
1887 bytesReadWrQ
1888 .name(name() + ".bytesReadWrQ")
1889 .desc("Total number of bytes read from write queue");
1890
1891 bytesWritten
1892 .name(name() + ".bytesWritten")
1893 .desc("Total number of bytes written to DRAM");
1894
1895 bytesReadSys
1896 .name(name() + ".bytesReadSys")
1897 .desc("Total read bytes from the system interface side");
1898
1899 bytesWrittenSys
1900 .name(name() + ".bytesWrittenSys")
1901 .desc("Total written bytes from the system interface side");
1902
1903 avgRdBW
1904 .name(name() + ".avgRdBW")
1905 .desc("Average DRAM read bandwidth in MiByte/s")
1906 .precision(2);
1907
1908 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1909
1910 avgWrBW
1911 .name(name() + ".avgWrBW")
1912 .desc("Average achieved write bandwidth in MiByte/s")
1913 .precision(2);
1914
1915 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1916
1917 avgRdBWSys
1918 .name(name() + ".avgRdBWSys")
1919 .desc("Average system read bandwidth in MiByte/s")
1920 .precision(2);
1921
1922 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1923
1924 avgWrBWSys
1925 .name(name() + ".avgWrBWSys")
1926 .desc("Average system write bandwidth in MiByte/s")
1927 .precision(2);
1928
1929 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1930
1931 peakBW
1932 .name(name() + ".peakBW")
1933 .desc("Theoretical peak bandwidth in MiByte/s")
1934 .precision(2);
1935
1936 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1937
1938 busUtil
1939 .name(name() + ".busUtil")
1940 .desc("Data bus utilization in percentage")
1941 .precision(2);
1942
1943 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1944
1945 totGap
1946 .name(name() + ".totGap")
1947 .desc("Total gap between requests");
1948
1949 avgGap
1950 .name(name() + ".avgGap")
1951 .desc("Average gap between requests")
1952 .precision(2);
1953
1954 avgGap = totGap / (readReqs + writeReqs);
1955
1956 // Stats for DRAM Power calculation based on Micron datasheet
1957 busUtilRead
1958 .name(name() + ".busUtilRead")
1959 .desc("Data bus utilization in percentage for reads")
1960 .precision(2);
1961
1962 busUtilRead = avgRdBW / peakBW * 100;
1963
1964 busUtilWrite
1965 .name(name() + ".busUtilWrite")
1966 .desc("Data bus utilization in percentage for writes")
1967 .precision(2);
1968
1969 busUtilWrite = avgWrBW / peakBW * 100;
1970
1971 pageHitRate
1972 .name(name() + ".pageHitRate")
1973 .desc("Row buffer hit rate, read and write combined")
1974 .precision(2);
1975
1976 pageHitRate = (writeRowHits + readRowHits) /
1977 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1978
1979 pwrStateTime
1980 .init(5)
1981 .name(name() + ".memoryStateTime")
1982 .desc("Time in different power states");
1983 pwrStateTime.subname(0, "IDLE");
1984 pwrStateTime.subname(1, "REF");
1985 pwrStateTime.subname(2, "PRE_PDN");
1986 pwrStateTime.subname(3, "ACT");
1987 pwrStateTime.subname(4, "ACT_PDN");
1988
1989 actEnergy
1990 .init(ranksPerChannel)
1991 .name(name() + ".actEnergy")
1992 .desc("Energy for activate commands per rank (pJ)");
1993
1994 preEnergy
1995 .init(ranksPerChannel)
1996 .name(name() + ".preEnergy")
1997 .desc("Energy for precharge commands per rank (pJ)");
1998
1999 readEnergy
2000 .init(ranksPerChannel)
2001 .name(name() + ".readEnergy")
2002 .desc("Energy for read commands per rank (pJ)");
2003
2004 writeEnergy
2005 .init(ranksPerChannel)
2006 .name(name() + ".writeEnergy")
2007 .desc("Energy for write commands per rank (pJ)");
2008
2009 refreshEnergy
2010 .init(ranksPerChannel)
2011 .name(name() + ".refreshEnergy")
2012 .desc("Energy for refresh commands per rank (pJ)");
2013
2014 actBackEnergy
2015 .init(ranksPerChannel)
2016 .name(name() + ".actBackEnergy")
2017 .desc("Energy for active background per rank (pJ)");
2018
2019 preBackEnergy
2020 .init(ranksPerChannel)
2021 .name(name() + ".preBackEnergy")
2022 .desc("Energy for precharge background per rank (pJ)");
2023
2024 totalEnergy
2025 .init(ranksPerChannel)
2026 .name(name() + ".totalEnergy")
2027 .desc("Total energy per rank (pJ)");
2028
2029 averagePower
2030 .init(ranksPerChannel)
2031 .name(name() + ".averagePower")
2032 .desc("Core power per rank (mW)");
2033 }
2034
2035 void
2036 DRAMCtrl::recvFunctional(PacketPtr pkt)
2037 {
2038 // rely on the abstract memory
2039 functionalAccess(pkt);
2040 }
2041
2042 BaseSlavePort&
2043 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2044 {
2045 if (if_name != "port") {
2046 return MemObject::getSlavePort(if_name, idx);
2047 } else {
2048 return port;
2049 }
2050 }
2051
2052 unsigned int
2053 DRAMCtrl::drain(DrainManager *dm)
2054 {
2055 unsigned int count = port.drain(dm);
2056
2057 // if there is anything in any of our internal queues, keep track
2058 // of that as well
2059 if (!(writeQueue.empty() && readQueue.empty() &&
2060 respQueue.empty())) {
2061 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2062 " resp: %d\n", writeQueue.size(), readQueue.size(),
2063 respQueue.size());
2064 ++count;
2065 drainManager = dm;
2066
2067 // the only part that is not drained automatically over time
2068 // is the write queue, thus kick things into action if needed
2069 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2070 schedule(nextReqEvent, curTick());
2071 }
2072 }
2073
2074 if (count)
2075 setDrainState(Drainable::Draining);
2076 else
2077 setDrainState(Drainable::Drained);
2078 return count;
2079 }
2080
2081 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2082 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2083 memory(_memory)
2084 { }
2085
2086 AddrRangeList
2087 DRAMCtrl::MemoryPort::getAddrRanges() const
2088 {
2089 AddrRangeList ranges;
2090 ranges.push_back(memory.getAddrRange());
2091 return ranges;
2092 }
2093
2094 void
2095 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2096 {
2097 pkt->pushLabel(memory.name());
2098
2099 if (!queue.checkFunctional(pkt)) {
2100 // Default implementation of SimpleTimingPort::recvFunctional()
2101 // calls recvAtomic() and throws away the latency; we can save a
2102 // little here by just not calculating the latency.
2103 memory.recvFunctional(pkt);
2104 }
2105
2106 pkt->popLabel();
2107 }
2108
2109 Tick
2110 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2111 {
2112 return memory.recvAtomic(pkt);
2113 }
2114
2115 bool
2116 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2117 {
2118 // pass it to the memory controller
2119 return memory.recvTimingReq(pkt);
2120 }
2121
2122 DRAMCtrl*
2123 DRAMCtrlParams::create()
2124 {
2125 return new DRAMCtrl(this);
2126 }