mem: Dynamically determine page bytes in memory components
[gem5.git] / src / mem / dram_ctrl.cc
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45 #include "base/bitfield.hh"
46 #include "base/trace.hh"
47 #include "debug/DRAM.hh"
48 #include "debug/DRAMPower.hh"
49 #include "debug/DRAMState.hh"
50 #include "debug/Drain.hh"
51 #include "mem/dram_ctrl.hh"
52 #include "sim/system.hh"
53
54 using namespace std;
55 using namespace Data;
56
57 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
58 AbstractMemory(p),
59 port(name() + ".port", *this),
60 retryRdReq(false), retryWrReq(false),
61 busState(READ),
62 nextReqEvent(this), respondEvent(this), activateEvent(this),
63 prechargeEvent(this), refreshEvent(this), powerEvent(this),
64 drainManager(NULL),
65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66 deviceRowBufferSize(p->device_rowbuffer_size),
67 devicesPerRank(p->devices_per_rank),
68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69 rowBufferSize(devicesPerRank * deviceRowBufferSize),
70 columnsPerRowBuffer(rowBufferSize / burstSize),
71 columnsPerStripe(range.granularity() / burstSize),
72 ranksPerChannel(p->ranks_per_channel),
73 bankGroupsPerRank(p->bank_groups_per_rank),
74 bankGroupArch(p->bank_groups_per_rank > 0),
75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
76 readBufferSize(p->read_buffer_size),
77 writeBufferSize(p->write_buffer_size),
78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80 minWritesPerSwitch(p->min_writes_per_switch),
81 writesThisTime(0), readsThisTime(0),
82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
87 pageMgmt(p->page_policy),
88 maxAccessesPerRow(p->max_accesses_per_row),
89 frontendLatency(p->static_frontend_latency),
90 backendLatency(p->static_backend_latency),
91 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
92 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
93 nextReqTime(0), pwrStateTick(0), numBanksActive(0),
94 activeRank(0), timeStampOffset(0)
95 {
96 // create the bank states based on the dimensions of the ranks and
97 // banks
98 banks.resize(ranksPerChannel);
99
100 //create list of drampower objects. For each rank 1 drampower instance.
101 for (int i = 0; i < ranksPerChannel; i++) {
102 DRAMPower drampower = DRAMPower(p, false);
103 rankPower.emplace_back(drampower);
104 }
105
106 actTicks.resize(ranksPerChannel);
107 for (size_t c = 0; c < ranksPerChannel; ++c) {
108 banks[c].resize(banksPerRank);
109 actTicks[c].resize(activationLimit, 0);
110 }
111
112 // set the bank indices
113 for (int r = 0; r < ranksPerChannel; r++) {
114 for (int b = 0; b < banksPerRank; b++) {
115 banks[r][b].rank = r;
116 banks[r][b].bank = b;
117 if (bankGroupArch) {
118 // Simply assign lower bits to bank group in order to
119 // rotate across bank groups as banks are incremented
120 // e.g. with 4 banks per bank group and 16 banks total:
121 // banks 0,4,8,12 are in bank group 0
122 // banks 1,5,9,13 are in bank group 1
123 // banks 2,6,10,14 are in bank group 2
124 // banks 3,7,11,15 are in bank group 3
125 banks[r][b].bankgr = b % bankGroupsPerRank;
126 } else {
127 // No bank groups; simply assign to bank number
128 banks[r][b].bankgr = b;
129 }
130 }
131 }
132
133 // perform a basic check of the write thresholds
134 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
135 fatal("Write buffer low threshold %d must be smaller than the "
136 "high threshold %d\n", p->write_low_thresh_perc,
137 p->write_high_thresh_perc);
138
139 // determine the rows per bank by looking at the total capacity
140 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
141
142 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
143 AbstractMemory::size());
144
145 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
146 rowBufferSize, columnsPerRowBuffer);
147
148 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
149
150 // a bit of sanity checks on the interleaving
151 if (range.interleaved()) {
152 if (channels != range.stripes())
153 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
154 name(), range.stripes(), channels);
155
156 if (addrMapping == Enums::RoRaBaChCo) {
157 if (rowBufferSize != range.granularity()) {
158 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
159 "address map\n", name());
160 }
161 } else if (addrMapping == Enums::RoRaBaCoCh ||
162 addrMapping == Enums::RoCoRaBaCh) {
163 // for the interleavings with channel bits in the bottom,
164 // if the system uses a channel striping granularity that
165 // is larger than the DRAM burst size, then map the
166 // sequential accesses within a stripe to a number of
167 // columns in the DRAM, effectively placing some of the
168 // lower-order column bits as the least-significant bits
169 // of the address (above the ones denoting the burst size)
170 assert(columnsPerStripe >= 1);
171
172 // channel striping has to be done at a granularity that
173 // is equal or larger to a cache line
174 if (system()->cacheLineSize() > range.granularity()) {
175 fatal("Channel interleaving of %s must be at least as large "
176 "as the cache line size\n", name());
177 }
178
179 // ...and equal or smaller than the row-buffer size
180 if (rowBufferSize < range.granularity()) {
181 fatal("Channel interleaving of %s must be at most as large "
182 "as the row-buffer size\n", name());
183 }
184 // this is essentially the check above, so just to be sure
185 assert(columnsPerStripe <= columnsPerRowBuffer);
186 }
187 }
188
189 // some basic sanity checks
190 if (tREFI <= tRP || tREFI <= tRFC) {
191 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
192 tREFI, tRP, tRFC);
193 }
194
195 // basic bank group architecture checks ->
196 if (bankGroupArch) {
197 // must have at least one bank per bank group
198 if (bankGroupsPerRank > banksPerRank) {
199 fatal("banks per rank (%d) must be equal to or larger than "
200 "banks groups per rank (%d)\n",
201 banksPerRank, bankGroupsPerRank);
202 }
203 // must have same number of banks in each bank group
204 if ((banksPerRank % bankGroupsPerRank) != 0) {
205 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
206 "per rank (%d) for equal banks per bank group\n",
207 banksPerRank, bankGroupsPerRank);
208 }
209 // tCCD_L should be greater than minimal, back-to-back burst delay
210 if (tCCD_L <= tBURST) {
211 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
212 "bank groups per rank (%d) is greater than 1\n",
213 tCCD_L, tBURST, bankGroupsPerRank);
214 }
215 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
216 if (tRRD_L <= tRRD) {
217 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
218 "bank groups per rank (%d) is greater than 1\n",
219 tRRD_L, tRRD, bankGroupsPerRank);
220 }
221 }
222
223 }
224
225 void
226 DRAMCtrl::init()
227 {
228 AbstractMemory::init();
229
230 if (!port.isConnected()) {
231 fatal("DRAMCtrl %s is unconnected!\n", name());
232 } else {
233 port.sendRangeChange();
234 }
235 }
236
237 void
238 DRAMCtrl::startup()
239 {
240 // timestamp offset should be in clock cycles for DRAMPower
241 timeStampOffset = divCeil(curTick(), tCK);
242 // update the start tick for the precharge accounting to the
243 // current tick
244 pwrStateTick = curTick();
245
246 // shift the bus busy time sufficiently far ahead that we never
247 // have to worry about negative values when computing the time for
248 // the next request, this will add an insignificant bubble at the
249 // start of simulation
250 busBusyUntil = curTick() + tRP + tRCD + tCL;
251
252 // kick off the refresh, and give ourselves enough time to
253 // precharge
254 schedule(refreshEvent, curTick() + tREFI - tRP);
255 }
256
257 Tick
258 DRAMCtrl::recvAtomic(PacketPtr pkt)
259 {
260 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
261
262 // do the actual memory access and turn the packet into a response
263 access(pkt);
264
265 Tick latency = 0;
266 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
267 // this value is not supposed to be accurate, just enough to
268 // keep things going, mimic a closed page
269 latency = tRP + tRCD + tCL;
270 }
271 return latency;
272 }
273
274 bool
275 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
276 {
277 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
278 readBufferSize, readQueue.size() + respQueue.size(),
279 neededEntries);
280
281 return
282 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
283 }
284
285 bool
286 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
287 {
288 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
289 writeBufferSize, writeQueue.size(), neededEntries);
290 return (writeQueue.size() + neededEntries) > writeBufferSize;
291 }
292
293 DRAMCtrl::DRAMPacket*
294 DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
295 bool isRead)
296 {
297 // decode the address based on the address mapping scheme, with
298 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
299 // channel, respectively
300 uint8_t rank;
301 uint8_t bank;
302 // use a 64-bit unsigned during the computations as the row is
303 // always the top bits, and check before creating the DRAMPacket
304 uint64_t row;
305
306 // truncate the address to a DRAM burst, which makes it unique to
307 // a specific column, row, bank, rank and channel
308 Addr addr = dramPktAddr / burstSize;
309
310 // we have removed the lowest order address bits that denote the
311 // position within the column
312 if (addrMapping == Enums::RoRaBaChCo) {
313 // the lowest order bits denote the column to ensure that
314 // sequential cache lines occupy the same row
315 addr = addr / columnsPerRowBuffer;
316
317 // take out the channel part of the address
318 addr = addr / channels;
319
320 // after the channel bits, get the bank bits to interleave
321 // over the banks
322 bank = addr % banksPerRank;
323 addr = addr / banksPerRank;
324
325 // after the bank, we get the rank bits which thus interleaves
326 // over the ranks
327 rank = addr % ranksPerChannel;
328 addr = addr / ranksPerChannel;
329
330 // lastly, get the row bits
331 row = addr % rowsPerBank;
332 addr = addr / rowsPerBank;
333 } else if (addrMapping == Enums::RoRaBaCoCh) {
334 // take out the lower-order column bits
335 addr = addr / columnsPerStripe;
336
337 // take out the channel part of the address
338 addr = addr / channels;
339
340 // next, the higher-order column bites
341 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
342
343 // after the column bits, we get the bank bits to interleave
344 // over the banks
345 bank = addr % banksPerRank;
346 addr = addr / banksPerRank;
347
348 // after the bank, we get the rank bits which thus interleaves
349 // over the ranks
350 rank = addr % ranksPerChannel;
351 addr = addr / ranksPerChannel;
352
353 // lastly, get the row bits
354 row = addr % rowsPerBank;
355 addr = addr / rowsPerBank;
356 } else if (addrMapping == Enums::RoCoRaBaCh) {
357 // optimise for closed page mode and utilise maximum
358 // parallelism of the DRAM (at the cost of power)
359
360 // take out the lower-order column bits
361 addr = addr / columnsPerStripe;
362
363 // take out the channel part of the address, not that this has
364 // to match with how accesses are interleaved between the
365 // controllers in the address mapping
366 addr = addr / channels;
367
368 // start with the bank bits, as this provides the maximum
369 // opportunity for parallelism between requests
370 bank = addr % banksPerRank;
371 addr = addr / banksPerRank;
372
373 // next get the rank bits
374 rank = addr % ranksPerChannel;
375 addr = addr / ranksPerChannel;
376
377 // next, the higher-order column bites
378 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
379
380 // lastly, get the row bits
381 row = addr % rowsPerBank;
382 addr = addr / rowsPerBank;
383 } else
384 panic("Unknown address mapping policy chosen!");
385
386 assert(rank < ranksPerChannel);
387 assert(bank < banksPerRank);
388 assert(row < rowsPerBank);
389 assert(row < Bank::NO_ROW);
390
391 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
392 dramPktAddr, rank, bank, row);
393
394 // create the corresponding DRAM packet with the entry time and
395 // ready time set to the current tick, the latter will be updated
396 // later
397 uint16_t bank_id = banksPerRank * rank + bank;
398 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
399 size, banks[rank][bank]);
400 }
401
402 void
403 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
404 {
405 // only add to the read queue here. whenever the request is
406 // eventually done, set the readyTime, and call schedule()
407 assert(!pkt->isWrite());
408
409 assert(pktCount != 0);
410
411 // if the request size is larger than burst size, the pkt is split into
412 // multiple DRAM packets
413 // Note if the pkt starting address is not aligened to burst size, the
414 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
415 // are aligned to burst size boundaries. This is to ensure we accurately
416 // check read packets against packets in write queue.
417 Addr addr = pkt->getAddr();
418 unsigned pktsServicedByWrQ = 0;
419 BurstHelper* burst_helper = NULL;
420 for (int cnt = 0; cnt < pktCount; ++cnt) {
421 unsigned size = std::min((addr | (burstSize - 1)) + 1,
422 pkt->getAddr() + pkt->getSize()) - addr;
423 readPktSize[ceilLog2(size)]++;
424 readBursts++;
425
426 // First check write buffer to see if the data is already at
427 // the controller
428 bool foundInWrQ = false;
429 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
430 // check if the read is subsumed in the write entry we are
431 // looking at
432 if ((*i)->addr <= addr &&
433 (addr + size) <= ((*i)->addr + (*i)->size)) {
434 foundInWrQ = true;
435 servicedByWrQ++;
436 pktsServicedByWrQ++;
437 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
438 "write queue\n", addr, size);
439 bytesReadWrQ += burstSize;
440 break;
441 }
442 }
443
444 // If not found in the write q, make a DRAM packet and
445 // push it onto the read queue
446 if (!foundInWrQ) {
447
448 // Make the burst helper for split packets
449 if (pktCount > 1 && burst_helper == NULL) {
450 DPRINTF(DRAM, "Read to addr %lld translates to %d "
451 "dram requests\n", pkt->getAddr(), pktCount);
452 burst_helper = new BurstHelper(pktCount);
453 }
454
455 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
456 dram_pkt->burstHelper = burst_helper;
457
458 assert(!readQueueFull(1));
459 rdQLenPdf[readQueue.size() + respQueue.size()]++;
460
461 DPRINTF(DRAM, "Adding to read queue\n");
462
463 readQueue.push_back(dram_pkt);
464
465 // Update stats
466 avgRdQLen = readQueue.size() + respQueue.size();
467 }
468
469 // Starting address of next dram pkt (aligend to burstSize boundary)
470 addr = (addr | (burstSize - 1)) + 1;
471 }
472
473 // If all packets are serviced by write queue, we send the repsonse back
474 if (pktsServicedByWrQ == pktCount) {
475 accessAndRespond(pkt, frontendLatency);
476 return;
477 }
478
479 // Update how many split packets are serviced by write queue
480 if (burst_helper != NULL)
481 burst_helper->burstsServiced = pktsServicedByWrQ;
482
483 // If we are not already scheduled to get a request out of the
484 // queue, do so now
485 if (!nextReqEvent.scheduled()) {
486 DPRINTF(DRAM, "Request scheduled immediately\n");
487 schedule(nextReqEvent, curTick());
488 }
489 }
490
491 void
492 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
493 {
494 // only add to the write queue here. whenever the request is
495 // eventually done, set the readyTime, and call schedule()
496 assert(pkt->isWrite());
497
498 // if the request size is larger than burst size, the pkt is split into
499 // multiple DRAM packets
500 Addr addr = pkt->getAddr();
501 for (int cnt = 0; cnt < pktCount; ++cnt) {
502 unsigned size = std::min((addr | (burstSize - 1)) + 1,
503 pkt->getAddr() + pkt->getSize()) - addr;
504 writePktSize[ceilLog2(size)]++;
505 writeBursts++;
506
507 // see if we can merge with an existing item in the write
508 // queue and keep track of whether we have merged or not so we
509 // can stop at that point and also avoid enqueueing a new
510 // request
511 bool merged = false;
512 auto w = writeQueue.begin();
513
514 while(!merged && w != writeQueue.end()) {
515 // either of the two could be first, if they are the same
516 // it does not matter which way we go
517 if ((*w)->addr >= addr) {
518 // the existing one starts after the new one, figure
519 // out where the new one ends with respect to the
520 // existing one
521 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
522 // check if the existing one is completely
523 // subsumed in the new one
524 DPRINTF(DRAM, "Merging write covering existing burst\n");
525 merged = true;
526 // update both the address and the size
527 (*w)->addr = addr;
528 (*w)->size = size;
529 } else if ((addr + size) >= (*w)->addr &&
530 ((*w)->addr + (*w)->size - addr) <= burstSize) {
531 // the new one is just before or partially
532 // overlapping with the existing one, and together
533 // they fit within a burst
534 DPRINTF(DRAM, "Merging write before existing burst\n");
535 merged = true;
536 // the existing queue item needs to be adjusted with
537 // respect to both address and size
538 (*w)->size = (*w)->addr + (*w)->size - addr;
539 (*w)->addr = addr;
540 }
541 } else {
542 // the new one starts after the current one, figure
543 // out where the existing one ends with respect to the
544 // new one
545 if (((*w)->addr + (*w)->size) >= (addr + size)) {
546 // check if the new one is completely subsumed in the
547 // existing one
548 DPRINTF(DRAM, "Merging write into existing burst\n");
549 merged = true;
550 // no adjustments necessary
551 } else if (((*w)->addr + (*w)->size) >= addr &&
552 (addr + size - (*w)->addr) <= burstSize) {
553 // the existing one is just before or partially
554 // overlapping with the new one, and together
555 // they fit within a burst
556 DPRINTF(DRAM, "Merging write after existing burst\n");
557 merged = true;
558 // the address is right, and only the size has
559 // to be adjusted
560 (*w)->size = addr + size - (*w)->addr;
561 }
562 }
563 ++w;
564 }
565
566 // if the item was not merged we need to create a new write
567 // and enqueue it
568 if (!merged) {
569 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
570
571 assert(writeQueue.size() < writeBufferSize);
572 wrQLenPdf[writeQueue.size()]++;
573
574 DPRINTF(DRAM, "Adding to write queue\n");
575
576 writeQueue.push_back(dram_pkt);
577
578 // Update stats
579 avgWrQLen = writeQueue.size();
580 } else {
581 // keep track of the fact that this burst effectively
582 // disappeared as it was merged with an existing one
583 mergedWrBursts++;
584 }
585
586 // Starting address of next dram pkt (aligend to burstSize boundary)
587 addr = (addr | (burstSize - 1)) + 1;
588 }
589
590 // we do not wait for the writes to be send to the actual memory,
591 // but instead take responsibility for the consistency here and
592 // snoop the write queue for any upcoming reads
593 // @todo, if a pkt size is larger than burst size, we might need a
594 // different front end latency
595 accessAndRespond(pkt, frontendLatency);
596
597 // If we are not already scheduled to get a request out of the
598 // queue, do so now
599 if (!nextReqEvent.scheduled()) {
600 DPRINTF(DRAM, "Request scheduled immediately\n");
601 schedule(nextReqEvent, curTick());
602 }
603 }
604
605 void
606 DRAMCtrl::printQs() const {
607 DPRINTF(DRAM, "===READ QUEUE===\n\n");
608 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
609 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
610 }
611 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
612 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
613 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
614 }
615 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
616 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
617 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
618 }
619 }
620
621 bool
622 DRAMCtrl::recvTimingReq(PacketPtr pkt)
623 {
624 /// @todo temporary hack to deal with memory corruption issues until
625 /// 4-phase transactions are complete
626 for (int x = 0; x < pendingDelete.size(); x++)
627 delete pendingDelete[x];
628 pendingDelete.clear();
629
630 // This is where we enter from the outside world
631 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
632 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
633
634 // simply drop inhibited packets for now
635 if (pkt->memInhibitAsserted()) {
636 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
637 pendingDelete.push_back(pkt);
638 return true;
639 }
640
641 // Calc avg gap between requests
642 if (prevArrival != 0) {
643 totGap += curTick() - prevArrival;
644 }
645 prevArrival = curTick();
646
647
648 // Find out how many dram packets a pkt translates to
649 // If the burst size is equal or larger than the pkt size, then a pkt
650 // translates to only one dram packet. Otherwise, a pkt translates to
651 // multiple dram packets
652 unsigned size = pkt->getSize();
653 unsigned offset = pkt->getAddr() & (burstSize - 1);
654 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
655
656 // check local buffers and do not accept if full
657 if (pkt->isRead()) {
658 assert(size != 0);
659 if (readQueueFull(dram_pkt_count)) {
660 DPRINTF(DRAM, "Read queue full, not accepting\n");
661 // remember that we have to retry this port
662 retryRdReq = true;
663 numRdRetry++;
664 return false;
665 } else {
666 addToReadQueue(pkt, dram_pkt_count);
667 readReqs++;
668 bytesReadSys += size;
669 }
670 } else if (pkt->isWrite()) {
671 assert(size != 0);
672 if (writeQueueFull(dram_pkt_count)) {
673 DPRINTF(DRAM, "Write queue full, not accepting\n");
674 // remember that we have to retry this port
675 retryWrReq = true;
676 numWrRetry++;
677 return false;
678 } else {
679 addToWriteQueue(pkt, dram_pkt_count);
680 writeReqs++;
681 bytesWrittenSys += size;
682 }
683 } else {
684 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
685 neitherReadNorWrite++;
686 accessAndRespond(pkt, 1);
687 }
688
689 return true;
690 }
691
692 void
693 DRAMCtrl::processRespondEvent()
694 {
695 DPRINTF(DRAM,
696 "processRespondEvent(): Some req has reached its readyTime\n");
697
698 DRAMPacket* dram_pkt = respQueue.front();
699
700 if (dram_pkt->burstHelper) {
701 // it is a split packet
702 dram_pkt->burstHelper->burstsServiced++;
703 if (dram_pkt->burstHelper->burstsServiced ==
704 dram_pkt->burstHelper->burstCount) {
705 // we have now serviced all children packets of a system packet
706 // so we can now respond to the requester
707 // @todo we probably want to have a different front end and back
708 // end latency for split packets
709 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
710 delete dram_pkt->burstHelper;
711 dram_pkt->burstHelper = NULL;
712 }
713 } else {
714 // it is not a split packet
715 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
716 }
717
718 delete respQueue.front();
719 respQueue.pop_front();
720
721 if (!respQueue.empty()) {
722 assert(respQueue.front()->readyTime >= curTick());
723 assert(!respondEvent.scheduled());
724 schedule(respondEvent, respQueue.front()->readyTime);
725 } else {
726 // if there is nothing left in any queue, signal a drain
727 if (writeQueue.empty() && readQueue.empty() &&
728 drainManager) {
729 drainManager->signalDrainDone();
730 drainManager = NULL;
731 }
732 }
733
734 // We have made a location in the queue available at this point,
735 // so if there is a read that was forced to wait, retry now
736 if (retryRdReq) {
737 retryRdReq = false;
738 port.sendRetry();
739 }
740 }
741
742 void
743 DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
744 {
745 // This method does the arbitration between requests. The chosen
746 // packet is simply moved to the head of the queue. The other
747 // methods know that this is the place to look. For example, with
748 // FCFS, this method does nothing
749 assert(!queue.empty());
750
751 if (queue.size() == 1) {
752 DPRINTF(DRAM, "Single request, nothing to do\n");
753 return;
754 }
755
756 if (memSchedPolicy == Enums::fcfs) {
757 // Do nothing, since the correct request is already head
758 } else if (memSchedPolicy == Enums::frfcfs) {
759 reorderQueue(queue, switched_cmd_type);
760 } else
761 panic("No scheduling policy chosen\n");
762 }
763
764 void
765 DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
766 {
767 // Only determine this when needed
768 uint64_t earliest_banks = 0;
769
770 // Search for row hits first, if no row hit is found then schedule the
771 // packet to one of the earliest banks available
772 bool found_earliest_pkt = false;
773 bool found_prepped_diff_rank_pkt = false;
774 auto selected_pkt_it = queue.begin();
775
776 for (auto i = queue.begin(); i != queue.end() ; ++i) {
777 DRAMPacket* dram_pkt = *i;
778 const Bank& bank = dram_pkt->bankRef;
779 // Check if it is a row hit
780 if (bank.openRow == dram_pkt->row) {
781 if (dram_pkt->rank == activeRank || switched_cmd_type) {
782 // FCFS within the hits, giving priority to commands
783 // that access the same rank as the previous burst
784 // to minimize bus turnaround delays
785 // Only give rank prioity when command type is not changing
786 DPRINTF(DRAM, "Row buffer hit\n");
787 selected_pkt_it = i;
788 break;
789 } else if (!found_prepped_diff_rank_pkt) {
790 // found row hit for command on different rank than prev burst
791 selected_pkt_it = i;
792 found_prepped_diff_rank_pkt = true;
793 }
794 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
795 // No row hit and
796 // haven't found an entry with a row hit to a new rank
797 if (earliest_banks == 0)
798 // Determine entries with earliest bank prep delay
799 // Function will give priority to commands that access the
800 // same rank as previous burst and can prep the bank seamlessly
801 earliest_banks = minBankPrep(queue, switched_cmd_type);
802
803 // FCFS - Bank is first available bank
804 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
805 // Remember the packet to be scheduled to one of the earliest
806 // banks available, FCFS amongst the earliest banks
807 selected_pkt_it = i;
808 found_earliest_pkt = true;
809 }
810 }
811 }
812
813 DRAMPacket* selected_pkt = *selected_pkt_it;
814 queue.erase(selected_pkt_it);
815 queue.push_front(selected_pkt);
816 }
817
818 void
819 DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
820 {
821 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
822
823 bool needsResponse = pkt->needsResponse();
824 // do the actual memory access which also turns the packet into a
825 // response
826 access(pkt);
827
828 // turn packet around to go back to requester if response expected
829 if (needsResponse) {
830 // access already turned the packet into a response
831 assert(pkt->isResponse());
832
833 // @todo someone should pay for this
834 pkt->firstWordDelay = pkt->lastWordDelay = 0;
835
836 // queue the packet in the response queue to be sent out after
837 // the static latency has passed
838 port.schedTimingResp(pkt, curTick() + static_latency);
839 } else {
840 // @todo the packet is going to be deleted, and the DRAMPacket
841 // is still having a pointer to it
842 pendingDelete.push_back(pkt);
843 }
844
845 DPRINTF(DRAM, "Done\n");
846
847 return;
848 }
849
850 void
851 DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
852 {
853 // get the rank index from the bank
854 uint8_t rank = bank.rank;
855
856 assert(actTicks[rank].size() == activationLimit);
857
858 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
859
860 // update the open row
861 assert(bank.openRow == Bank::NO_ROW);
862 bank.openRow = row;
863
864 // start counting anew, this covers both the case when we
865 // auto-precharged, and when this access is forced to
866 // precharge
867 bank.bytesAccessed = 0;
868 bank.rowAccesses = 0;
869
870 ++numBanksActive;
871 assert(numBanksActive <= banksPerRank * ranksPerChannel);
872
873 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
874 bank.bank, bank.rank, act_tick, numBanksActive);
875
876 rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank,
877 divCeil(act_tick, tCK) -
878 timeStampOffset);
879
880 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
881 timeStampOffset, bank.bank, bank.rank);
882
883 // The next access has to respect tRAS for this bank
884 bank.preAllowedAt = act_tick + tRAS;
885
886 // Respect the row-to-column command delay
887 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt);
888
889 // start by enforcing tRRD
890 for(int i = 0; i < banksPerRank; i++) {
891 // next activate to any bank in this rank must not happen
892 // before tRRD
893 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) {
894 // bank group architecture requires longer delays between
895 // ACT commands within the same bank group. Use tRRD_L
896 // in this case
897 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L,
898 banks[rank][i].actAllowedAt);
899 } else {
900 // use shorter tRRD value when either
901 // 1) bank group architecture is not supportted
902 // 2) bank is in a different bank group
903 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
904 banks[rank][i].actAllowedAt);
905 }
906 }
907
908 // next, we deal with tXAW, if the activation limit is disabled
909 // then we are done
910 if (actTicks[rank].empty())
911 return;
912
913 // sanity check
914 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
915 panic("Got %d activates in window %d (%llu - %llu) which is smaller "
916 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
917 act_tick, actTicks[rank].back(), tXAW);
918 }
919
920 // shift the times used for the book keeping, the last element
921 // (highest index) is the oldest one and hence the lowest value
922 actTicks[rank].pop_back();
923
924 // record an new activation (in the future)
925 actTicks[rank].push_front(act_tick);
926
927 // cannot activate more than X times in time window tXAW, push the
928 // next one (the X + 1'st activate) to be tXAW away from the
929 // oldest in our window of X
930 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
931 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
932 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
933 for(int j = 0; j < banksPerRank; j++)
934 // next activate must not happen before end of window
935 banks[rank][j].actAllowedAt =
936 std::max(actTicks[rank].back() + tXAW,
937 banks[rank][j].actAllowedAt);
938 }
939
940 // at the point when this activate takes place, make sure we
941 // transition to the active power state
942 if (!activateEvent.scheduled())
943 schedule(activateEvent, act_tick);
944 else if (activateEvent.when() > act_tick)
945 // move it sooner in time
946 reschedule(activateEvent, act_tick);
947 }
948
949 void
950 DRAMCtrl::processActivateEvent()
951 {
952 // we should transition to the active state as soon as any bank is active
953 if (pwrState != PWR_ACT)
954 // note that at this point numBanksActive could be back at
955 // zero again due to a precharge scheduled in the future
956 schedulePowerEvent(PWR_ACT, curTick());
957 }
958
959 void
960 DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
961 {
962 // make sure the bank has an open row
963 assert(bank.openRow != Bank::NO_ROW);
964
965 // sample the bytes per activate here since we are closing
966 // the page
967 bytesPerActivate.sample(bank.bytesAccessed);
968
969 bank.openRow = Bank::NO_ROW;
970
971 // no precharge allowed before this one
972 bank.preAllowedAt = pre_at;
973
974 Tick pre_done_at = pre_at + tRP;
975
976 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
977
978 assert(numBanksActive != 0);
979 --numBanksActive;
980
981 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
982 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
983
984 if (trace) {
985
986 rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank,
987 divCeil(pre_at, tCK) -
988 timeStampOffset);
989 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
990 timeStampOffset, bank.bank, bank.rank);
991 }
992 // if we look at the current number of active banks we might be
993 // tempted to think the DRAM is now idle, however this can be
994 // undone by an activate that is scheduled to happen before we
995 // would have reached the idle state, so schedule an event and
996 // rather check once we actually make it to the point in time when
997 // the (last) precharge takes place
998 if (!prechargeEvent.scheduled())
999 schedule(prechargeEvent, pre_done_at);
1000 else if (prechargeEvent.when() < pre_done_at)
1001 reschedule(prechargeEvent, pre_done_at);
1002 }
1003
1004 void
1005 DRAMCtrl::processPrechargeEvent()
1006 {
1007 // if we reached zero, then special conditions apply as we track
1008 // if all banks are precharged for the power models
1009 if (numBanksActive == 0) {
1010 // we should transition to the idle state when the last bank
1011 // is precharged
1012 schedulePowerEvent(PWR_IDLE, curTick());
1013 }
1014 }
1015
1016 void
1017 DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1018 {
1019 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1020 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1021
1022 // get the bank
1023 Bank& bank = dram_pkt->bankRef;
1024
1025 // for the state we need to track if it is a row hit or not
1026 bool row_hit = true;
1027
1028 // respect any constraints on the command (e.g. tRCD or tCCD)
1029 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1030
1031 // Determine the access latency and update the bank state
1032 if (bank.openRow == dram_pkt->row) {
1033 // nothing to do
1034 } else {
1035 row_hit = false;
1036
1037 // If there is a page open, precharge it.
1038 if (bank.openRow != Bank::NO_ROW) {
1039 prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
1040 }
1041
1042 // next we need to account for the delay in activating the
1043 // page
1044 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1045
1046 // Record the activation and deal with all the global timing
1047 // constraints caused be a new activation (tRRD and tXAW)
1048 activateBank(bank, act_tick, dram_pkt->row);
1049
1050 // issue the command as early as possible
1051 cmd_at = bank.colAllowedAt;
1052 }
1053
1054 // we need to wait until the bus is available before we can issue
1055 // the command
1056 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1057
1058 // update the packet ready time
1059 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1060
1061 // only one burst can use the bus at any one point in time
1062 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1063
1064 // update the time for the next read/write burst for each
1065 // bank (add a max with tCCD/tCCD_L here)
1066 Tick cmd_dly;
1067 for(int j = 0; j < ranksPerChannel; j++) {
1068 for(int i = 0; i < banksPerRank; i++) {
1069 // next burst to same bank group in this rank must not happen
1070 // before tCCD_L. Different bank group timing requirement is
1071 // tBURST; Add tCS for different ranks
1072 if (dram_pkt->rank == j) {
1073 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) {
1074 // bank group architecture requires longer delays between
1075 // RD/WR burst commands to the same bank group.
1076 // Use tCCD_L in this case
1077 cmd_dly = tCCD_L;
1078 } else {
1079 // use tBURST (equivalent to tCCD_S), the shorter
1080 // cas-to-cas delay value, when either:
1081 // 1) bank group architecture is not supportted
1082 // 2) bank is in a different bank group
1083 cmd_dly = tBURST;
1084 }
1085 } else {
1086 // different rank is by default in a different bank group
1087 // use tBURST (equivalent to tCCD_S), which is the shorter
1088 // cas-to-cas delay in this case
1089 // Add tCS to account for rank-to-rank bus delay requirements
1090 cmd_dly = tBURST + tCS;
1091 }
1092 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly,
1093 banks[j][i].colAllowedAt);
1094 }
1095 }
1096
1097 // Save rank of current access
1098 activeRank = dram_pkt->rank;
1099
1100 // If this is a write, we also need to respect the write recovery
1101 // time before a precharge, in the case of a read, respect the
1102 // read to precharge constraint
1103 bank.preAllowedAt = std::max(bank.preAllowedAt,
1104 dram_pkt->isRead ? cmd_at + tRTP :
1105 dram_pkt->readyTime + tWR);
1106
1107 // increment the bytes accessed and the accesses per row
1108 bank.bytesAccessed += burstSize;
1109 ++bank.rowAccesses;
1110
1111 // if we reached the max, then issue with an auto-precharge
1112 bool auto_precharge = pageMgmt == Enums::close ||
1113 bank.rowAccesses == maxAccessesPerRow;
1114
1115 // if we did not hit the limit, we might still want to
1116 // auto-precharge
1117 if (!auto_precharge &&
1118 (pageMgmt == Enums::open_adaptive ||
1119 pageMgmt == Enums::close_adaptive)) {
1120 // a twist on the open and close page policies:
1121 // 1) open_adaptive page policy does not blindly keep the
1122 // page open, but close it if there are no row hits, and there
1123 // are bank conflicts in the queue
1124 // 2) close_adaptive page policy does not blindly close the
1125 // page, but closes it only if there are no row hits in the queue.
1126 // In this case, only force an auto precharge when there
1127 // are no same page hits in the queue
1128 bool got_more_hits = false;
1129 bool got_bank_conflict = false;
1130
1131 // either look at the read queue or write queue
1132 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1133 writeQueue;
1134 auto p = queue.begin();
1135 // make sure we are not considering the packet that we are
1136 // currently dealing with (which is the head of the queue)
1137 ++p;
1138
1139 // keep on looking until we have found required condition or
1140 // reached the end
1141 while (!(got_more_hits &&
1142 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1143 p != queue.end()) {
1144 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1145 (dram_pkt->bank == (*p)->bank);
1146 bool same_row = dram_pkt->row == (*p)->row;
1147 got_more_hits |= same_rank_bank && same_row;
1148 got_bank_conflict |= same_rank_bank && !same_row;
1149 ++p;
1150 }
1151
1152 // auto pre-charge when either
1153 // 1) open_adaptive policy, we have not got any more hits, and
1154 // have a bank conflict
1155 // 2) close_adaptive policy and we have not got any more hits
1156 auto_precharge = !got_more_hits &&
1157 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1158 }
1159
1160 // DRAMPower trace command to be written
1161 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1162
1163 // MemCommand required for DRAMPower library
1164 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1165 MemCommand::WR;
1166
1167 // if this access should use auto-precharge, then we are
1168 // closing the row
1169 if (auto_precharge) {
1170 // if auto-precharge push a PRE command at the correct tick to the
1171 // list used by DRAMPower library to calculate power
1172 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1173
1174 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1175 }
1176
1177 // Update bus state
1178 busBusyUntil = dram_pkt->readyTime;
1179
1180 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1181 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1182
1183 rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank,
1184 divCeil(cmd_at, tCK) -
1185 timeStampOffset);
1186
1187 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1188 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1189
1190 // Update the minimum timing between the requests, this is a
1191 // conservative estimate of when we have to schedule the next
1192 // request to not introduce any unecessary bubbles. In most cases
1193 // we will wake up sooner than we have to.
1194 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1195
1196 // Update the stats and schedule the next request
1197 if (dram_pkt->isRead) {
1198 ++readsThisTime;
1199 if (row_hit)
1200 readRowHits++;
1201 bytesReadDRAM += burstSize;
1202 perBankRdBursts[dram_pkt->bankId]++;
1203
1204 // Update latency stats
1205 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1206 totBusLat += tBURST;
1207 totQLat += cmd_at - dram_pkt->entryTime;
1208 } else {
1209 ++writesThisTime;
1210 if (row_hit)
1211 writeRowHits++;
1212 bytesWritten += burstSize;
1213 perBankWrBursts[dram_pkt->bankId]++;
1214 }
1215 }
1216
1217 void
1218 DRAMCtrl::processNextReqEvent()
1219 {
1220 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1221 // or WRITE_TO_READ state
1222 bool switched_cmd_type = false;
1223 if (busState == READ_TO_WRITE) {
1224 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1225 "waiting\n", readsThisTime, readQueue.size());
1226
1227 // sample and reset the read-related stats as we are now
1228 // transitioning to writes, and all reads are done
1229 rdPerTurnAround.sample(readsThisTime);
1230 readsThisTime = 0;
1231
1232 // now proceed to do the actual writes
1233 busState = WRITE;
1234 switched_cmd_type = true;
1235 } else if (busState == WRITE_TO_READ) {
1236 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1237 "waiting\n", writesThisTime, writeQueue.size());
1238
1239 wrPerTurnAround.sample(writesThisTime);
1240 writesThisTime = 0;
1241
1242 busState = READ;
1243 switched_cmd_type = true;
1244 }
1245
1246 if (refreshState != REF_IDLE) {
1247 // if a refresh waiting for this event loop to finish, then hand
1248 // over now, and do not schedule a new nextReqEvent
1249 if (refreshState == REF_DRAIN) {
1250 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1251
1252 refreshState = REF_PRE;
1253
1254 // hand control back to the refresh event loop
1255 schedule(refreshEvent, curTick());
1256 }
1257
1258 // let the refresh finish before issuing any further requests
1259 return;
1260 }
1261
1262 // when we get here it is either a read or a write
1263 if (busState == READ) {
1264
1265 // track if we should switch or not
1266 bool switch_to_writes = false;
1267
1268 if (readQueue.empty()) {
1269 // In the case there is no read request to go next,
1270 // trigger writes if we have passed the low threshold (or
1271 // if we are draining)
1272 if (!writeQueue.empty() &&
1273 (drainManager || writeQueue.size() > writeLowThreshold)) {
1274
1275 switch_to_writes = true;
1276 } else {
1277 // check if we are drained
1278 if (respQueue.empty () && drainManager) {
1279 drainManager->signalDrainDone();
1280 drainManager = NULL;
1281 }
1282
1283 // nothing to do, not even any point in scheduling an
1284 // event for the next request
1285 return;
1286 }
1287 } else {
1288 // Figure out which read request goes next, and move it to the
1289 // front of the read queue
1290 chooseNext(readQueue, switched_cmd_type);
1291
1292 DRAMPacket* dram_pkt = readQueue.front();
1293
1294 // here we get a bit creative and shift the bus busy time not
1295 // just the tWTR, but also a CAS latency to capture the fact
1296 // that we are allowed to prepare a new bank, but not issue a
1297 // read command until after tWTR, in essence we capture a
1298 // bubble on the data bus that is tWTR + tCL
1299 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1300 busBusyUntil += tWTR + tCL;
1301 }
1302
1303 doDRAMAccess(dram_pkt);
1304
1305 // At this point we're done dealing with the request
1306 readQueue.pop_front();
1307
1308 // sanity check
1309 assert(dram_pkt->size <= burstSize);
1310 assert(dram_pkt->readyTime >= curTick());
1311
1312 // Insert into response queue. It will be sent back to the
1313 // requestor at its readyTime
1314 if (respQueue.empty()) {
1315 assert(!respondEvent.scheduled());
1316 schedule(respondEvent, dram_pkt->readyTime);
1317 } else {
1318 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1319 assert(respondEvent.scheduled());
1320 }
1321
1322 respQueue.push_back(dram_pkt);
1323
1324 // we have so many writes that we have to transition
1325 if (writeQueue.size() > writeHighThreshold) {
1326 switch_to_writes = true;
1327 }
1328 }
1329
1330 // switching to writes, either because the read queue is empty
1331 // and the writes have passed the low threshold (or we are
1332 // draining), or because the writes hit the hight threshold
1333 if (switch_to_writes) {
1334 // transition to writing
1335 busState = READ_TO_WRITE;
1336 }
1337 } else {
1338 chooseNext(writeQueue, switched_cmd_type);
1339 DRAMPacket* dram_pkt = writeQueue.front();
1340 // sanity check
1341 assert(dram_pkt->size <= burstSize);
1342
1343 // add a bubble to the data bus, as defined by the
1344 // tRTW when access is to the same rank as previous burst
1345 // Different rank timing is handled with tCS, which is
1346 // applied to colAllowedAt
1347 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1348 busBusyUntil += tRTW;
1349 }
1350
1351 doDRAMAccess(dram_pkt);
1352
1353 writeQueue.pop_front();
1354 delete dram_pkt;
1355
1356 // If we emptied the write queue, or got sufficiently below the
1357 // threshold (using the minWritesPerSwitch as the hysteresis) and
1358 // are not draining, or we have reads waiting and have done enough
1359 // writes, then switch to reads.
1360 if (writeQueue.empty() ||
1361 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1362 !drainManager) ||
1363 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1364 // turn the bus back around for reads again
1365 busState = WRITE_TO_READ;
1366
1367 // note that the we switch back to reads also in the idle
1368 // case, which eventually will check for any draining and
1369 // also pause any further scheduling if there is really
1370 // nothing to do
1371 }
1372 }
1373
1374 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1375
1376 // If there is space available and we have writes waiting then let
1377 // them retry. This is done here to ensure that the retry does not
1378 // cause a nextReqEvent to be scheduled before we do so as part of
1379 // the next request processing
1380 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1381 retryWrReq = false;
1382 port.sendRetry();
1383 }
1384 }
1385
1386 uint64_t
1387 DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1388 bool switched_cmd_type) const
1389 {
1390 uint64_t bank_mask = 0;
1391 Tick min_act_at = MaxTick;
1392
1393 uint64_t bank_mask_same_rank = 0;
1394 Tick min_act_at_same_rank = MaxTick;
1395
1396 // Give precedence to commands that access same rank as previous command
1397 bool same_rank_match = false;
1398
1399 // determine if we have queued transactions targetting the
1400 // bank in question
1401 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1402 for (auto p = queue.begin(); p != queue.end(); ++p) {
1403 got_waiting[(*p)->bankId] = true;
1404 }
1405
1406 for (int i = 0; i < ranksPerChannel; i++) {
1407 for (int j = 0; j < banksPerRank; j++) {
1408 uint8_t bank_id = i * banksPerRank + j;
1409
1410 // if we have waiting requests for the bank, and it is
1411 // amongst the first available, update the mask
1412 if (got_waiting[bank_id]) {
1413 // simplistic approximation of when the bank can issue
1414 // an activate, ignoring any rank-to-rank switching
1415 // cost in this calculation
1416 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1417 banks[i][j].actAllowedAt :
1418 std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1419
1420 // prioritize commands that access the
1421 // same rank as previous burst
1422 // Calculate bank mask separately for the case and
1423 // evaluate after loop iterations complete
1424 if (i == activeRank && ranksPerChannel > 1) {
1425 if (act_at <= min_act_at_same_rank) {
1426 // reset same rank bank mask if new minimum is found
1427 // and previous minimum could not immediately send ACT
1428 if (act_at < min_act_at_same_rank &&
1429 min_act_at_same_rank > curTick())
1430 bank_mask_same_rank = 0;
1431
1432 // Set flag indicating that a same rank
1433 // opportunity was found
1434 same_rank_match = true;
1435
1436 // set the bit corresponding to the available bank
1437 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1438 min_act_at_same_rank = act_at;
1439 }
1440 } else {
1441 if (act_at <= min_act_at) {
1442 // reset bank mask if new minimum is found
1443 // and either previous minimum could not immediately send ACT
1444 if (act_at < min_act_at && min_act_at > curTick())
1445 bank_mask = 0;
1446 // set the bit corresponding to the available bank
1447 replaceBits(bank_mask, bank_id, bank_id, 1);
1448 min_act_at = act_at;
1449 }
1450 }
1451 }
1452 }
1453 }
1454
1455 // Determine the earliest time when the next burst can issue based
1456 // on the current busBusyUntil delay.
1457 // Offset by tRCD to correlate with ACT timing variables
1458 Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1459
1460 // Prioritize same rank accesses that can issue B2B
1461 // Only optimize for same ranks when the command type
1462 // does not change; do not want to unnecessarily incur tWTR
1463 //
1464 // Resulting FCFS prioritization Order is:
1465 // 1) Commands that access the same rank as previous burst
1466 // and can prep the bank seamlessly.
1467 // 2) Commands (any rank) with earliest bank prep
1468 if (!switched_cmd_type && same_rank_match &&
1469 min_act_at_same_rank <= min_cmd_at) {
1470 bank_mask = bank_mask_same_rank;
1471 }
1472
1473 return bank_mask;
1474 }
1475
1476 void
1477 DRAMCtrl::processRefreshEvent()
1478 {
1479 // when first preparing the refresh, remember when it was due
1480 if (refreshState == REF_IDLE) {
1481 // remember when the refresh is due
1482 refreshDueAt = curTick();
1483
1484 // proceed to drain
1485 refreshState = REF_DRAIN;
1486
1487 DPRINTF(DRAM, "Refresh due\n");
1488 }
1489
1490 // let any scheduled read or write go ahead, after which it will
1491 // hand control back to this event loop
1492 if (refreshState == REF_DRAIN) {
1493 if (nextReqEvent.scheduled()) {
1494 // hand control over to the request loop until it is
1495 // evaluated next
1496 DPRINTF(DRAM, "Refresh awaiting draining\n");
1497
1498 return;
1499 } else {
1500 refreshState = REF_PRE;
1501 }
1502 }
1503
1504 // at this point, ensure that all banks are precharged
1505 if (refreshState == REF_PRE) {
1506 // precharge any active bank if we are not already in the idle
1507 // state
1508 if (pwrState != PWR_IDLE) {
1509 // at the moment, we use a precharge all even if there is
1510 // only a single bank open
1511 DPRINTF(DRAM, "Precharging all\n");
1512
1513 // first determine when we can precharge
1514 Tick pre_at = curTick();
1515 for (int i = 0; i < ranksPerChannel; i++) {
1516 for (int j = 0; j < banksPerRank; j++) {
1517 // respect both causality and any existing bank
1518 // constraints, some banks could already have a
1519 // (auto) precharge scheduled
1520 pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
1521 }
1522 }
1523
1524 // make sure all banks are precharged, and for those that
1525 // already are, update their availability
1526 Tick act_allowed_at = pre_at + tRP;
1527
1528 for (int i = 0; i < ranksPerChannel; i++) {
1529 for (int j = 0; j < banksPerRank; j++) {
1530 if (banks[i][j].openRow != Bank::NO_ROW) {
1531 prechargeBank(banks[i][j], pre_at, false);
1532 } else {
1533 banks[i][j].actAllowedAt =
1534 std::max(banks[i][j].actAllowedAt, act_allowed_at);
1535 banks[i][j].preAllowedAt =
1536 std::max(banks[i][j].preAllowedAt, pre_at);
1537 }
1538 }
1539
1540 // at the moment this affects all ranks
1541 rankPower[i].powerlib.doCommand(MemCommand::PREA, 0,
1542 divCeil(pre_at, tCK) -
1543 timeStampOffset);
1544
1545 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) -
1546 timeStampOffset, i);
1547 }
1548 } else {
1549 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1550
1551 // go ahead and kick the power state machine into gear if
1552 // we are already idle
1553 schedulePowerEvent(PWR_REF, curTick());
1554 }
1555
1556 refreshState = REF_RUN;
1557 assert(numBanksActive == 0);
1558
1559 // wait for all banks to be precharged, at which point the
1560 // power state machine will transition to the idle state, and
1561 // automatically move to a refresh, at that point it will also
1562 // call this method to get the refresh event loop going again
1563 return;
1564 }
1565
1566 // last but not least we perform the actual refresh
1567 if (refreshState == REF_RUN) {
1568 // should never get here with any banks active
1569 assert(numBanksActive == 0);
1570 assert(pwrState == PWR_REF);
1571
1572 Tick ref_done_at = curTick() + tRFC;
1573
1574 for (int i = 0; i < ranksPerChannel; i++) {
1575 for (int j = 0; j < banksPerRank; j++) {
1576 banks[i][j].actAllowedAt = ref_done_at;
1577 }
1578
1579 // at the moment this affects all ranks
1580 rankPower[i].powerlib.doCommand(MemCommand::REF, 0,
1581 divCeil(curTick(), tCK) -
1582 timeStampOffset);
1583
1584 // at the moment sort the list of commands and update the counters
1585 // for DRAMPower libray when doing a refresh
1586 sort(rankPower[i].powerlib.cmdList.begin(),
1587 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime);
1588
1589 // update the counters for DRAMPower, passing false to
1590 // indicate that this is not the last command in the
1591 // list. DRAMPower requires this information for the
1592 // correct calculation of the background energy at the end
1593 // of the simulation. Ideally we would want to call this
1594 // function with true once at the end of the
1595 // simulation. However, the discarded energy is extremly
1596 // small and does not effect the final results.
1597 rankPower[i].powerlib.updateCounters(false);
1598
1599 // call the energy function
1600 rankPower[i].powerlib.calcEnergy();
1601
1602 // Update the stats
1603 updatePowerStats(i);
1604
1605 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) -
1606 timeStampOffset, i);
1607 }
1608
1609 // make sure we did not wait so long that we cannot make up
1610 // for it
1611 if (refreshDueAt + tREFI < ref_done_at) {
1612 fatal("Refresh was delayed so long we cannot catch up\n");
1613 }
1614
1615 // compensate for the delay in actually performing the refresh
1616 // when scheduling the next one
1617 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1618
1619 assert(!powerEvent.scheduled());
1620
1621 // move to the idle power state once the refresh is done, this
1622 // will also move the refresh state machine to the refresh
1623 // idle state
1624 schedulePowerEvent(PWR_IDLE, ref_done_at);
1625
1626 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1627 ref_done_at, refreshDueAt + tREFI);
1628 }
1629 }
1630
1631 void
1632 DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1633 {
1634 // respect causality
1635 assert(tick >= curTick());
1636
1637 if (!powerEvent.scheduled()) {
1638 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1639 tick, pwr_state);
1640
1641 // insert the new transition
1642 pwrStateTrans = pwr_state;
1643
1644 schedule(powerEvent, tick);
1645 } else {
1646 panic("Scheduled power event at %llu to state %d, "
1647 "with scheduled event at %llu to %d\n", tick, pwr_state,
1648 powerEvent.when(), pwrStateTrans);
1649 }
1650 }
1651
1652 void
1653 DRAMCtrl::processPowerEvent()
1654 {
1655 // remember where we were, and for how long
1656 Tick duration = curTick() - pwrStateTick;
1657 PowerState prev_state = pwrState;
1658
1659 // update the accounting
1660 pwrStateTime[prev_state] += duration;
1661
1662 pwrState = pwrStateTrans;
1663 pwrStateTick = curTick();
1664
1665 if (pwrState == PWR_IDLE) {
1666 DPRINTF(DRAMState, "All banks precharged\n");
1667
1668 // if we were refreshing, make sure we start scheduling requests again
1669 if (prev_state == PWR_REF) {
1670 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1671 assert(pwrState == PWR_IDLE);
1672
1673 // kick things into action again
1674 refreshState = REF_IDLE;
1675 assert(!nextReqEvent.scheduled());
1676 schedule(nextReqEvent, curTick());
1677 } else {
1678 assert(prev_state == PWR_ACT);
1679
1680 // if we have a pending refresh, and are now moving to
1681 // the idle state, direclty transition to a refresh
1682 if (refreshState == REF_RUN) {
1683 // there should be nothing waiting at this point
1684 assert(!powerEvent.scheduled());
1685
1686 // update the state in zero time and proceed below
1687 pwrState = PWR_REF;
1688 }
1689 }
1690 }
1691
1692 // we transition to the refresh state, let the refresh state
1693 // machine know of this state update and let it deal with the
1694 // scheduling of the next power state transition as well as the
1695 // following refresh
1696 if (pwrState == PWR_REF) {
1697 DPRINTF(DRAMState, "Refreshing\n");
1698 // kick the refresh event loop into action again, and that
1699 // in turn will schedule a transition to the idle power
1700 // state once the refresh is done
1701 assert(refreshState == REF_RUN);
1702 processRefreshEvent();
1703 }
1704 }
1705
1706 void
1707 DRAMCtrl::updatePowerStats(uint8_t rank)
1708 {
1709 // Get the energy and power from DRAMPower
1710 Data::MemoryPowerModel::Energy energy =
1711 rankPower[rank].powerlib.getEnergy();
1712 Data::MemoryPowerModel::Power power =
1713 rankPower[rank].powerlib.getPower();
1714
1715 actEnergy[rank] = energy.act_energy * devicesPerRank;
1716 preEnergy[rank] = energy.pre_energy * devicesPerRank;
1717 readEnergy[rank] = energy.read_energy * devicesPerRank;
1718 writeEnergy[rank] = energy.write_energy * devicesPerRank;
1719 refreshEnergy[rank] = energy.ref_energy * devicesPerRank;
1720 actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank;
1721 preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank;
1722 totalEnergy[rank] = energy.total_energy * devicesPerRank;
1723 averagePower[rank] = power.average_power * devicesPerRank;
1724 }
1725
1726 void
1727 DRAMCtrl::regStats()
1728 {
1729 using namespace Stats;
1730
1731 AbstractMemory::regStats();
1732
1733 readReqs
1734 .name(name() + ".readReqs")
1735 .desc("Number of read requests accepted");
1736
1737 writeReqs
1738 .name(name() + ".writeReqs")
1739 .desc("Number of write requests accepted");
1740
1741 readBursts
1742 .name(name() + ".readBursts")
1743 .desc("Number of DRAM read bursts, "
1744 "including those serviced by the write queue");
1745
1746 writeBursts
1747 .name(name() + ".writeBursts")
1748 .desc("Number of DRAM write bursts, "
1749 "including those merged in the write queue");
1750
1751 servicedByWrQ
1752 .name(name() + ".servicedByWrQ")
1753 .desc("Number of DRAM read bursts serviced by the write queue");
1754
1755 mergedWrBursts
1756 .name(name() + ".mergedWrBursts")
1757 .desc("Number of DRAM write bursts merged with an existing one");
1758
1759 neitherReadNorWrite
1760 .name(name() + ".neitherReadNorWriteReqs")
1761 .desc("Number of requests that are neither read nor write");
1762
1763 perBankRdBursts
1764 .init(banksPerRank * ranksPerChannel)
1765 .name(name() + ".perBankRdBursts")
1766 .desc("Per bank write bursts");
1767
1768 perBankWrBursts
1769 .init(banksPerRank * ranksPerChannel)
1770 .name(name() + ".perBankWrBursts")
1771 .desc("Per bank write bursts");
1772
1773 avgRdQLen
1774 .name(name() + ".avgRdQLen")
1775 .desc("Average read queue length when enqueuing")
1776 .precision(2);
1777
1778 avgWrQLen
1779 .name(name() + ".avgWrQLen")
1780 .desc("Average write queue length when enqueuing")
1781 .precision(2);
1782
1783 totQLat
1784 .name(name() + ".totQLat")
1785 .desc("Total ticks spent queuing");
1786
1787 totBusLat
1788 .name(name() + ".totBusLat")
1789 .desc("Total ticks spent in databus transfers");
1790
1791 totMemAccLat
1792 .name(name() + ".totMemAccLat")
1793 .desc("Total ticks spent from burst creation until serviced "
1794 "by the DRAM");
1795
1796 avgQLat
1797 .name(name() + ".avgQLat")
1798 .desc("Average queueing delay per DRAM burst")
1799 .precision(2);
1800
1801 avgQLat = totQLat / (readBursts - servicedByWrQ);
1802
1803 avgBusLat
1804 .name(name() + ".avgBusLat")
1805 .desc("Average bus latency per DRAM burst")
1806 .precision(2);
1807
1808 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1809
1810 avgMemAccLat
1811 .name(name() + ".avgMemAccLat")
1812 .desc("Average memory access latency per DRAM burst")
1813 .precision(2);
1814
1815 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1816
1817 numRdRetry
1818 .name(name() + ".numRdRetry")
1819 .desc("Number of times read queue was full causing retry");
1820
1821 numWrRetry
1822 .name(name() + ".numWrRetry")
1823 .desc("Number of times write queue was full causing retry");
1824
1825 readRowHits
1826 .name(name() + ".readRowHits")
1827 .desc("Number of row buffer hits during reads");
1828
1829 writeRowHits
1830 .name(name() + ".writeRowHits")
1831 .desc("Number of row buffer hits during writes");
1832
1833 readRowHitRate
1834 .name(name() + ".readRowHitRate")
1835 .desc("Row buffer hit rate for reads")
1836 .precision(2);
1837
1838 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1839
1840 writeRowHitRate
1841 .name(name() + ".writeRowHitRate")
1842 .desc("Row buffer hit rate for writes")
1843 .precision(2);
1844
1845 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1846
1847 readPktSize
1848 .init(ceilLog2(burstSize) + 1)
1849 .name(name() + ".readPktSize")
1850 .desc("Read request sizes (log2)");
1851
1852 writePktSize
1853 .init(ceilLog2(burstSize) + 1)
1854 .name(name() + ".writePktSize")
1855 .desc("Write request sizes (log2)");
1856
1857 rdQLenPdf
1858 .init(readBufferSize)
1859 .name(name() + ".rdQLenPdf")
1860 .desc("What read queue length does an incoming req see");
1861
1862 wrQLenPdf
1863 .init(writeBufferSize)
1864 .name(name() + ".wrQLenPdf")
1865 .desc("What write queue length does an incoming req see");
1866
1867 bytesPerActivate
1868 .init(maxAccessesPerRow)
1869 .name(name() + ".bytesPerActivate")
1870 .desc("Bytes accessed per row activation")
1871 .flags(nozero);
1872
1873 rdPerTurnAround
1874 .init(readBufferSize)
1875 .name(name() + ".rdPerTurnAround")
1876 .desc("Reads before turning the bus around for writes")
1877 .flags(nozero);
1878
1879 wrPerTurnAround
1880 .init(writeBufferSize)
1881 .name(name() + ".wrPerTurnAround")
1882 .desc("Writes before turning the bus around for reads")
1883 .flags(nozero);
1884
1885 bytesReadDRAM
1886 .name(name() + ".bytesReadDRAM")
1887 .desc("Total number of bytes read from DRAM");
1888
1889 bytesReadWrQ
1890 .name(name() + ".bytesReadWrQ")
1891 .desc("Total number of bytes read from write queue");
1892
1893 bytesWritten
1894 .name(name() + ".bytesWritten")
1895 .desc("Total number of bytes written to DRAM");
1896
1897 bytesReadSys
1898 .name(name() + ".bytesReadSys")
1899 .desc("Total read bytes from the system interface side");
1900
1901 bytesWrittenSys
1902 .name(name() + ".bytesWrittenSys")
1903 .desc("Total written bytes from the system interface side");
1904
1905 avgRdBW
1906 .name(name() + ".avgRdBW")
1907 .desc("Average DRAM read bandwidth in MiByte/s")
1908 .precision(2);
1909
1910 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1911
1912 avgWrBW
1913 .name(name() + ".avgWrBW")
1914 .desc("Average achieved write bandwidth in MiByte/s")
1915 .precision(2);
1916
1917 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1918
1919 avgRdBWSys
1920 .name(name() + ".avgRdBWSys")
1921 .desc("Average system read bandwidth in MiByte/s")
1922 .precision(2);
1923
1924 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1925
1926 avgWrBWSys
1927 .name(name() + ".avgWrBWSys")
1928 .desc("Average system write bandwidth in MiByte/s")
1929 .precision(2);
1930
1931 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1932
1933 peakBW
1934 .name(name() + ".peakBW")
1935 .desc("Theoretical peak bandwidth in MiByte/s")
1936 .precision(2);
1937
1938 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1939
1940 busUtil
1941 .name(name() + ".busUtil")
1942 .desc("Data bus utilization in percentage")
1943 .precision(2);
1944
1945 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1946
1947 totGap
1948 .name(name() + ".totGap")
1949 .desc("Total gap between requests");
1950
1951 avgGap
1952 .name(name() + ".avgGap")
1953 .desc("Average gap between requests")
1954 .precision(2);
1955
1956 avgGap = totGap / (readReqs + writeReqs);
1957
1958 // Stats for DRAM Power calculation based on Micron datasheet
1959 busUtilRead
1960 .name(name() + ".busUtilRead")
1961 .desc("Data bus utilization in percentage for reads")
1962 .precision(2);
1963
1964 busUtilRead = avgRdBW / peakBW * 100;
1965
1966 busUtilWrite
1967 .name(name() + ".busUtilWrite")
1968 .desc("Data bus utilization in percentage for writes")
1969 .precision(2);
1970
1971 busUtilWrite = avgWrBW / peakBW * 100;
1972
1973 pageHitRate
1974 .name(name() + ".pageHitRate")
1975 .desc("Row buffer hit rate, read and write combined")
1976 .precision(2);
1977
1978 pageHitRate = (writeRowHits + readRowHits) /
1979 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1980
1981 pwrStateTime
1982 .init(5)
1983 .name(name() + ".memoryStateTime")
1984 .desc("Time in different power states");
1985 pwrStateTime.subname(0, "IDLE");
1986 pwrStateTime.subname(1, "REF");
1987 pwrStateTime.subname(2, "PRE_PDN");
1988 pwrStateTime.subname(3, "ACT");
1989 pwrStateTime.subname(4, "ACT_PDN");
1990
1991 actEnergy
1992 .init(ranksPerChannel)
1993 .name(name() + ".actEnergy")
1994 .desc("Energy for activate commands per rank (pJ)");
1995
1996 preEnergy
1997 .init(ranksPerChannel)
1998 .name(name() + ".preEnergy")
1999 .desc("Energy for precharge commands per rank (pJ)");
2000
2001 readEnergy
2002 .init(ranksPerChannel)
2003 .name(name() + ".readEnergy")
2004 .desc("Energy for read commands per rank (pJ)");
2005
2006 writeEnergy
2007 .init(ranksPerChannel)
2008 .name(name() + ".writeEnergy")
2009 .desc("Energy for write commands per rank (pJ)");
2010
2011 refreshEnergy
2012 .init(ranksPerChannel)
2013 .name(name() + ".refreshEnergy")
2014 .desc("Energy for refresh commands per rank (pJ)");
2015
2016 actBackEnergy
2017 .init(ranksPerChannel)
2018 .name(name() + ".actBackEnergy")
2019 .desc("Energy for active background per rank (pJ)");
2020
2021 preBackEnergy
2022 .init(ranksPerChannel)
2023 .name(name() + ".preBackEnergy")
2024 .desc("Energy for precharge background per rank (pJ)");
2025
2026 totalEnergy
2027 .init(ranksPerChannel)
2028 .name(name() + ".totalEnergy")
2029 .desc("Total energy per rank (pJ)");
2030
2031 averagePower
2032 .init(ranksPerChannel)
2033 .name(name() + ".averagePower")
2034 .desc("Core power per rank (mW)");
2035 }
2036
2037 void
2038 DRAMCtrl::recvFunctional(PacketPtr pkt)
2039 {
2040 // rely on the abstract memory
2041 functionalAccess(pkt);
2042 }
2043
2044 BaseSlavePort&
2045 DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2046 {
2047 if (if_name != "port") {
2048 return MemObject::getSlavePort(if_name, idx);
2049 } else {
2050 return port;
2051 }
2052 }
2053
2054 unsigned int
2055 DRAMCtrl::drain(DrainManager *dm)
2056 {
2057 unsigned int count = port.drain(dm);
2058
2059 // if there is anything in any of our internal queues, keep track
2060 // of that as well
2061 if (!(writeQueue.empty() && readQueue.empty() &&
2062 respQueue.empty())) {
2063 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2064 " resp: %d\n", writeQueue.size(), readQueue.size(),
2065 respQueue.size());
2066 ++count;
2067 drainManager = dm;
2068
2069 // the only part that is not drained automatically over time
2070 // is the write queue, thus kick things into action if needed
2071 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2072 schedule(nextReqEvent, curTick());
2073 }
2074 }
2075
2076 if (count)
2077 setDrainState(Drainable::Draining);
2078 else
2079 setDrainState(Drainable::Drained);
2080 return count;
2081 }
2082
2083 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2084 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2085 memory(_memory)
2086 { }
2087
2088 AddrRangeList
2089 DRAMCtrl::MemoryPort::getAddrRanges() const
2090 {
2091 AddrRangeList ranges;
2092 ranges.push_back(memory.getAddrRange());
2093 return ranges;
2094 }
2095
2096 void
2097 DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2098 {
2099 pkt->pushLabel(memory.name());
2100
2101 if (!queue.checkFunctional(pkt)) {
2102 // Default implementation of SimpleTimingPort::recvFunctional()
2103 // calls recvAtomic() and throws away the latency; we can save a
2104 // little here by just not calculating the latency.
2105 memory.recvFunctional(pkt);
2106 }
2107
2108 pkt->popLabel();
2109 }
2110
2111 Tick
2112 DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2113 {
2114 return memory.recvAtomic(pkt);
2115 }
2116
2117 bool
2118 DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2119 {
2120 // pass it to the memory controller
2121 return memory.recvTimingReq(pkt);
2122 }
2123
2124 DRAMCtrl*
2125 DRAMCtrlParams::create()
2126 {
2127 return new DRAMCtrl(this);
2128 }