mem: Make the coherent crossbar account for timing snoops
[gem5.git] / src / mem / packet.hh
1 /*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 */
46
47 /**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52 #ifndef __MEM_PACKET_HH__
53 #define __MEM_PACKET_HH__
54
55 #include <bitset>
56 #include <cassert>
57 #include <list>
58
59 #include "base/cast.hh"
60 #include "base/compiler.hh"
61 #include "base/flags.hh"
62 #include "base/misc.hh"
63 #include "base/printable.hh"
64 #include "base/types.hh"
65 #include "mem/request.hh"
66 #include "sim/core.hh"
67
68 class Packet;
69 typedef Packet *PacketPtr;
70 typedef uint8_t* PacketDataPtr;
71 typedef std::list<PacketPtr> PacketList;
72
73 class MemCmd
74 {
75 friend class Packet;
76
77 public:
78 /**
79 * List of all commands associated with a packet.
80 */
81 enum Command
82 {
83 InvalidCmd,
84 ReadReq,
85 ReadResp,
86 ReadRespWithInvalidate,
87 WriteReq,
88 WriteResp,
89 Writeback,
90 CleanEvict,
91 SoftPFReq,
92 HardPFReq,
93 SoftPFResp,
94 HardPFResp,
95 WriteLineReq,
96 UpgradeReq,
97 SCUpgradeReq, // Special "weak" upgrade for StoreCond
98 UpgradeResp,
99 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
100 UpgradeFailResp, // Valid for SCUpgradeReq only
101 ReadExReq,
102 ReadExResp,
103 ReadCleanReq,
104 ReadSharedReq,
105 LoadLockedReq,
106 StoreCondReq,
107 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
108 StoreCondResp,
109 SwapReq,
110 SwapResp,
111 MessageReq,
112 MessageResp,
113 ReleaseReq,
114 ReleaseResp,
115 AcquireReq,
116 AcquireResp,
117 // Error responses
118 // @TODO these should be classified as responses rather than
119 // requests; coding them as requests initially for backwards
120 // compatibility
121 InvalidDestError, // packet dest field invalid
122 BadAddressError, // memory address invalid
123 FunctionalReadError, // unable to fulfill functional read
124 FunctionalWriteError, // unable to fulfill functional write
125 // Fake simulator-only commands
126 PrintReq, // Print state matching address
127 FlushReq, //request for a cache flush
128 InvalidateReq, // request for address to be invalidated
129 InvalidateResp,
130 NUM_MEM_CMDS
131 };
132
133 private:
134 /**
135 * List of command attributes.
136 */
137 enum Attribute
138 {
139 IsRead, //!< Data flows from responder to requester
140 IsWrite, //!< Data flows from requester to responder
141 IsUpgrade,
142 IsInvalidate,
143 NeedsExclusive, //!< Requires exclusive copy to complete in-cache
144 IsRequest, //!< Issued by requester
145 IsResponse, //!< Issue by responder
146 NeedsResponse, //!< Requester needs response from target
147 IsSWPrefetch,
148 IsHWPrefetch,
149 IsLlsc, //!< Alpha/MIPS LL or SC access
150 HasData, //!< There is an associated payload
151 IsError, //!< Error response
152 IsPrint, //!< Print state matching address (for debugging)
153 IsFlush, //!< Flush the address from caches
154 NUM_COMMAND_ATTRIBUTES
155 };
156
157 /**
158 * Structure that defines attributes and other data associated
159 * with a Command.
160 */
161 struct CommandInfo
162 {
163 /// Set of attribute flags.
164 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165 /// Corresponding response for requests; InvalidCmd if no
166 /// response is applicable.
167 const Command response;
168 /// String representation (for printing)
169 const std::string str;
170 };
171
172 /// Array to map Command enum to associated info.
173 static const CommandInfo commandInfo[];
174
175 private:
176
177 Command cmd;
178
179 bool
180 testCmdAttrib(MemCmd::Attribute attrib) const
181 {
182 return commandInfo[cmd].attributes[attrib] != 0;
183 }
184
185 public:
186
187 bool isRead() const { return testCmdAttrib(IsRead); }
188 bool isWrite() const { return testCmdAttrib(IsWrite); }
189 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
190 bool isRequest() const { return testCmdAttrib(IsRequest); }
191 bool isResponse() const { return testCmdAttrib(IsResponse); }
192 bool needsExclusive() const { return testCmdAttrib(NeedsExclusive); }
193 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
194 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
195
196 /**
197 * Check if this particular packet type carries payload data. Note
198 * that this does not reflect if the data pointer of the packet is
199 * valid or not.
200 */
201 bool hasData() const { return testCmdAttrib(HasData); }
202 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
203 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
204 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
205 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
206 testCmdAttrib(IsHWPrefetch); }
207 bool isError() const { return testCmdAttrib(IsError); }
208 bool isPrint() const { return testCmdAttrib(IsPrint); }
209 bool isFlush() const { return testCmdAttrib(IsFlush); }
210
211 const Command
212 responseCommand() const
213 {
214 return commandInfo[cmd].response;
215 }
216
217 /// Return the string to a cmd given by idx.
218 const std::string &toString() const { return commandInfo[cmd].str; }
219 int toInt() const { return (int)cmd; }
220
221 MemCmd(Command _cmd) : cmd(_cmd) { }
222 MemCmd(int _cmd) : cmd((Command)_cmd) { }
223 MemCmd() : cmd(InvalidCmd) { }
224
225 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
226 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
227 };
228
229 /**
230 * A Packet is used to encapsulate a transfer between two objects in
231 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
232 * single Request travels all the way from the requester to the
233 * ultimate destination and back, possibly being conveyed by several
234 * different Packets along the way.)
235 */
236 class Packet : public Printable
237 {
238 public:
239 typedef uint32_t FlagsType;
240 typedef ::Flags<FlagsType> Flags;
241
242 private:
243
244 enum : FlagsType {
245 // Flags to transfer across when copying a packet
246 COPY_FLAGS = 0x0000000F,
247
248 SHARED = 0x00000001,
249 // Special control flags
250 /// Special timing-mode atomic snoop for multi-level coherence.
251 EXPRESS_SNOOP = 0x00000002,
252 /// Does supplier have exclusive copy?
253 /// Useful for multi-level coherence.
254 SUPPLY_EXCLUSIVE = 0x00000004,
255 // Snoop response flags
256 MEM_INHIBIT = 0x00000008,
257
258 /// Are the 'addr' and 'size' fields valid?
259 VALID_ADDR = 0x00000100,
260 VALID_SIZE = 0x00000200,
261
262 /// Is the data pointer set to a value that shouldn't be freed
263 /// when the packet is destroyed?
264 STATIC_DATA = 0x00001000,
265 /// The data pointer points to a value that should be freed when
266 /// the packet is destroyed. The pointer is assumed to be pointing
267 /// to an array, and delete [] is consequently called
268 DYNAMIC_DATA = 0x00002000,
269
270 /// suppress the error if this packet encounters a functional
271 /// access failure.
272 SUPPRESS_FUNC_ERROR = 0x00008000,
273
274 // Signal block present to squash prefetch and cache evict packets
275 // through express snoop flag
276 BLOCK_CACHED = 0x00010000
277 };
278
279 Flags flags;
280
281 public:
282 typedef MemCmd::Command Command;
283
284 /// The command field of the packet.
285 MemCmd cmd;
286
287 /// A pointer to the original request.
288 const RequestPtr req;
289
290 private:
291 /**
292 * A pointer to the data being transfered. It can be differnt
293 * sizes at each level of the heirarchy so it belongs in the
294 * packet, not request. This may or may not be populated when a
295 * responder recieves the packet. If not populated it memory should
296 * be allocated.
297 */
298 PacketDataPtr data;
299
300 /// The address of the request. This address could be virtual or
301 /// physical, depending on the system configuration.
302 Addr addr;
303
304 /// True if the request targets the secure memory space.
305 bool _isSecure;
306
307 /// The size of the request or transfer.
308 unsigned size;
309
310 /**
311 * Track the bytes found that satisfy a functional read.
312 */
313 std::vector<bool> bytesValid;
314
315 public:
316
317 /**
318 * The extra delay from seeing the packet until the header is
319 * transmitted. This delay is used to communicate the crossbar
320 * forwarding latency to the neighbouring object (e.g. a cache)
321 * that actually makes the packet wait. As the delay is relative,
322 * a 32-bit unsigned should be sufficient.
323 */
324 uint32_t headerDelay;
325
326 /**
327 * Keep track of the extra delay incurred by snooping upwards
328 * before sending a request down the memory system. This is used
329 * by the coherent crossbar to account for the additional request
330 * delay.
331 */
332 uint32_t snoopDelay;
333
334 /**
335 * The extra pipelining delay from seeing the packet until the end of
336 * payload is transmitted by the component that provided it (if
337 * any). This includes the header delay. Similar to the header
338 * delay, this is used to make up for the fact that the
339 * crossbar does not make the packet wait. As the delay is
340 * relative, a 32-bit unsigned should be sufficient.
341 */
342 uint32_t payloadDelay;
343
344 /**
345 * A virtual base opaque structure used to hold state associated
346 * with the packet (e.g., an MSHR), specific to a MemObject that
347 * sees the packet. A pointer to this state is returned in the
348 * packet's response so that the MemObject in question can quickly
349 * look up the state needed to process it. A specific subclass
350 * would be derived from this to carry state specific to a
351 * particular sending device.
352 *
353 * As multiple MemObjects may add their SenderState throughout the
354 * memory system, the SenderStates create a stack, where a
355 * MemObject can add a new Senderstate, as long as the
356 * predecessing SenderState is restored when the response comes
357 * back. For this reason, the predecessor should always be
358 * populated with the current SenderState of a packet before
359 * modifying the senderState field in the request packet.
360 */
361 struct SenderState
362 {
363 SenderState* predecessor;
364 SenderState() : predecessor(NULL) {}
365 virtual ~SenderState() {}
366 };
367
368 /**
369 * Object used to maintain state of a PrintReq. The senderState
370 * field of a PrintReq should always be of this type.
371 */
372 class PrintReqState : public SenderState
373 {
374 private:
375 /**
376 * An entry in the label stack.
377 */
378 struct LabelStackEntry
379 {
380 const std::string label;
381 std::string *prefix;
382 bool labelPrinted;
383 LabelStackEntry(const std::string &_label, std::string *_prefix);
384 };
385
386 typedef std::list<LabelStackEntry> LabelStack;
387 LabelStack labelStack;
388
389 std::string *curPrefixPtr;
390
391 public:
392 std::ostream &os;
393 const int verbosity;
394
395 PrintReqState(std::ostream &os, int verbosity = 0);
396 ~PrintReqState();
397
398 /**
399 * Returns the current line prefix.
400 */
401 const std::string &curPrefix() { return *curPrefixPtr; }
402
403 /**
404 * Push a label onto the label stack, and prepend the given
405 * prefix string onto the current prefix. Labels will only be
406 * printed if an object within the label's scope is printed.
407 */
408 void pushLabel(const std::string &lbl,
409 const std::string &prefix = " ");
410
411 /**
412 * Pop a label off the label stack.
413 */
414 void popLabel();
415
416 /**
417 * Print all of the pending unprinted labels on the
418 * stack. Called by printObj(), so normally not called by
419 * users unless bypassing printObj().
420 */
421 void printLabels();
422
423 /**
424 * Print a Printable object to os, because it matched the
425 * address on a PrintReq.
426 */
427 void printObj(Printable *obj);
428 };
429
430 /**
431 * This packet's sender state. Devices should use dynamic_cast<>
432 * to cast to the state appropriate to the sender. The intent of
433 * this variable is to allow a device to attach extra information
434 * to a request. A response packet must return the sender state
435 * that was attached to the original request (even if a new packet
436 * is created).
437 */
438 SenderState *senderState;
439
440 /**
441 * Push a new sender state to the packet and make the current
442 * sender state the predecessor of the new one. This should be
443 * prefered over direct manipulation of the senderState member
444 * variable.
445 *
446 * @param sender_state SenderState to push at the top of the stack
447 */
448 void pushSenderState(SenderState *sender_state);
449
450 /**
451 * Pop the top of the state stack and return a pointer to it. This
452 * assumes the current sender state is not NULL. This should be
453 * preferred over direct manipulation of the senderState member
454 * variable.
455 *
456 * @return The current top of the stack
457 */
458 SenderState *popSenderState();
459
460 /**
461 * Go through the sender state stack and return the first instance
462 * that is of type T (as determined by a dynamic_cast). If there
463 * is no sender state of type T, NULL is returned.
464 *
465 * @return The topmost state of type T
466 */
467 template <typename T>
468 T * findNextSenderState() const
469 {
470 T *t = NULL;
471 SenderState* sender_state = senderState;
472 while (t == NULL && sender_state != NULL) {
473 t = dynamic_cast<T*>(sender_state);
474 sender_state = sender_state->predecessor;
475 }
476 return t;
477 }
478
479 /// Return the string name of the cmd field (for debugging and
480 /// tracing).
481 const std::string &cmdString() const { return cmd.toString(); }
482
483 /// Return the index of this command.
484 inline int cmdToIndex() const { return cmd.toInt(); }
485
486 bool isRead() const { return cmd.isRead(); }
487 bool isWrite() const { return cmd.isWrite(); }
488 bool isUpgrade() const { return cmd.isUpgrade(); }
489 bool isRequest() const { return cmd.isRequest(); }
490 bool isResponse() const { return cmd.isResponse(); }
491 bool needsExclusive() const { return cmd.needsExclusive(); }
492 bool needsResponse() const { return cmd.needsResponse(); }
493 bool isInvalidate() const { return cmd.isInvalidate(); }
494 bool hasData() const { return cmd.hasData(); }
495 bool isLLSC() const { return cmd.isLLSC(); }
496 bool isError() const { return cmd.isError(); }
497 bool isPrint() const { return cmd.isPrint(); }
498 bool isFlush() const { return cmd.isFlush(); }
499
500 // Snoop flags
501 void assertMemInhibit()
502 {
503 assert(isRequest());
504 assert(!flags.isSet(MEM_INHIBIT));
505 flags.set(MEM_INHIBIT);
506 }
507 bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
508 void assertShared() { flags.set(SHARED); }
509 bool sharedAsserted() const { return flags.isSet(SHARED); }
510
511 // Special control flags
512 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
513 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
514 void setSupplyExclusive() { flags.set(SUPPLY_EXCLUSIVE); }
515 bool isSupplyExclusive() const { return flags.isSet(SUPPLY_EXCLUSIVE); }
516 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
517 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
518 void setBlockCached() { flags.set(BLOCK_CACHED); }
519 bool isBlockCached() const { return flags.isSet(BLOCK_CACHED); }
520 void clearBlockCached() { flags.clear(BLOCK_CACHED); }
521
522 // Network error conditions... encapsulate them as methods since
523 // their encoding keeps changing (from result field to command
524 // field, etc.)
525 void
526 setBadAddress()
527 {
528 assert(isResponse());
529 cmd = MemCmd::BadAddressError;
530 }
531
532 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
533
534 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
535 /**
536 * Update the address of this packet mid-transaction. This is used
537 * by the address mapper to change an already set address to a new
538 * one based on the system configuration. It is intended to remap
539 * an existing address, so it asserts that the current address is
540 * valid.
541 */
542 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
543
544 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
545
546 Addr getOffset(unsigned int blk_size) const
547 {
548 return getAddr() & Addr(blk_size - 1);
549 }
550
551 Addr getBlockAddr(unsigned int blk_size) const
552 {
553 return getAddr() & ~(Addr(blk_size - 1));
554 }
555
556 bool isSecure() const
557 {
558 assert(flags.isSet(VALID_ADDR));
559 return _isSecure;
560 }
561
562 /**
563 * It has been determined that the SC packet should successfully update
564 * memory. Therefore, convert this SC packet to a normal write.
565 */
566 void
567 convertScToWrite()
568 {
569 assert(isLLSC());
570 assert(isWrite());
571 cmd = MemCmd::WriteReq;
572 }
573
574 /**
575 * When ruby is in use, Ruby will monitor the cache line and the
576 * phys memory should treat LL ops as normal reads.
577 */
578 void
579 convertLlToRead()
580 {
581 assert(isLLSC());
582 assert(isRead());
583 cmd = MemCmd::ReadReq;
584 }
585
586 /**
587 * Constructor. Note that a Request object must be constructed
588 * first, but the Requests's physical address and size fields need
589 * not be valid. The command must be supplied.
590 */
591 Packet(const RequestPtr _req, MemCmd _cmd)
592 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
593 size(0), headerDelay(0), snoopDelay(0), payloadDelay(0),
594 senderState(NULL)
595 {
596 if (req->hasPaddr()) {
597 addr = req->getPaddr();
598 flags.set(VALID_ADDR);
599 _isSecure = req->isSecure();
600 }
601 if (req->hasSize()) {
602 size = req->getSize();
603 flags.set(VALID_SIZE);
604 }
605 }
606
607 /**
608 * Alternate constructor if you are trying to create a packet with
609 * a request that is for a whole block, not the address from the
610 * req. this allows for overriding the size/addr of the req.
611 */
612 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
613 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
614 headerDelay(0), snoopDelay(0), payloadDelay(0),
615 senderState(NULL)
616 {
617 if (req->hasPaddr()) {
618 addr = req->getPaddr() & ~(_blkSize - 1);
619 flags.set(VALID_ADDR);
620 _isSecure = req->isSecure();
621 }
622 size = _blkSize;
623 flags.set(VALID_SIZE);
624 }
625
626 /**
627 * Alternate constructor for copying a packet. Copy all fields
628 * *except* if the original packet's data was dynamic, don't copy
629 * that, as we can't guarantee that the new packet's lifetime is
630 * less than that of the original packet. In this case the new
631 * packet should allocate its own data.
632 */
633 Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
634 : cmd(pkt->cmd), req(pkt->req),
635 data(nullptr),
636 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
637 bytesValid(pkt->bytesValid),
638 headerDelay(pkt->headerDelay),
639 snoopDelay(0),
640 payloadDelay(pkt->payloadDelay),
641 senderState(pkt->senderState)
642 {
643 if (!clear_flags)
644 flags.set(pkt->flags & COPY_FLAGS);
645
646 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
647
648 // should we allocate space for data, or not, the express
649 // snoops do not need to carry any data as they only serve to
650 // co-ordinate state changes
651 if (alloc_data) {
652 // even if asked to allocate data, if the original packet
653 // holds static data, then the sender will not be doing
654 // any memcpy on receiving the response, thus we simply
655 // carry the pointer forward
656 if (pkt->flags.isSet(STATIC_DATA)) {
657 data = pkt->data;
658 flags.set(STATIC_DATA);
659 } else {
660 allocate();
661 }
662 }
663 }
664
665 /**
666 * Generate the appropriate read MemCmd based on the Request flags.
667 */
668 static MemCmd
669 makeReadCmd(const RequestPtr req)
670 {
671 if (req->isLLSC())
672 return MemCmd::LoadLockedReq;
673 else if (req->isPrefetch())
674 return MemCmd::SoftPFReq;
675 else
676 return MemCmd::ReadReq;
677 }
678
679 /**
680 * Generate the appropriate write MemCmd based on the Request flags.
681 */
682 static MemCmd
683 makeWriteCmd(const RequestPtr req)
684 {
685 if (req->isLLSC())
686 return MemCmd::StoreCondReq;
687 else if (req->isSwap())
688 return MemCmd::SwapReq;
689 else
690 return MemCmd::WriteReq;
691 }
692
693 /**
694 * Constructor-like methods that return Packets based on Request objects.
695 * Fine-tune the MemCmd type if it's not a vanilla read or write.
696 */
697 static PacketPtr
698 createRead(const RequestPtr req)
699 {
700 return new Packet(req, makeReadCmd(req));
701 }
702
703 static PacketPtr
704 createWrite(const RequestPtr req)
705 {
706 return new Packet(req, makeWriteCmd(req));
707 }
708
709 /**
710 * clean up packet variables
711 */
712 ~Packet()
713 {
714 // Delete the request object if this is a request packet which
715 // does not need a response, because the requester will not get
716 // a chance. If the request packet needs a response then the
717 // request will be deleted on receipt of the response
718 // packet. We also make sure to never delete the request for
719 // express snoops, even for cases when responses are not
720 // needed (CleanEvict and Writeback), since the snoop packet
721 // re-uses the same request.
722 if (req && isRequest() && !needsResponse() &&
723 !isExpressSnoop()) {
724 delete req;
725 }
726 deleteData();
727 }
728
729 /**
730 * Take a request packet and modify it in place to be suitable for
731 * returning as a response to that request.
732 */
733 void
734 makeResponse()
735 {
736 assert(needsResponse());
737 assert(isRequest());
738 cmd = cmd.responseCommand();
739
740 // responses are never express, even if the snoop that
741 // triggered them was
742 flags.clear(EXPRESS_SNOOP);
743 }
744
745 void
746 makeAtomicResponse()
747 {
748 makeResponse();
749 }
750
751 void
752 makeTimingResponse()
753 {
754 makeResponse();
755 }
756
757 void
758 setFunctionalResponseStatus(bool success)
759 {
760 if (!success) {
761 if (isWrite()) {
762 cmd = MemCmd::FunctionalWriteError;
763 } else {
764 cmd = MemCmd::FunctionalReadError;
765 }
766 }
767 }
768
769 void
770 setSize(unsigned size)
771 {
772 assert(!flags.isSet(VALID_SIZE));
773
774 this->size = size;
775 flags.set(VALID_SIZE);
776 }
777
778
779 public:
780 /**
781 * @{
782 * @name Data accessor mehtods
783 */
784
785 /**
786 * Set the data pointer to the following value that should not be
787 * freed. Static data allows us to do a single memcpy even if
788 * multiple packets are required to get from source to destination
789 * and back. In essence the pointer is set calling dataStatic on
790 * the original packet, and whenever this packet is copied and
791 * forwarded the same pointer is passed on. When a packet
792 * eventually reaches the destination holding the data, it is
793 * copied once into the location originally set. On the way back
794 * to the source, no copies are necessary.
795 */
796 template <typename T>
797 void
798 dataStatic(T *p)
799 {
800 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
801 data = (PacketDataPtr)p;
802 flags.set(STATIC_DATA);
803 }
804
805 /**
806 * Set the data pointer to the following value that should not be
807 * freed. This version of the function allows the pointer passed
808 * to us to be const. To avoid issues down the line we cast the
809 * constness away, the alternative would be to keep both a const
810 * and non-const data pointer and cleverly choose between
811 * them. Note that this is only allowed for static data.
812 */
813 template <typename T>
814 void
815 dataStaticConst(const T *p)
816 {
817 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
818 data = const_cast<PacketDataPtr>(p);
819 flags.set(STATIC_DATA);
820 }
821
822 /**
823 * Set the data pointer to a value that should have delete []
824 * called on it. Dynamic data is local to this packet, and as the
825 * packet travels from source to destination, forwarded packets
826 * will allocate their own data. When a packet reaches the final
827 * destination it will populate the dynamic data of that specific
828 * packet, and on the way back towards the source, memcpy will be
829 * invoked in every step where a new packet was created e.g. in
830 * the caches. Ultimately when the response reaches the source a
831 * final memcpy is needed to extract the data from the packet
832 * before it is deallocated.
833 */
834 template <typename T>
835 void
836 dataDynamic(T *p)
837 {
838 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
839 data = (PacketDataPtr)p;
840 flags.set(DYNAMIC_DATA);
841 }
842
843 /**
844 * get a pointer to the data ptr.
845 */
846 template <typename T>
847 T*
848 getPtr()
849 {
850 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
851 return (T*)data;
852 }
853
854 template <typename T>
855 const T*
856 getConstPtr() const
857 {
858 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
859 return (const T*)data;
860 }
861
862 /**
863 * Get the data in the packet byte swapped from big endian to
864 * host endian.
865 */
866 template <typename T>
867 T getBE() const;
868
869 /**
870 * Get the data in the packet byte swapped from little endian to
871 * host endian.
872 */
873 template <typename T>
874 T getLE() const;
875
876 /**
877 * Get the data in the packet byte swapped from the specified
878 * endianness.
879 */
880 template <typename T>
881 T get(ByteOrder endian) const;
882
883 /**
884 * Get the data in the packet byte swapped from guest to host
885 * endian.
886 */
887 template <typename T>
888 T get() const;
889
890 /** Set the value in the data pointer to v as big endian. */
891 template <typename T>
892 void setBE(T v);
893
894 /** Set the value in the data pointer to v as little endian. */
895 template <typename T>
896 void setLE(T v);
897
898 /**
899 * Set the value in the data pointer to v using the specified
900 * endianness.
901 */
902 template <typename T>
903 void set(T v, ByteOrder endian);
904
905 /** Set the value in the data pointer to v as guest endian. */
906 template <typename T>
907 void set(T v);
908
909 /**
910 * Copy data into the packet from the provided pointer.
911 */
912 void
913 setData(const uint8_t *p)
914 {
915 // we should never be copying data onto itself, which means we
916 // must idenfity packets with static data, as they carry the
917 // same pointer from source to destination and back
918 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
919
920 if (p != getPtr<uint8_t>())
921 // for packet with allocated dynamic data, we copy data from
922 // one to the other, e.g. a forwarded response to a response
923 std::memcpy(getPtr<uint8_t>(), p, getSize());
924 }
925
926 /**
927 * Copy data into the packet from the provided block pointer,
928 * which is aligned to the given block size.
929 */
930 void
931 setDataFromBlock(const uint8_t *blk_data, int blkSize)
932 {
933 setData(blk_data + getOffset(blkSize));
934 }
935
936 /**
937 * Copy data from the packet to the provided block pointer, which
938 * is aligned to the given block size.
939 */
940 void
941 writeData(uint8_t *p) const
942 {
943 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
944 }
945
946 /**
947 * Copy data from the packet to the memory at the provided pointer.
948 */
949 void
950 writeDataToBlock(uint8_t *blk_data, int blkSize) const
951 {
952 writeData(blk_data + getOffset(blkSize));
953 }
954
955 /**
956 * delete the data pointed to in the data pointer. Ok to call to
957 * matter how data was allocted.
958 */
959 void
960 deleteData()
961 {
962 if (flags.isSet(DYNAMIC_DATA))
963 delete [] data;
964
965 flags.clear(STATIC_DATA|DYNAMIC_DATA);
966 data = NULL;
967 }
968
969 /** Allocate memory for the packet. */
970 void
971 allocate()
972 {
973 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
974 flags.set(DYNAMIC_DATA);
975 data = new uint8_t[getSize()];
976 }
977
978 /** @} */
979
980 private: // Private data accessor methods
981 /** Get the data in the packet without byte swapping. */
982 template <typename T>
983 T getRaw() const;
984
985 /** Set the value in the data pointer to v without byte swapping. */
986 template <typename T>
987 void setRaw(T v);
988
989 public:
990 /**
991 * Check a functional request against a memory value stored in
992 * another packet (i.e. an in-transit request or
993 * response). Returns true if the current packet is a read, and
994 * the other packet provides the data, which is then copied to the
995 * current packet. If the current packet is a write, and the other
996 * packet intersects this one, then we update the data
997 * accordingly.
998 */
999 bool
1000 checkFunctional(PacketPtr other)
1001 {
1002 // all packets that are carrying a payload should have a valid
1003 // data pointer
1004 return checkFunctional(other, other->getAddr(), other->isSecure(),
1005 other->getSize(),
1006 other->hasData() ?
1007 other->getPtr<uint8_t>() : NULL);
1008 }
1009
1010 /**
1011 * Is this request notification of a clean or dirty eviction from the cache.
1012 **/
1013 bool
1014 evictingBlock() const
1015 {
1016 return (cmd == MemCmd::Writeback ||
1017 cmd == MemCmd::CleanEvict);
1018 }
1019
1020 /**
1021 * Does the request need to check for cached copies of the same block
1022 * in the memory hierarchy above.
1023 **/
1024 bool
1025 mustCheckAbove() const
1026 {
1027 return (cmd == MemCmd::HardPFReq ||
1028 evictingBlock());
1029 }
1030
1031 /**
1032 * Check a functional request against a memory value represented
1033 * by a base/size pair and an associated data array. If the
1034 * current packet is a read, it may be satisfied by the memory
1035 * value. If the current packet is a write, it may update the
1036 * memory value.
1037 */
1038 bool
1039 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1040 uint8_t *_data);
1041
1042 /**
1043 * Push label for PrintReq (safe to call unconditionally).
1044 */
1045 void
1046 pushLabel(const std::string &lbl)
1047 {
1048 if (isPrint())
1049 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1050 }
1051
1052 /**
1053 * Pop label for PrintReq (safe to call unconditionally).
1054 */
1055 void
1056 popLabel()
1057 {
1058 if (isPrint())
1059 safe_cast<PrintReqState*>(senderState)->popLabel();
1060 }
1061
1062 void print(std::ostream &o, int verbosity = 0,
1063 const std::string &prefix = "") const;
1064
1065 /**
1066 * A no-args wrapper of print(std::ostream...)
1067 * meant to be invoked from DPRINTFs
1068 * avoiding string overheads in fast mode
1069 * @return string with the request's type and start<->end addresses
1070 */
1071 std::string print() const;
1072 };
1073
1074 #endif //__MEM_PACKET_HH