Merge zizzer.eecs.umich.edu:/bk/newmem
[gem5.git] / src / mem / physical.cc
1 /*
2 * Copyright (c) 2001-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ron Dreslinski
29 * Ali Saidi
30 */
31
32 #include <sys/types.h>
33 #include <sys/mman.h>
34 #include <errno.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <zlib.h>
38
39 #include <iostream>
40 #include <string>
41
42 #include "arch/isa_traits.hh"
43 #include "base/misc.hh"
44 #include "config/full_system.hh"
45 #include "mem/packet_access.hh"
46 #include "mem/physical.hh"
47 #include "sim/builder.hh"
48 #include "sim/eventq.hh"
49 #include "sim/host.hh"
50
51 using namespace std;
52 using namespace TheISA;
53
54 PhysicalMemory::PhysicalMemory(Params *p)
55 : MemObject(p->name), pmemAddr(NULL), lat(p->latency), _params(p)
56 {
57 if (params()->addrRange.size() % TheISA::PageBytes != 0)
58 panic("Memory Size not divisible by page size\n");
59
60 int map_flags = MAP_ANON | MAP_PRIVATE;
61 pmemAddr = (uint8_t *)mmap(NULL, params()->addrRange.size(), PROT_READ | PROT_WRITE,
62 map_flags, -1, 0);
63
64 if (pmemAddr == (void *)MAP_FAILED) {
65 perror("mmap");
66 fatal("Could not mmap!\n");
67 }
68
69 //If requested, initialize all the memory to 0
70 if(params()->zero)
71 memset(pmemAddr, 0, params()->addrRange.size());
72
73 pagePtr = 0;
74 }
75
76 void
77 PhysicalMemory::init()
78 {
79 if (ports.size() == 0) {
80 fatal("PhysicalMemory object %s is unconnected!", name());
81 }
82
83 for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
84 if (*pi)
85 (*pi)->sendStatusChange(Port::RangeChange);
86 }
87 }
88
89 PhysicalMemory::~PhysicalMemory()
90 {
91 if (pmemAddr)
92 munmap((char*)pmemAddr, params()->addrRange.size());
93 //Remove memPorts?
94 }
95
96 Addr
97 PhysicalMemory::new_page()
98 {
99 Addr return_addr = pagePtr << LogVMPageSize;
100 return_addr += start();
101
102 ++pagePtr;
103 return return_addr;
104 }
105
106 int
107 PhysicalMemory::deviceBlockSize()
108 {
109 //Can accept anysize request
110 return 0;
111 }
112
113 Tick
114 PhysicalMemory::calculateLatency(PacketPtr pkt)
115 {
116 return lat;
117 }
118
119
120
121 // Add load-locked to tracking list. Should only be called if the
122 // operation is a load and the LOCKED flag is set.
123 void
124 PhysicalMemory::trackLoadLocked(Request *req)
125 {
126 Addr paddr = LockedAddr::mask(req->getPaddr());
127
128 // first we check if we already have a locked addr for this
129 // xc. Since each xc only gets one, we just update the
130 // existing record with the new address.
131 list<LockedAddr>::iterator i;
132
133 for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
134 if (i->matchesContext(req)) {
135 DPRINTF(LLSC, "Modifying lock record: cpu %d thread %d addr %#x\n",
136 req->getCpuNum(), req->getThreadNum(), paddr);
137 i->addr = paddr;
138 return;
139 }
140 }
141
142 // no record for this xc: need to allocate a new one
143 DPRINTF(LLSC, "Adding lock record: cpu %d thread %d addr %#x\n",
144 req->getCpuNum(), req->getThreadNum(), paddr);
145 lockedAddrList.push_front(LockedAddr(req));
146 }
147
148
149 // Called on *writes* only... both regular stores and
150 // store-conditional operations. Check for conventional stores which
151 // conflict with locked addresses, and for success/failure of store
152 // conditionals.
153 bool
154 PhysicalMemory::checkLockedAddrList(Request *req)
155 {
156 Addr paddr = LockedAddr::mask(req->getPaddr());
157 bool isLocked = req->isLocked();
158
159 // Initialize return value. Non-conditional stores always
160 // succeed. Assume conditional stores will fail until proven
161 // otherwise.
162 bool success = !isLocked;
163
164 // Iterate over list. Note that there could be multiple matching
165 // records, as more than one context could have done a load locked
166 // to this location.
167 list<LockedAddr>::iterator i = lockedAddrList.begin();
168
169 while (i != lockedAddrList.end()) {
170
171 if (i->addr == paddr) {
172 // we have a matching address
173
174 if (isLocked && i->matchesContext(req)) {
175 // it's a store conditional, and as far as the memory
176 // system can tell, the requesting context's lock is
177 // still valid.
178 DPRINTF(LLSC, "StCond success: cpu %d thread %d addr %#x\n",
179 req->getCpuNum(), req->getThreadNum(), paddr);
180 success = true;
181 }
182
183 // Get rid of our record of this lock and advance to next
184 DPRINTF(LLSC, "Erasing lock record: cpu %d thread %d addr %#x\n",
185 i->cpuNum, i->threadNum, paddr);
186 i = lockedAddrList.erase(i);
187 }
188 else {
189 // no match: advance to next record
190 ++i;
191 }
192 }
193
194 if (isLocked) {
195 req->setExtraData(success ? 1 : 0);
196 }
197
198 return success;
199 }
200
201 void
202 PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
203 {
204 assert(pkt->getAddr() >= start() &&
205 pkt->getAddr() + pkt->getSize() <= start() + size());
206
207 if (pkt->isRead()) {
208 if (pkt->req->isLocked()) {
209 trackLoadLocked(pkt->req);
210 }
211 memcpy(pkt->getPtr<uint8_t>(), pmemAddr + pkt->getAddr() - start(),
212 pkt->getSize());
213 #if TRACING_ON
214 switch (pkt->getSize()) {
215 case sizeof(uint64_t):
216 DPRINTF(MemoryAccess, "Read of size %i on address 0x%x data 0x%x\n",
217 pkt->getSize(), pkt->getAddr(),pkt->get<uint64_t>());
218 break;
219 case sizeof(uint32_t):
220 DPRINTF(MemoryAccess, "Read of size %i on address 0x%x data 0x%x\n",
221 pkt->getSize(), pkt->getAddr(),pkt->get<uint32_t>());
222 break;
223 case sizeof(uint16_t):
224 DPRINTF(MemoryAccess, "Read of size %i on address 0x%x data 0x%x\n",
225 pkt->getSize(), pkt->getAddr(),pkt->get<uint16_t>());
226 break;
227 case sizeof(uint8_t):
228 DPRINTF(MemoryAccess, "Read of size %i on address 0x%x data 0x%x\n",
229 pkt->getSize(), pkt->getAddr(),pkt->get<uint8_t>());
230 break;
231 default:
232 DPRINTF(MemoryAccess, "Read of size %i on address 0x%x\n",
233 pkt->getSize(), pkt->getAddr());
234 }
235 #endif
236 }
237 else if (pkt->isWrite()) {
238 if (writeOK(pkt->req)) {
239 memcpy(pmemAddr + pkt->getAddr() - start(), pkt->getPtr<uint8_t>(),
240 pkt->getSize());
241 #if TRACING_ON
242 switch (pkt->getSize()) {
243 case sizeof(uint64_t):
244 DPRINTF(MemoryAccess, "Write of size %i on address 0x%x data 0x%x\n",
245 pkt->getSize(), pkt->getAddr(),pkt->get<uint64_t>());
246 break;
247 case sizeof(uint32_t):
248 DPRINTF(MemoryAccess, "Write of size %i on address 0x%x data 0x%x\n",
249 pkt->getSize(), pkt->getAddr(),pkt->get<uint32_t>());
250 break;
251 case sizeof(uint16_t):
252 DPRINTF(MemoryAccess, "Write of size %i on address 0x%x data 0x%x\n",
253 pkt->getSize(), pkt->getAddr(),pkt->get<uint16_t>());
254 break;
255 case sizeof(uint8_t):
256 DPRINTF(MemoryAccess, "Write of size %i on address 0x%x data 0x%x\n",
257 pkt->getSize(), pkt->getAddr(),pkt->get<uint8_t>());
258 break;
259 default:
260 DPRINTF(MemoryAccess, "Write of size %i on address 0x%x\n",
261 pkt->getSize(), pkt->getAddr());
262 }
263 #endif
264 }
265 } else if (pkt->isInvalidate()) {
266 //upgrade or invalidate
267 pkt->flags |= SATISFIED;
268 } else if (pkt->isReadWrite()) {
269 IntReg overwrite_val;
270 bool overwrite_mem;
271 uint64_t condition_val64;
272 uint32_t condition_val32;
273
274 assert(sizeof(IntReg) >= pkt->getSize());
275
276 overwrite_mem = true;
277 // keep a copy of our possible write value, and copy what is at the
278 // memory address into the packet
279 std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
280 std::memcpy(pkt->getPtr<uint8_t>(), pmemAddr + pkt->getAddr() - start(),
281 pkt->getSize());
282
283 if (pkt->req->isCondSwap()) {
284 if (pkt->getSize() == sizeof(uint64_t)) {
285 condition_val64 = pkt->req->getExtraData();
286 overwrite_mem = !std::memcmp(&condition_val64, pmemAddr +
287 pkt->getAddr() - start(), sizeof(uint64_t));
288 } else if (pkt->getSize() == sizeof(uint32_t)) {
289 condition_val32 = (uint32_t)pkt->req->getExtraData();
290 overwrite_mem = !std::memcmp(&condition_val32, pmemAddr +
291 pkt->getAddr() - start(), sizeof(uint32_t));
292 } else
293 panic("Invalid size for conditional read/write\n");
294 }
295
296 if (overwrite_mem)
297 std::memcpy(pmemAddr + pkt->getAddr() - start(),
298 &overwrite_val, pkt->getSize());
299
300 #if TRACING_ON
301 switch (pkt->getSize()) {
302 case sizeof(uint64_t):
303 DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x old data 0x%x\n",
304 pkt->getSize(), pkt->getAddr(),pkt->get<uint64_t>());
305 DPRINTF(MemoryAccess, "New Data 0x%x %s conditional (0x%x) and %s \n",
306 overwrite_mem, pkt->req->isCondSwap() ? "was" : "wasn't",
307 condition_val64, overwrite_mem ? "happened" : "didn't happen");
308 break;
309 case sizeof(uint32_t):
310 DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x old data 0x%x\n",
311 pkt->getSize(), pkt->getAddr(),pkt->get<uint32_t>());
312 DPRINTF(MemoryAccess, "New Data 0x%x %s conditional (0x%x) and %s \n",
313 overwrite_mem, pkt->req->isCondSwap() ? "was" : "wasn't",
314 condition_val32, overwrite_mem ? "happened" : "didn't happen");
315 break;
316 case sizeof(uint16_t):
317 DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x old data 0x%x\n",
318 pkt->getSize(), pkt->getAddr(),pkt->get<uint16_t>());
319 DPRINTF(MemoryAccess, "New Data 0x%x wasn't conditional and happned\n",
320 overwrite_mem);
321 break;
322 case sizeof(uint8_t):
323 DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x old data 0x%x\n",
324 pkt->getSize(), pkt->getAddr(),pkt->get<uint8_t>());
325 DPRINTF(MemoryAccess, "New Data 0x%x wasn't conditional and happned\n",
326 overwrite_mem);
327 break;
328 default:
329 DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x\n",
330 pkt->getSize(), pkt->getAddr());
331 }
332 #endif
333 } else {
334 panic("unimplemented");
335 }
336
337 pkt->result = Packet::Success;
338 }
339
340 Port *
341 PhysicalMemory::getPort(const std::string &if_name, int idx)
342 {
343 // Accept request for "functional" port for backwards compatibility
344 // with places where this function is called from C++. I'd prefer
345 // to move all these into Python someday.
346 if (if_name == "functional") {
347 return new MemoryPort(csprintf("%s-functional", name()), this);
348 }
349
350 if (if_name != "port") {
351 panic("PhysicalMemory::getPort: unknown port %s requested", if_name);
352 }
353
354 if (idx >= ports.size()) {
355 ports.resize(idx+1);
356 }
357
358 if (ports[idx] != NULL) {
359 panic("PhysicalMemory::getPort: port %d already assigned", idx);
360 }
361
362 MemoryPort *port =
363 new MemoryPort(csprintf("%s-port%d", name(), idx), this);
364
365 ports[idx] = port;
366 return port;
367 }
368
369
370 void
371 PhysicalMemory::recvStatusChange(Port::Status status)
372 {
373 }
374
375 PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name,
376 PhysicalMemory *_memory)
377 : SimpleTimingPort(_name), memory(_memory)
378 { }
379
380 void
381 PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status)
382 {
383 memory->recvStatusChange(status);
384 }
385
386 void
387 PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp,
388 bool &snoop)
389 {
390 memory->getAddressRanges(resp, snoop);
391 }
392
393 void
394 PhysicalMemory::getAddressRanges(AddrRangeList &resp, bool &snoop)
395 {
396 snoop = false;
397 resp.clear();
398 resp.push_back(RangeSize(start(), params()->addrRange.size()));
399 }
400
401 int
402 PhysicalMemory::MemoryPort::deviceBlockSize()
403 {
404 return memory->deviceBlockSize();
405 }
406
407 Tick
408 PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt)
409 {
410 memory->doFunctionalAccess(pkt);
411 return memory->calculateLatency(pkt);
412 }
413
414 void
415 PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt)
416 {
417 checkFunctional(pkt);
418
419 // Default implementation of SimpleTimingPort::recvFunctional()
420 // calls recvAtomic() and throws away the latency; we can save a
421 // little here by just not calculating the latency.
422 memory->doFunctionalAccess(pkt);
423 }
424
425 unsigned int
426 PhysicalMemory::drain(Event *de)
427 {
428 int count = 0;
429 for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
430 count += (*pi)->drain(de);
431 }
432
433 if (count)
434 changeState(Draining);
435 else
436 changeState(Drained);
437 return count;
438 }
439
440 void
441 PhysicalMemory::serialize(ostream &os)
442 {
443 gzFile compressedMem;
444 string filename = name() + ".physmem";
445
446 SERIALIZE_SCALAR(filename);
447
448 // write memory file
449 string thefile = Checkpoint::dir() + "/" + filename.c_str();
450 int fd = creat(thefile.c_str(), 0664);
451 if (fd < 0) {
452 perror("creat");
453 fatal("Can't open physical memory checkpoint file '%s'\n", filename);
454 }
455
456 compressedMem = gzdopen(fd, "wb");
457 if (compressedMem == NULL)
458 fatal("Insufficient memory to allocate compression state for %s\n",
459 filename);
460
461 if (gzwrite(compressedMem, pmemAddr, params()->addrRange.size()) != params()->addrRange.size()) {
462 fatal("Write failed on physical memory checkpoint file '%s'\n",
463 filename);
464 }
465
466 if (gzclose(compressedMem))
467 fatal("Close failed on physical memory checkpoint file '%s'\n",
468 filename);
469 }
470
471 void
472 PhysicalMemory::unserialize(Checkpoint *cp, const string &section)
473 {
474 gzFile compressedMem;
475 long *tempPage;
476 long *pmem_current;
477 uint64_t curSize;
478 uint32_t bytesRead;
479 const int chunkSize = 16384;
480
481
482 string filename;
483
484 UNSERIALIZE_SCALAR(filename);
485
486 filename = cp->cptDir + "/" + filename;
487
488 // mmap memoryfile
489 int fd = open(filename.c_str(), O_RDONLY);
490 if (fd < 0) {
491 perror("open");
492 fatal("Can't open physical memory checkpoint file '%s'", filename);
493 }
494
495 compressedMem = gzdopen(fd, "rb");
496 if (compressedMem == NULL)
497 fatal("Insufficient memory to allocate compression state for %s\n",
498 filename);
499
500 // unmap file that was mmaped in the constructor
501 // This is done here to make sure that gzip and open don't muck with our
502 // nice large space of memory before we reallocate it
503 munmap((char*)pmemAddr, params()->addrRange.size());
504
505 pmemAddr = (uint8_t *)mmap(NULL, params()->addrRange.size(), PROT_READ | PROT_WRITE,
506 MAP_ANON | MAP_PRIVATE, -1, 0);
507
508 if (pmemAddr == (void *)MAP_FAILED) {
509 perror("mmap");
510 fatal("Could not mmap physical memory!\n");
511 }
512
513 curSize = 0;
514 tempPage = (long*)malloc(chunkSize);
515 if (tempPage == NULL)
516 fatal("Unable to malloc memory to read file %s\n", filename);
517
518 /* Only copy bytes that are non-zero, so we don't give the VM system hell */
519 while (curSize < params()->addrRange.size()) {
520 bytesRead = gzread(compressedMem, tempPage, chunkSize);
521 if (bytesRead != chunkSize && bytesRead != params()->addrRange.size() - curSize)
522 fatal("Read failed on physical memory checkpoint file '%s'"
523 " got %d bytes, expected %d or %d bytes\n",
524 filename, bytesRead, chunkSize, params()->addrRange.size()-curSize);
525
526 assert(bytesRead % sizeof(long) == 0);
527
528 for (int x = 0; x < bytesRead/sizeof(long); x++)
529 {
530 if (*(tempPage+x) != 0) {
531 pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
532 *pmem_current = *(tempPage+x);
533 }
534 }
535 curSize += bytesRead;
536 }
537
538 free(tempPage);
539
540 if (gzclose(compressedMem))
541 fatal("Close failed on physical memory checkpoint file '%s'\n",
542 filename);
543
544 }
545
546
547 BEGIN_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory)
548
549 Param<string> file;
550 Param<Range<Addr> > range;
551 Param<Tick> latency;
552 Param<bool> zero;
553
554 END_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory)
555
556 BEGIN_INIT_SIM_OBJECT_PARAMS(PhysicalMemory)
557
558 INIT_PARAM_DFLT(file, "memory mapped file", ""),
559 INIT_PARAM(range, "Device Address Range"),
560 INIT_PARAM(latency, "Memory access latency"),
561 INIT_PARAM(zero, "Zero initialize memory")
562
563 END_INIT_SIM_OBJECT_PARAMS(PhysicalMemory)
564
565 CREATE_SIM_OBJECT(PhysicalMemory)
566 {
567 PhysicalMemory::Params *p = new PhysicalMemory::Params;
568 p->name = getInstanceName();
569 p->addrRange = range;
570 p->latency = latency;
571 p->zero = zero;
572 return new PhysicalMemory(p);
573 }
574
575 REGISTER_SIM_OBJECT("PhysicalMemory", PhysicalMemory)