Ruby: remove reference to g_system_ptr from class Message
[gem5.git] / src / mem / physical.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 */
39
40 #include <sys/mman.h>
41 #include <sys/types.h>
42 #include <sys/user.h>
43 #include <fcntl.h>
44 #include <unistd.h>
45 #include <zlib.h>
46
47 #include <cerrno>
48 #include <climits>
49 #include <cstdio>
50 #include <iostream>
51 #include <string>
52
53 #include "base/trace.hh"
54 #include "debug/BusAddrRanges.hh"
55 #include "debug/Checkpoint.hh"
56 #include "mem/abstract_mem.hh"
57 #include "mem/physical.hh"
58
59 using namespace std;
60
61 PhysicalMemory::PhysicalMemory(const string& _name,
62 const vector<AbstractMemory*>& _memories) :
63 _name(_name), size(0)
64 {
65 // add the memories from the system to the address map as
66 // appropriate
67 for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
68 m != _memories.end(); ++m) {
69 // only add the memory if it is part of the global address map
70 if ((*m)->isInAddrMap()) {
71 memories.push_back(*m);
72
73 // calculate the total size once and for all
74 size += (*m)->size();
75
76 // add the range to our interval tree and make sure it does not
77 // intersect an existing range
78 if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end())
79 fatal("Memory address range for %s is overlapping\n",
80 (*m)->name());
81 } else {
82 DPRINTF(BusAddrRanges,
83 "Skipping memory %s that is not in global address map\n",
84 (*m)->name());
85 // this type of memory is used e.g. as reference memory by
86 // Ruby, and they also needs a backing store, but should
87 // not be part of the global address map
88
89 // simply do it independently, also note that this kind of
90 // memories are allowed to overlap in the logic address
91 // map
92 vector<AbstractMemory*> unmapped_mems;
93 unmapped_mems.push_back(*m);
94 createBackingStore((*m)->getAddrRange(), unmapped_mems);
95 }
96 }
97
98 // iterate over the increasing addresses and chunks of contigous
99 // space to be mapped to backing store, also remember what
100 // memories constitute the range so we can go and find out if we
101 // have to init their parts to zero
102 vector<AbstractMemory*> curr_memories;
103 for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
104 r != addrMap.end(); ++r) {
105 // simply skip past all memories that are null and hence do
106 // not need any backing store
107 if (!r->second->isNull()) {
108 // this will eventually be extended to support merging of
109 // interleaved address ranges, and although it might seem
110 // overly complicated at this point it will all be used
111 curr_memories.push_back(r->second);
112 createBackingStore(r->first, curr_memories);
113 curr_memories.clear();
114 }
115 }
116 }
117
118 void
119 PhysicalMemory::createBackingStore(AddrRange range,
120 const vector<AbstractMemory*>& _memories)
121 {
122 if (range.interleaved())
123 panic("Cannot create backing store for interleaved range %s\n",
124 range.to_string());
125
126 // perform the actual mmap
127 DPRINTF(BusAddrRanges, "Creating backing store for range %s with size %d\n",
128 range.to_string(), range.size());
129 int map_flags = MAP_ANON | MAP_PRIVATE;
130 uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
131 PROT_READ | PROT_WRITE,
132 map_flags, -1, 0);
133
134 if (pmem == (uint8_t*) MAP_FAILED) {
135 perror("mmap");
136 fatal("Could not mmap %d bytes for range %s!\n", range.size(),
137 range.to_string());
138 }
139
140 // remember this backing store so we can checkpoint it and unmap
141 // it appropriately
142 backingStore.push_back(make_pair(range, pmem));
143
144 // count how many of the memories are to be zero initialized so we
145 // can see if some but not all have this parameter set
146 uint32_t init_to_zero = 0;
147
148 // point the memories to their backing store, and if requested,
149 // initialize the memory range to 0
150 for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
151 m != _memories.end(); ++m) {
152 DPRINTF(BusAddrRanges, "Mapping memory %s to backing store\n",
153 (*m)->name());
154 (*m)->setBackingStore(pmem);
155
156 // if it should be zero, then go and make it so
157 if ((*m)->initToZero()) {
158 ++init_to_zero;
159 }
160 }
161
162 if (init_to_zero != 0) {
163 if (init_to_zero != _memories.size())
164 fatal("Some, but not all memories in range %s are set zero\n",
165 range.to_string());
166
167 memset(pmem, 0, range.size());
168 }
169 }
170
171 PhysicalMemory::~PhysicalMemory()
172 {
173 // unmap the backing store
174 for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
175 s != backingStore.end(); ++s)
176 munmap((char*)s->second, s->first.size());
177 }
178
179 bool
180 PhysicalMemory::isMemAddr(Addr addr) const
181 {
182 // see if the address is within the last matched range
183 if (!rangeCache.contains(addr)) {
184 // lookup in the interval tree
185 AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.find(addr);
186 if (r == addrMap.end()) {
187 // not in the cache, and not in the tree
188 return false;
189 }
190 // the range is in the tree, update the cache
191 rangeCache = r->first;
192 }
193
194 assert(addrMap.find(addr) != addrMap.end());
195
196 // either matched the cache or found in the tree
197 return true;
198 }
199
200 AddrRangeList
201 PhysicalMemory::getConfAddrRanges() const
202 {
203 // this could be done once in the constructor, but since it is unlikely to
204 // be called more than once the iteration should not be a problem
205 AddrRangeList ranges;
206 vector<AddrRange> intlv_ranges;
207 for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
208 r != addrMap.end(); ++r) {
209 if (r->second->isConfReported()) {
210 // if the range is interleaved then save it for now
211 if (r->first.interleaved()) {
212 // if we already got interleaved ranges that are not
213 // part of the same range, then first do a merge
214 // before we add the new one
215 if (!intlv_ranges.empty() &&
216 !intlv_ranges.back().mergesWith(r->first)) {
217 ranges.push_back(AddrRange(intlv_ranges));
218 intlv_ranges.clear();
219 }
220 intlv_ranges.push_back(r->first);
221 } else {
222 // keep the current range
223 ranges.push_back(r->first);
224 }
225 }
226 }
227
228 // if there is still interleaved ranges waiting to be merged,
229 // go ahead and do it
230 if (!intlv_ranges.empty()) {
231 ranges.push_back(AddrRange(intlv_ranges));
232 }
233
234 return ranges;
235 }
236
237 void
238 PhysicalMemory::access(PacketPtr pkt)
239 {
240 assert(pkt->isRequest());
241 Addr addr = pkt->getAddr();
242 AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
243 assert(m != addrMap.end());
244 m->second->access(pkt);
245 }
246
247 void
248 PhysicalMemory::functionalAccess(PacketPtr pkt)
249 {
250 assert(pkt->isRequest());
251 Addr addr = pkt->getAddr();
252 AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
253 assert(m != addrMap.end());
254 m->second->functionalAccess(pkt);
255 }
256
257 void
258 PhysicalMemory::serialize(ostream& os)
259 {
260 // serialize all the locked addresses and their context ids
261 vector<Addr> lal_addr;
262 vector<int> lal_cid;
263
264 for (vector<AbstractMemory*>::iterator m = memories.begin();
265 m != memories.end(); ++m) {
266 const list<LockedAddr>& locked_addrs = (*m)->getLockedAddrList();
267 for (list<LockedAddr>::const_iterator l = locked_addrs.begin();
268 l != locked_addrs.end(); ++l) {
269 lal_addr.push_back(l->addr);
270 lal_cid.push_back(l->contextId);
271 }
272 }
273
274 arrayParamOut(os, "lal_addr", lal_addr);
275 arrayParamOut(os, "lal_cid", lal_cid);
276
277 // serialize the backing stores
278 unsigned int nbr_of_stores = backingStore.size();
279 SERIALIZE_SCALAR(nbr_of_stores);
280
281 unsigned int store_id = 0;
282 // store each backing store memory segment in a file
283 for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
284 s != backingStore.end(); ++s) {
285 nameOut(os, csprintf("%s.store%d", name(), store_id));
286 serializeStore(os, store_id++, s->first, s->second);
287 }
288 }
289
290 void
291 PhysicalMemory::serializeStore(ostream& os, unsigned int store_id,
292 AddrRange range, uint8_t* pmem)
293 {
294 // we cannot use the address range for the name as the
295 // memories that are not part of the address map can overlap
296 string filename = name() + ".store" + to_string(store_id) + ".pmem";
297 long range_size = range.size();
298
299 DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
300 filename, range_size);
301
302 SERIALIZE_SCALAR(store_id);
303 SERIALIZE_SCALAR(filename);
304 SERIALIZE_SCALAR(range_size);
305
306 // write memory file
307 string filepath = Checkpoint::dir() + "/" + filename.c_str();
308 int fd = creat(filepath.c_str(), 0664);
309 if (fd < 0) {
310 perror("creat");
311 fatal("Can't open physical memory checkpoint file '%s'\n",
312 filename);
313 }
314
315 gzFile compressed_mem = gzdopen(fd, "wb");
316 if (compressed_mem == NULL)
317 fatal("Insufficient memory to allocate compression state for %s\n",
318 filename);
319
320 uint64_t pass_size = 0;
321
322 // gzwrite fails if (int)len < 0 (gzwrite returns int)
323 for (uint64_t written = 0; written < range.size();
324 written += pass_size) {
325 pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
326 (uint64_t)INT_MAX : (range.size() - written);
327
328 if (gzwrite(compressed_mem, pmem + written,
329 (unsigned int) pass_size) != (int) pass_size) {
330 fatal("Write failed on physical memory checkpoint file '%s'\n",
331 filename);
332 }
333 }
334
335 // close the compressed stream and check that the exit status
336 // is zero
337 if (gzclose(compressed_mem))
338 fatal("Close failed on physical memory checkpoint file '%s'\n",
339 filename);
340
341 }
342
343 void
344 PhysicalMemory::unserialize(Checkpoint* cp, const string& section)
345 {
346 // unserialize the locked addresses and map them to the
347 // appropriate memory controller
348 vector<Addr> lal_addr;
349 vector<int> lal_cid;
350 arrayParamIn(cp, section, "lal_addr", lal_addr);
351 arrayParamIn(cp, section, "lal_cid", lal_cid);
352 for(size_t i = 0; i < lal_addr.size(); ++i) {
353 AddrRangeMap<AbstractMemory*>::const_iterator m =
354 addrMap.find(lal_addr[i]);
355 m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
356 }
357
358 // unserialize the backing stores
359 unsigned int nbr_of_stores;
360 UNSERIALIZE_SCALAR(nbr_of_stores);
361
362 for (unsigned int i = 0; i < nbr_of_stores; ++i) {
363 unserializeStore(cp, csprintf("%s.store%d", section, i));
364 }
365
366 }
367
368 void
369 PhysicalMemory::unserializeStore(Checkpoint* cp, const string& section)
370 {
371 const uint32_t chunk_size = 16384;
372
373 unsigned int store_id;
374 UNSERIALIZE_SCALAR(store_id);
375
376 string filename;
377 UNSERIALIZE_SCALAR(filename);
378 string filepath = cp->cptDir + "/" + filename;
379
380 // mmap memoryfile
381 int fd = open(filepath.c_str(), O_RDONLY);
382 if (fd < 0) {
383 perror("open");
384 fatal("Can't open physical memory checkpoint file '%s'", filename);
385 }
386
387 gzFile compressed_mem = gzdopen(fd, "rb");
388 if (compressed_mem == NULL)
389 fatal("Insufficient memory to allocate compression state for %s\n",
390 filename);
391
392 uint8_t* pmem = backingStore[store_id].second;
393 AddrRange range = backingStore[store_id].first;
394
395 // unmap file that was mmapped in the constructor, this is
396 // done here to make sure that gzip and open don't muck with
397 // our nice large space of memory before we reallocate it
398 munmap((char*) pmem, range.size());
399
400 long range_size;
401 UNSERIALIZE_SCALAR(range_size);
402
403 DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
404 filename, range_size);
405
406 if (range_size != range.size())
407 fatal("Memory range size has changed! Saw %lld, expected %lld\n",
408 range_size, range.size());
409
410 pmem = (uint8_t*) mmap(NULL, range.size(), PROT_READ | PROT_WRITE,
411 MAP_ANON | MAP_PRIVATE, -1, 0);
412
413 if (pmem == (void*) MAP_FAILED) {
414 perror("mmap");
415 fatal("Could not mmap physical memory!\n");
416 }
417
418 uint64_t curr_size = 0;
419 long* temp_page = new long[chunk_size];
420 long* pmem_current;
421 uint32_t bytes_read;
422 while (curr_size < range.size()) {
423 bytes_read = gzread(compressed_mem, temp_page, chunk_size);
424 if (bytes_read == 0)
425 break;
426
427 assert(bytes_read % sizeof(long) == 0);
428
429 for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
430 // Only copy bytes that are non-zero, so we don't give
431 // the VM system hell
432 if (*(temp_page + x) != 0) {
433 pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
434 *pmem_current = *(temp_page + x);
435 }
436 }
437 curr_size += bytes_read;
438 }
439
440 delete[] temp_page;
441
442 if (gzclose(compressed_mem))
443 fatal("Close failed on physical memory checkpoint file '%s'\n",
444 filename);
445 }