f0d85cba8d95bc29529585ca2a3a92696f2233ed
[gem5.git] / src / mem / protocol / MI_example-dir.sm
1 /*
2 * Copyright (c) 2009-2012 Mark D. Hill and David A. Wood
3 * Copyright (c) 2010-2012 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 machine(Directory, "Directory protocol")
31 : DirectoryMemory * directory;
32 MemoryControl * memBuffer;
33 Cycles directory_latency := 12;
34 {
35
36 MessageBuffer forwardFromDir, network="To", virtual_network="3", ordered="false", vnet_type="forward";
37 MessageBuffer responseFromDir, network="To", virtual_network="4", ordered="false", vnet_type="response";
38 MessageBuffer dmaResponseFromDir, network="To", virtual_network="1", ordered="true", vnet_type="response";
39
40 MessageBuffer requestToDir, network="From", virtual_network="2", ordered="true", vnet_type="request";
41 MessageBuffer dmaRequestToDir, network="From", virtual_network="0", ordered="true", vnet_type="request";
42
43 // STATES
44 state_declaration(State, desc="Directory states", default="Directory_State_I") {
45 // Base states
46 I, AccessPermission:Read_Write, desc="Invalid";
47 M, AccessPermission:Invalid, desc="Modified";
48
49 M_DRD, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA read";
50 M_DWR, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA write";
51
52 M_DWRI, AccessPermission:Busy, desc="Intermediate state M_DWR-->I";
53 M_DRDI, AccessPermission:Busy, desc="Intermediate state M_DRD-->I";
54
55 IM, AccessPermission:Busy, desc="Intermediate state I-->M";
56 MI, AccessPermission:Busy, desc="Intermediate state M-->I";
57 ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I";
58 ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I";
59 }
60
61 // Events
62 enumeration(Event, desc="Directory events") {
63 // processor requests
64 GETX, desc="A GETX arrives";
65 GETS, desc="A GETS arrives";
66 PUTX, desc="A PUTX arrives";
67 PUTX_NotOwner, desc="A PUTX arrives";
68
69 // DMA requests
70 DMA_READ, desc="A DMA Read memory request";
71 DMA_WRITE, desc="A DMA Write memory request";
72
73 // Memory Controller
74 Memory_Data, desc="Fetched data from memory arrives";
75 Memory_Ack, desc="Writeback Ack from memory arrives";
76 }
77
78 // TYPES
79
80 // DirectoryEntry
81 structure(Entry, desc="...", interface="AbstractEntry") {
82 State DirectoryState, desc="Directory state";
83 DataBlock DataBlk, desc="data for the block";
84 NetDest Sharers, desc="Sharers for this block";
85 NetDest Owner, desc="Owner of this block";
86 }
87
88 // TBE entries for DMA requests
89 structure(TBE, desc="TBE entries for outstanding DMA requests") {
90 Address PhysicalAddress, desc="physical address";
91 State TBEState, desc="Transient State";
92 DataBlock DataBlk, desc="Data to be written (DMA write only)";
93 int Len, desc="...";
94 MachineID DmaRequestor, desc="DMA requestor";
95 }
96
97 structure(TBETable, external="yes") {
98 TBE lookup(Address);
99 void allocate(Address);
100 void deallocate(Address);
101 bool isPresent(Address);
102 }
103
104 // ** OBJECTS **
105 TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";
106
107 void set_tbe(TBE b);
108 void unset_tbe();
109
110 Entry getDirectoryEntry(Address addr), return_by_pointer="yes" {
111 Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);
112
113 if (is_valid(dir_entry)) {
114 return dir_entry;
115 }
116
117 dir_entry := static_cast(Entry, "pointer",
118 directory.allocate(addr, new Entry));
119 return dir_entry;
120 }
121
122 State getState(TBE tbe, Address addr) {
123 if (is_valid(tbe)) {
124 return tbe.TBEState;
125 } else if (directory.isPresent(addr)) {
126 return getDirectoryEntry(addr).DirectoryState;
127 } else {
128 return State:I;
129 }
130 }
131
132 void setState(TBE tbe, Address addr, State state) {
133
134 if (is_valid(tbe)) {
135 tbe.TBEState := state;
136 }
137
138 if (directory.isPresent(addr)) {
139
140 if (state == State:M) {
141 assert(getDirectoryEntry(addr).Owner.count() == 1);
142 assert(getDirectoryEntry(addr).Sharers.count() == 0);
143 }
144
145 getDirectoryEntry(addr).DirectoryState := state;
146
147 if (state == State:I) {
148 assert(getDirectoryEntry(addr).Owner.count() == 0);
149 assert(getDirectoryEntry(addr).Sharers.count() == 0);
150 directory.invalidateBlock(addr);
151 }
152 }
153 }
154
155 AccessPermission getAccessPermission(Address addr) {
156 TBE tbe := TBEs[addr];
157 if(is_valid(tbe)) {
158 return Directory_State_to_permission(tbe.TBEState);
159 }
160
161 if(directory.isPresent(addr)) {
162 return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState);
163 }
164
165 return AccessPermission:NotPresent;
166 }
167
168 void setAccessPermission(Address addr, State state) {
169 if (directory.isPresent(addr)) {
170 getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state));
171 }
172 }
173
174 DataBlock getDataBlock(Address addr), return_by_ref="yes" {
175 TBE tbe := TBEs[addr];
176 if(is_valid(tbe)) {
177 return tbe.DataBlk;
178 }
179
180 return getDirectoryEntry(addr).DataBlk;
181 }
182
183 // ** OUT_PORTS **
184 out_port(forwardNetwork_out, RequestMsg, forwardFromDir);
185 out_port(responseNetwork_out, ResponseMsg, responseFromDir);
186 out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests
187 out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir);
188
189 //added by SS
190 out_port(memQueue_out, MemoryMsg, memBuffer);
191 // ** IN_PORTS **
192
193 in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
194 if (dmaRequestQueue_in.isReady()) {
195 peek(dmaRequestQueue_in, DMARequestMsg) {
196 TBE tbe := TBEs[in_msg.LineAddress];
197 if (in_msg.Type == DMARequestType:READ) {
198 trigger(Event:DMA_READ, in_msg.LineAddress, tbe);
199 } else if (in_msg.Type == DMARequestType:WRITE) {
200 trigger(Event:DMA_WRITE, in_msg.LineAddress, tbe);
201 } else {
202 error("Invalid message");
203 }
204 }
205 }
206 }
207
208 in_port(requestQueue_in, RequestMsg, requestToDir) {
209 if (requestQueue_in.isReady()) {
210 peek(requestQueue_in, RequestMsg) {
211 TBE tbe := TBEs[in_msg.Addr];
212 if (in_msg.Type == CoherenceRequestType:GETS) {
213 trigger(Event:GETS, in_msg.Addr, tbe);
214 } else if (in_msg.Type == CoherenceRequestType:GETX) {
215 trigger(Event:GETX, in_msg.Addr, tbe);
216 } else if (in_msg.Type == CoherenceRequestType:PUTX) {
217 if (getDirectoryEntry(in_msg.Addr).Owner.isElement(in_msg.Requestor)) {
218 trigger(Event:PUTX, in_msg.Addr, tbe);
219 } else {
220 trigger(Event:PUTX_NotOwner, in_msg.Addr, tbe);
221 }
222 } else {
223 error("Invalid message");
224 }
225 }
226 }
227 }
228
229 //added by SS
230 // off-chip memory request/response is done
231 in_port(memQueue_in, MemoryMsg, memBuffer) {
232 if (memQueue_in.isReady()) {
233 peek(memQueue_in, MemoryMsg) {
234 TBE tbe := TBEs[in_msg.Addr];
235 if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
236 trigger(Event:Memory_Data, in_msg.Addr, tbe);
237 } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
238 trigger(Event:Memory_Ack, in_msg.Addr, tbe);
239 } else {
240 DPRINTF(RubySlicc,"%s\n", in_msg.Type);
241 error("Invalid message");
242 }
243 }
244 }
245 }
246
247 // Actions
248
249 action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") {
250 peek(requestQueue_in, RequestMsg) {
251 enqueue(forwardNetwork_out, RequestMsg, directory_latency) {
252 out_msg.Addr := address;
253 out_msg.Type := CoherenceRequestType:WB_ACK;
254 out_msg.Requestor := in_msg.Requestor;
255 out_msg.Destination.add(in_msg.Requestor);
256 out_msg.MessageSize := MessageSizeType:Writeback_Control;
257 }
258 }
259 }
260
261 action(l_sendWriteBackAck, "la", desc="Send writeback ack to requestor") {
262 peek(memQueue_in, MemoryMsg) {
263 enqueue(forwardNetwork_out, RequestMsg, 1) {
264 out_msg.Addr := address;
265 out_msg.Type := CoherenceRequestType:WB_ACK;
266 out_msg.Requestor := in_msg.OriginalRequestorMachId;
267 out_msg.Destination.add(in_msg.OriginalRequestorMachId);
268 out_msg.MessageSize := MessageSizeType:Writeback_Control;
269 }
270 }
271 }
272
273 action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") {
274 peek(requestQueue_in, RequestMsg) {
275 enqueue(forwardNetwork_out, RequestMsg, directory_latency) {
276 out_msg.Addr := address;
277 out_msg.Type := CoherenceRequestType:WB_NACK;
278 out_msg.Requestor := in_msg.Requestor;
279 out_msg.Destination.add(in_msg.Requestor);
280 out_msg.MessageSize := MessageSizeType:Writeback_Control;
281 }
282 }
283 }
284
285 action(c_clearOwner, "c", desc="Clear the owner field") {
286 getDirectoryEntry(address).Owner.clear();
287 }
288
289 action(d_sendData, "d", desc="Send data to requestor") {
290 peek(memQueue_in, MemoryMsg) {
291 enqueue(responseNetwork_out, ResponseMsg, 1) {
292 out_msg.Addr := address;
293 out_msg.Type := CoherenceResponseType:DATA;
294 out_msg.Sender := machineID;
295 out_msg.Destination.add(in_msg.OriginalRequestorMachId);
296 out_msg.DataBlk := in_msg.DataBlk;
297 out_msg.MessageSize := MessageSizeType:Response_Data;
298 }
299 }
300 }
301
302 action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
303 peek(memQueue_in, MemoryMsg) {
304 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
305 assert(is_valid(tbe));
306 out_msg.PhysicalAddress := address;
307 out_msg.LineAddress := address;
308 out_msg.Type := DMAResponseType:DATA;
309 out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
310 out_msg.Destination.add(tbe.DmaRequestor);
311 out_msg.MessageSize := MessageSizeType:Response_Data;
312 }
313 }
314 }
315
316
317
318 action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") {
319 peek(requestQueue_in, RequestMsg) {
320 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
321 assert(is_valid(tbe));
322 out_msg.PhysicalAddress := address;
323 out_msg.LineAddress := address;
324 out_msg.Type := DMAResponseType:DATA;
325 out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
326 out_msg.Destination.add(tbe.DmaRequestor);
327 out_msg.MessageSize := MessageSizeType:Response_Data;
328 }
329 }
330 }
331
332 action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") {
333 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
334 assert(is_valid(tbe));
335 out_msg.PhysicalAddress := address;
336 out_msg.LineAddress := address;
337 out_msg.Type := DMAResponseType:ACK;
338 out_msg.Destination.add(tbe.DmaRequestor);
339 out_msg.MessageSize := MessageSizeType:Writeback_Control;
340 }
341 }
342
343 action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") {
344 peek(requestQueue_in, RequestMsg) {
345 getDirectoryEntry(address).Owner.clear();
346 getDirectoryEntry(address).Owner.add(in_msg.Requestor);
347 }
348 }
349
350 action(f_forwardRequest, "f", desc="Forward request to owner") {
351 peek(requestQueue_in, RequestMsg) {
352 APPEND_TRANSITION_COMMENT("Own: ");
353 APPEND_TRANSITION_COMMENT(getDirectoryEntry(in_msg.Addr).Owner);
354 APPEND_TRANSITION_COMMENT("Req: ");
355 APPEND_TRANSITION_COMMENT(in_msg.Requestor);
356 enqueue(forwardNetwork_out, RequestMsg, directory_latency) {
357 out_msg.Addr := address;
358 out_msg.Type := in_msg.Type;
359 out_msg.Requestor := in_msg.Requestor;
360 out_msg.Destination := getDirectoryEntry(in_msg.Addr).Owner;
361 out_msg.MessageSize := MessageSizeType:Writeback_Control;
362 }
363 }
364 }
365
366 action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {
367 peek(dmaRequestQueue_in, DMARequestMsg) {
368 enqueue(forwardNetwork_out, RequestMsg, directory_latency) {
369 out_msg.Addr := address;
370 out_msg.Type := CoherenceRequestType:INV;
371 out_msg.Requestor := machineID;
372 out_msg.Destination := getDirectoryEntry(in_msg.PhysicalAddress).Owner;
373 out_msg.MessageSize := MessageSizeType:Writeback_Control;
374 }
375 }
376 }
377
378 action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
379 requestQueue_in.dequeue();
380 }
381
382 action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
383 dmaRequestQueue_in.dequeue();
384 }
385
386 action(l_writeDataToMemory, "pl", desc="Write PUTX data to memory") {
387 peek(requestQueue_in, RequestMsg) {
388 // assert(in_msg.Dirty);
389 // assert(in_msg.MessageSize == MessageSizeType:Writeback_Data);
390 getDirectoryEntry(in_msg.Addr).DataBlk := in_msg.DataBlk;
391 //getDirectoryEntry(in_msg.Addr).DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.Addr), in_msg.Len);
392 }
393 }
394
395 action(dwt_writeDMADataFromTBE, "dwt", desc="DMA Write data to memory from TBE") {
396 assert(is_valid(tbe));
397 getDirectoryEntry(address).DataBlk.copyPartial(tbe.DataBlk, addressOffset(tbe.PhysicalAddress), tbe.Len);
398 }
399
400 action(v_allocateTBE, "v", desc="Allocate TBE") {
401 peek(dmaRequestQueue_in, DMARequestMsg) {
402 TBEs.allocate(address);
403 set_tbe(TBEs[address]);
404 tbe.DataBlk := in_msg.DataBlk;
405 tbe.PhysicalAddress := in_msg.PhysicalAddress;
406 tbe.Len := in_msg.Len;
407 tbe.DmaRequestor := in_msg.Requestor;
408 }
409 }
410
411 action(r_allocateTbeForDmaRead, "\r", desc="Allocate TBE for DMA Read") {
412 peek(dmaRequestQueue_in, DMARequestMsg) {
413 TBEs.allocate(address);
414 set_tbe(TBEs[address]);
415 tbe.DmaRequestor := in_msg.Requestor;
416 }
417 }
418
419 action(v_allocateTBEFromRequestNet, "\v", desc="Allocate TBE") {
420 peek(requestQueue_in, RequestMsg) {
421 TBEs.allocate(address);
422 set_tbe(TBEs[address]);
423 tbe.DataBlk := in_msg.DataBlk;
424 }
425 }
426
427 action(w_deallocateTBE, "w", desc="Deallocate TBE") {
428 TBEs.deallocate(address);
429 unset_tbe();
430 }
431
432 action(z_recycleRequestQueue, "z", desc="recycle request queue") {
433 requestQueue_in.recycle();
434 }
435
436 action(y_recycleDMARequestQueue, "y", desc="recycle dma request queue") {
437 dmaRequestQueue_in.recycle();
438 }
439
440
441 action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
442 peek(requestQueue_in, RequestMsg) {
443 enqueue(memQueue_out, MemoryMsg, 1) {
444 out_msg.Addr := address;
445 out_msg.Type := MemoryRequestType:MEMORY_READ;
446 out_msg.Sender := machineID;
447 out_msg.OriginalRequestorMachId := in_msg.Requestor;
448 out_msg.MessageSize := in_msg.MessageSize;
449 out_msg.DataBlk := getDirectoryEntry(in_msg.Addr).DataBlk;
450 DPRINTF(RubySlicc,"%s\n", out_msg);
451 }
452 }
453 }
454
455 action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") {
456 peek(dmaRequestQueue_in, DMARequestMsg) {
457 enqueue(memQueue_out, MemoryMsg, 1) {
458 out_msg.Addr := address;
459 out_msg.Type := MemoryRequestType:MEMORY_READ;
460 out_msg.Sender := machineID;
461 //out_msg.OriginalRequestorMachId := machineID;
462 out_msg.MessageSize := in_msg.MessageSize;
463 out_msg.DataBlk := getDirectoryEntry(address).DataBlk;
464 DPRINTF(RubySlicc,"%s\n", out_msg);
465 }
466 }
467 }
468
469 action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") {
470 peek(dmaRequestQueue_in, DMARequestMsg) {
471 enqueue(memQueue_out, MemoryMsg, 1) {
472 out_msg.Addr := address;
473 out_msg.Type := MemoryRequestType:MEMORY_WB;
474 //out_msg.OriginalRequestorMachId := machineID;
475 //out_msg.DataBlk := in_msg.DataBlk;
476 out_msg.DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.PhysicalAddress), in_msg.Len);
477 out_msg.MessageSize := in_msg.MessageSize;
478 //out_msg.Prefetch := in_msg.Prefetch;
479
480 DPRINTF(RubySlicc,"%s\n", out_msg);
481 }
482 }
483 }
484
485 action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") {
486 peek(requestQueue_in, RequestMsg) {
487 enqueue(memQueue_out, MemoryMsg, 1) {
488 assert(is_valid(tbe));
489 out_msg.Addr := address;
490 out_msg.Type := MemoryRequestType:MEMORY_WB;
491 out_msg.OriginalRequestorMachId := in_msg.Requestor;
492 // get incoming data
493 // out_msg.DataBlk := in_msg.DataBlk;
494 out_msg.DataBlk.copyPartial(tbe.DataBlk, addressOffset(tbe.PhysicalAddress), tbe.Len);
495 out_msg.MessageSize := in_msg.MessageSize;
496 //out_msg.Prefetch := in_msg.Prefetch;
497
498 DPRINTF(RubySlicc,"%s\n", out_msg);
499 }
500 }
501 }
502
503
504
505 action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") {
506 peek(requestQueue_in, RequestMsg) {
507 enqueue(memQueue_out, MemoryMsg, 1) {
508 out_msg.Addr := address;
509 out_msg.Type := MemoryRequestType:MEMORY_WB;
510 out_msg.Sender := machineID;
511 out_msg.OriginalRequestorMachId := in_msg.Requestor;
512 out_msg.DataBlk := in_msg.DataBlk;
513 out_msg.MessageSize := in_msg.MessageSize;
514
515 DPRINTF(RubySlicc,"%s\n", out_msg);
516 }
517 }
518 }
519
520 action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
521 memQueue_in.dequeue();
522 }
523
524 action(w_writeDataToMemoryFromTBE, "\w", desc="Write date to directory memory from TBE") {
525 assert(is_valid(tbe));
526 getDirectoryEntry(address).DataBlk := TBEs[address].DataBlk;
527 }
528
529 // TRANSITIONS
530
531 transition({M_DRD, M_DWR, M_DWRI, M_DRDI}, GETX) {
532 z_recycleRequestQueue;
533 }
534
535 transition({IM, MI, ID, ID_W}, {GETX, GETS, PUTX, PUTX_NotOwner} ) {
536 z_recycleRequestQueue;
537 }
538
539 transition({IM, MI, ID, ID_W}, {DMA_READ, DMA_WRITE} ) {
540 y_recycleDMARequestQueue;
541 }
542
543
544 transition(I, GETX, IM) {
545 //d_sendData;
546 qf_queueMemoryFetchRequest;
547 e_ownerIsRequestor;
548 i_popIncomingRequestQueue;
549 }
550
551 transition(IM, Memory_Data, M) {
552 d_sendData;
553 //e_ownerIsRequestor;
554 l_popMemQueue;
555 }
556
557
558 transition(I, DMA_READ, ID) {
559 //dr_sendDMAData;
560 r_allocateTbeForDmaRead;
561 qf_queueMemoryFetchRequestDMA;
562 p_popIncomingDMARequestQueue;
563 }
564
565 transition(ID, Memory_Data, I) {
566 dr_sendDMAData;
567 //p_popIncomingDMARequestQueue;
568 w_deallocateTBE;
569 l_popMemQueue;
570 }
571
572
573
574 transition(I, DMA_WRITE, ID_W) {
575 v_allocateTBE;
576 qw_queueMemoryWBRequest_partial;
577 p_popIncomingDMARequestQueue;
578 }
579
580 transition(ID_W, Memory_Ack, I) {
581 dwt_writeDMADataFromTBE;
582 da_sendDMAAck;
583 w_deallocateTBE;
584 l_popMemQueue;
585 }
586
587 transition(M, DMA_READ, M_DRD) {
588 v_allocateTBE;
589 inv_sendCacheInvalidate;
590 p_popIncomingDMARequestQueue;
591 }
592
593 transition(M_DRD, PUTX, M_DRDI) {
594 l_writeDataToMemory;
595 drp_sendDMAData;
596 c_clearOwner;
597 l_queueMemoryWBRequest;
598 i_popIncomingRequestQueue;
599 }
600
601 transition(M_DRDI, Memory_Ack, I) {
602 l_sendWriteBackAck;
603 w_deallocateTBE;
604 l_popMemQueue;
605 }
606
607
608 transition(M, DMA_WRITE, M_DWR) {
609 v_allocateTBE;
610 inv_sendCacheInvalidate;
611 p_popIncomingDMARequestQueue;
612 }
613
614 transition(M_DWR, PUTX, M_DWRI) {
615 l_writeDataToMemory;
616 qw_queueMemoryWBRequest_partialTBE;
617 c_clearOwner;
618 i_popIncomingRequestQueue;
619 }
620
621 transition(M_DWRI, Memory_Ack, I) {
622 w_writeDataToMemoryFromTBE;
623 l_sendWriteBackAck;
624 da_sendDMAAck;
625 w_deallocateTBE;
626 l_popMemQueue;
627 }
628
629 transition(M, GETX, M) {
630 f_forwardRequest;
631 e_ownerIsRequestor;
632 i_popIncomingRequestQueue;
633 }
634
635 transition(M, PUTX, MI) {
636 c_clearOwner;
637 v_allocateTBEFromRequestNet;
638 l_queueMemoryWBRequest;
639 i_popIncomingRequestQueue;
640 }
641
642 transition(MI, Memory_Ack, I) {
643 w_writeDataToMemoryFromTBE;
644 l_sendWriteBackAck;
645 w_deallocateTBE;
646 l_popMemQueue;
647 }
648
649 transition(M, PUTX_NotOwner, M) {
650 b_sendWriteBackNack;
651 i_popIncomingRequestQueue;
652 }
653
654 transition(I, PUTX_NotOwner, I) {
655 b_sendWriteBackNack;
656 i_popIncomingRequestQueue;
657 }
658
659 }