mem-ruby: Fix missing TBE allocation and deallocation
[gem5.git] / src / mem / protocol / MI_example-dir.sm
1 /*
2 * Copyright (c) 2009-2012 Mark D. Hill and David A. Wood
3 * Copyright (c) 2010-2012 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 machine(MachineType:Directory, "Directory protocol")
31 : DirectoryMemory * directory;
32 Cycles directory_latency := 12;
33 Cycles to_memory_controller_latency := 1;
34
35 MessageBuffer * forwardFromDir, network="To", virtual_network="3",
36 vnet_type="forward";
37 MessageBuffer * responseFromDir, network="To", virtual_network="4",
38 vnet_type="response";
39 MessageBuffer * dmaResponseFromDir, network="To", virtual_network="1",
40 vnet_type="response";
41
42 MessageBuffer * requestToDir, network="From", virtual_network="2",
43 vnet_type="request";
44 MessageBuffer * dmaRequestToDir, network="From", virtual_network="0",
45 vnet_type="request";
46 MessageBuffer * responseFromMemory;
47 {
48 // STATES
49 state_declaration(State, desc="Directory states", default="Directory_State_I") {
50 // Base states
51 I, AccessPermission:Read_Write, desc="Invalid";
52 M, AccessPermission:Invalid, desc="Modified";
53
54 M_DRD, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA read";
55 M_DWR, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA write";
56
57 M_DWRI, AccessPermission:Busy, desc="Intermediate state M_DWR-->I";
58 M_DRDI, AccessPermission:Busy, desc="Intermediate state M_DRD-->I";
59
60 IM, AccessPermission:Busy, desc="Intermediate state I-->M";
61 MI, AccessPermission:Busy, desc="Intermediate state M-->I";
62 ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I";
63 ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I";
64 }
65
66 // Events
67 enumeration(Event, desc="Directory events") {
68 // processor requests
69 GETX, desc="A GETX arrives";
70 GETS, desc="A GETS arrives";
71 PUTX, desc="A PUTX arrives";
72 PUTX_NotOwner, desc="A PUTX arrives";
73
74 // DMA requests
75 DMA_READ, desc="A DMA Read memory request";
76 DMA_WRITE, desc="A DMA Write memory request";
77
78 // Memory Controller
79 Memory_Data, desc="Fetched data from memory arrives";
80 Memory_Ack, desc="Writeback Ack from memory arrives";
81 }
82
83 // TYPES
84
85 // DirectoryEntry
86 structure(Entry, desc="...", interface="AbstractEntry") {
87 State DirectoryState, desc="Directory state";
88 NetDest Sharers, desc="Sharers for this block";
89 NetDest Owner, desc="Owner of this block";
90 }
91
92 // TBE entries for DMA requests
93 structure(TBE, desc="TBE entries for outstanding DMA requests") {
94 Addr PhysicalAddress, desc="physical address";
95 State TBEState, desc="Transient State";
96 DataBlock DataBlk, desc="Data to be written (DMA write only)";
97 int Len, desc="...";
98 MachineID DmaRequestor, desc="DMA requestor";
99 }
100
101 structure(TBETable, external="yes") {
102 TBE lookup(Addr);
103 void allocate(Addr);
104 void deallocate(Addr);
105 bool isPresent(Addr);
106 }
107
108 // ** OBJECTS **
109 TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";
110
111 Tick clockEdge();
112 Cycles ticksToCycles(Tick t);
113 Tick cyclesToTicks(Cycles c);
114 void set_tbe(TBE b);
115 void unset_tbe();
116
117 Entry getDirectoryEntry(Addr addr), return_by_pointer="yes" {
118 Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);
119
120 if (is_valid(dir_entry)) {
121 return dir_entry;
122 }
123
124 dir_entry := static_cast(Entry, "pointer",
125 directory.allocate(addr, new Entry));
126 return dir_entry;
127 }
128
129 State getState(TBE tbe, Addr addr) {
130 if (is_valid(tbe)) {
131 return tbe.TBEState;
132 } else if (directory.isPresent(addr)) {
133 return getDirectoryEntry(addr).DirectoryState;
134 } else {
135 return State:I;
136 }
137 }
138
139 void setState(TBE tbe, Addr addr, State state) {
140
141 if (is_valid(tbe)) {
142 tbe.TBEState := state;
143 }
144
145 if (directory.isPresent(addr)) {
146
147 if (state == State:M) {
148 assert(getDirectoryEntry(addr).Owner.count() == 1);
149 assert(getDirectoryEntry(addr).Sharers.count() == 0);
150 }
151
152 getDirectoryEntry(addr).DirectoryState := state;
153
154 if (state == State:I) {
155 assert(getDirectoryEntry(addr).Owner.count() == 0);
156 assert(getDirectoryEntry(addr).Sharers.count() == 0);
157 }
158 }
159 }
160
161 AccessPermission getAccessPermission(Addr addr) {
162 TBE tbe := TBEs[addr];
163 if(is_valid(tbe)) {
164 return Directory_State_to_permission(tbe.TBEState);
165 }
166
167 if(directory.isPresent(addr)) {
168 return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState);
169 }
170
171 return AccessPermission:NotPresent;
172 }
173
174 void setAccessPermission(Addr addr, State state) {
175 if (directory.isPresent(addr)) {
176 getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state));
177 }
178 }
179
180 void functionalRead(Addr addr, Packet *pkt) {
181 TBE tbe := TBEs[addr];
182 if(is_valid(tbe)) {
183 testAndRead(addr, tbe.DataBlk, pkt);
184 } else {
185 functionalMemoryRead(pkt);
186 }
187 }
188
189 int functionalWrite(Addr addr, Packet *pkt) {
190 int num_functional_writes := 0;
191
192 TBE tbe := TBEs[addr];
193 if(is_valid(tbe)) {
194 num_functional_writes := num_functional_writes +
195 testAndWrite(addr, tbe.DataBlk, pkt);
196 }
197
198 num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt);
199 return num_functional_writes;
200 }
201
202 // ** OUT_PORTS **
203 out_port(forwardNetwork_out, RequestMsg, forwardFromDir);
204 out_port(responseNetwork_out, ResponseMsg, responseFromDir);
205 out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests
206 out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir);
207
208 // ** IN_PORTS **
209 in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
210 if (dmaRequestQueue_in.isReady(clockEdge())) {
211 peek(dmaRequestQueue_in, DMARequestMsg) {
212 TBE tbe := TBEs[in_msg.LineAddress];
213 if (in_msg.Type == DMARequestType:READ) {
214 trigger(Event:DMA_READ, in_msg.LineAddress, tbe);
215 } else if (in_msg.Type == DMARequestType:WRITE) {
216 trigger(Event:DMA_WRITE, in_msg.LineAddress, tbe);
217 } else {
218 error("Invalid message");
219 }
220 }
221 }
222 }
223
224 in_port(requestQueue_in, RequestMsg, requestToDir) {
225 if (requestQueue_in.isReady(clockEdge())) {
226 peek(requestQueue_in, RequestMsg) {
227 TBE tbe := TBEs[in_msg.addr];
228 if (in_msg.Type == CoherenceRequestType:GETS) {
229 trigger(Event:GETS, in_msg.addr, tbe);
230 } else if (in_msg.Type == CoherenceRequestType:GETX) {
231 trigger(Event:GETX, in_msg.addr, tbe);
232 } else if (in_msg.Type == CoherenceRequestType:PUTX) {
233 if (getDirectoryEntry(in_msg.addr).Owner.isElement(in_msg.Requestor)) {
234 trigger(Event:PUTX, in_msg.addr, tbe);
235 } else {
236 trigger(Event:PUTX_NotOwner, in_msg.addr, tbe);
237 }
238 } else {
239 error("Invalid message");
240 }
241 }
242 }
243 }
244
245 //added by SS
246 // off-chip memory request/response is done
247 in_port(memQueue_in, MemoryMsg, responseFromMemory) {
248 if (memQueue_in.isReady(clockEdge())) {
249 peek(memQueue_in, MemoryMsg) {
250 TBE tbe := TBEs[in_msg.addr];
251 if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
252 trigger(Event:Memory_Data, in_msg.addr, tbe);
253 } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
254 trigger(Event:Memory_Ack, in_msg.addr, tbe);
255 } else {
256 DPRINTF(RubySlicc,"%s\n", in_msg.Type);
257 error("Invalid message");
258 }
259 }
260 }
261 }
262
263 // Actions
264
265 action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") {
266 peek(requestQueue_in, RequestMsg) {
267 enqueue(forwardNetwork_out, RequestMsg, directory_latency) {
268 out_msg.addr := address;
269 out_msg.Type := CoherenceRequestType:WB_ACK;
270 out_msg.Requestor := in_msg.Requestor;
271 out_msg.Destination.add(in_msg.Requestor);
272 out_msg.MessageSize := MessageSizeType:Writeback_Control;
273 }
274 }
275 }
276
277 action(l_sendWriteBackAck, "la", desc="Send writeback ack to requestor") {
278 peek(memQueue_in, MemoryMsg) {
279 enqueue(forwardNetwork_out, RequestMsg, 1) {
280 out_msg.addr := address;
281 out_msg.Type := CoherenceRequestType:WB_ACK;
282 out_msg.Requestor := in_msg.OriginalRequestorMachId;
283 out_msg.Destination.add(in_msg.OriginalRequestorMachId);
284 out_msg.MessageSize := MessageSizeType:Writeback_Control;
285 }
286 }
287 }
288
289 action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") {
290 peek(requestQueue_in, RequestMsg) {
291 enqueue(forwardNetwork_out, RequestMsg, directory_latency) {
292 out_msg.addr := address;
293 out_msg.Type := CoherenceRequestType:WB_NACK;
294 out_msg.Requestor := in_msg.Requestor;
295 out_msg.Destination.add(in_msg.Requestor);
296 out_msg.MessageSize := MessageSizeType:Writeback_Control;
297 }
298 }
299 }
300
301 action(c_clearOwner, "c", desc="Clear the owner field") {
302 getDirectoryEntry(address).Owner.clear();
303 }
304
305 action(d_sendData, "d", desc="Send data to requestor") {
306 peek(memQueue_in, MemoryMsg) {
307 enqueue(responseNetwork_out, ResponseMsg, 1) {
308 out_msg.addr := address;
309 out_msg.Type := CoherenceResponseType:DATA;
310 out_msg.Sender := machineID;
311 out_msg.Destination.add(in_msg.OriginalRequestorMachId);
312 out_msg.DataBlk := in_msg.DataBlk;
313 out_msg.MessageSize := MessageSizeType:Response_Data;
314 }
315 }
316 }
317
318 action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
319 peek(memQueue_in, MemoryMsg) {
320 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
321 assert(is_valid(tbe));
322 out_msg.PhysicalAddress := address;
323 out_msg.LineAddress := address;
324 out_msg.Type := DMAResponseType:DATA;
325 out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
326 out_msg.Destination.add(tbe.DmaRequestor);
327 out_msg.MessageSize := MessageSizeType:Response_Data;
328 }
329 }
330 }
331
332
333
334 action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") {
335 peek(requestQueue_in, RequestMsg) {
336 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
337 assert(is_valid(tbe));
338 out_msg.PhysicalAddress := address;
339 out_msg.LineAddress := address;
340 out_msg.Type := DMAResponseType:DATA;
341
342 // we send the entire data block and rely on the dma controller
343 // to split it up if need be
344 out_msg.DataBlk := in_msg.DataBlk;
345 out_msg.Destination.add(tbe.DmaRequestor);
346 out_msg.MessageSize := MessageSizeType:Response_Data;
347 }
348 }
349 }
350
351 action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") {
352 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
353 assert(is_valid(tbe));
354 out_msg.PhysicalAddress := address;
355 out_msg.LineAddress := address;
356 out_msg.Type := DMAResponseType:ACK;
357 out_msg.Destination.add(tbe.DmaRequestor);
358 out_msg.MessageSize := MessageSizeType:Writeback_Control;
359 }
360 }
361
362 action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") {
363 peek(requestQueue_in, RequestMsg) {
364 getDirectoryEntry(address).Owner.clear();
365 getDirectoryEntry(address).Owner.add(in_msg.Requestor);
366 }
367 }
368
369 action(f_forwardRequest, "f", desc="Forward request to owner") {
370 peek(requestQueue_in, RequestMsg) {
371 APPEND_TRANSITION_COMMENT("Own: ");
372 APPEND_TRANSITION_COMMENT(getDirectoryEntry(in_msg.addr).Owner);
373 APPEND_TRANSITION_COMMENT("Req: ");
374 APPEND_TRANSITION_COMMENT(in_msg.Requestor);
375 enqueue(forwardNetwork_out, RequestMsg, directory_latency) {
376 out_msg.addr := address;
377 out_msg.Type := in_msg.Type;
378 out_msg.Requestor := in_msg.Requestor;
379 out_msg.Destination := getDirectoryEntry(in_msg.addr).Owner;
380 out_msg.MessageSize := MessageSizeType:Writeback_Control;
381 }
382 }
383 }
384
385 action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {
386 peek(dmaRequestQueue_in, DMARequestMsg) {
387 enqueue(forwardNetwork_out, RequestMsg, directory_latency) {
388 out_msg.addr := address;
389 out_msg.Type := CoherenceRequestType:INV;
390 out_msg.Requestor := machineID;
391 out_msg.Destination := getDirectoryEntry(in_msg.PhysicalAddress).Owner;
392 out_msg.MessageSize := MessageSizeType:Writeback_Control;
393 }
394 }
395 }
396
397 action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
398 requestQueue_in.dequeue(clockEdge());
399 }
400
401 action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
402 dmaRequestQueue_in.dequeue(clockEdge());
403 }
404
405 action(v_allocateTBE, "v", desc="Allocate TBE") {
406 peek(dmaRequestQueue_in, DMARequestMsg) {
407 TBEs.allocate(address);
408 set_tbe(TBEs[address]);
409 tbe.DataBlk := in_msg.DataBlk;
410 tbe.PhysicalAddress := in_msg.PhysicalAddress;
411 tbe.Len := in_msg.Len;
412 tbe.DmaRequestor := in_msg.Requestor;
413 }
414 }
415
416 action(r_allocateTbeForDmaRead, "\r", desc="Allocate TBE for DMA Read") {
417 peek(dmaRequestQueue_in, DMARequestMsg) {
418 TBEs.allocate(address);
419 set_tbe(TBEs[address]);
420 tbe.DmaRequestor := in_msg.Requestor;
421 }
422 }
423
424 action(v_allocateTBEFromRequestNet, "\v", desc="Allocate TBE") {
425 peek(requestQueue_in, RequestMsg) {
426 TBEs.allocate(address);
427 set_tbe(TBEs[address]);
428 tbe.DataBlk := in_msg.DataBlk;
429 }
430 }
431
432 action(w_deallocateTBE, "w", desc="Deallocate TBE") {
433 TBEs.deallocate(address);
434 unset_tbe();
435 }
436
437 action(z_recycleRequestQueue, "z", desc="recycle request queue") {
438 requestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
439 }
440
441 action(y_recycleDMARequestQueue, "y", desc="recycle dma request queue") {
442 dmaRequestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
443 }
444
445
446 action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
447 peek(requestQueue_in, RequestMsg) {
448 queueMemoryRead(in_msg.Requestor, address, to_memory_controller_latency);
449 }
450 }
451
452 action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") {
453 peek(dmaRequestQueue_in, DMARequestMsg) {
454 queueMemoryRead(in_msg.Requestor, address, to_memory_controller_latency);
455 }
456 }
457
458 action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") {
459 peek(dmaRequestQueue_in, DMARequestMsg) {
460 queueMemoryWritePartial(in_msg.Requestor, address,
461 to_memory_controller_latency, in_msg.DataBlk,
462 in_msg.Len);
463 }
464 }
465
466 action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") {
467 peek(requestQueue_in, RequestMsg) {
468 queueMemoryWritePartial(in_msg.Requestor, address,
469 to_memory_controller_latency, tbe.DataBlk,
470 tbe.Len);
471 }
472 }
473
474 action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") {
475 peek(requestQueue_in, RequestMsg) {
476 queueMemoryWrite(in_msg.Requestor, address, to_memory_controller_latency,
477 in_msg.DataBlk);
478 }
479 }
480
481 action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
482 memQueue_in.dequeue(clockEdge());
483 }
484
485 // TRANSITIONS
486 transition({M_DRD, M_DWR, M_DWRI, M_DRDI}, GETX) {
487 z_recycleRequestQueue;
488 }
489
490 transition({IM, MI, ID, ID_W}, {GETX, GETS, PUTX, PUTX_NotOwner} ) {
491 z_recycleRequestQueue;
492 }
493
494 transition({IM, MI, ID, ID_W}, {DMA_READ, DMA_WRITE} ) {
495 y_recycleDMARequestQueue;
496 }
497
498
499 transition(I, GETX, IM) {
500 //d_sendData;
501 v_allocateTBEFromRequestNet;
502 qf_queueMemoryFetchRequest;
503 e_ownerIsRequestor;
504 i_popIncomingRequestQueue;
505 }
506
507 transition(IM, Memory_Data, M) {
508 d_sendData;
509 //e_ownerIsRequestor;
510 w_deallocateTBE;
511 l_popMemQueue;
512 }
513
514
515 transition(I, DMA_READ, ID) {
516 //dr_sendDMAData;
517 r_allocateTbeForDmaRead;
518 qf_queueMemoryFetchRequestDMA;
519 p_popIncomingDMARequestQueue;
520 }
521
522 transition(ID, Memory_Data, I) {
523 dr_sendDMAData;
524 //p_popIncomingDMARequestQueue;
525 w_deallocateTBE;
526 l_popMemQueue;
527 }
528
529
530
531 transition(I, DMA_WRITE, ID_W) {
532 v_allocateTBE;
533 qw_queueMemoryWBRequest_partial;
534 p_popIncomingDMARequestQueue;
535 }
536
537 transition(ID_W, Memory_Ack, I) {
538 da_sendDMAAck;
539 w_deallocateTBE;
540 l_popMemQueue;
541 }
542
543 transition(M, DMA_READ, M_DRD) {
544 v_allocateTBE;
545 inv_sendCacheInvalidate;
546 p_popIncomingDMARequestQueue;
547 }
548
549 transition(M_DRD, PUTX, M_DRDI) {
550 drp_sendDMAData;
551 c_clearOwner;
552 l_queueMemoryWBRequest;
553 i_popIncomingRequestQueue;
554 }
555
556 transition(M_DRDI, Memory_Ack, I) {
557 l_sendWriteBackAck;
558 w_deallocateTBE;
559 l_popMemQueue;
560 }
561
562
563 transition(M, DMA_WRITE, M_DWR) {
564 v_allocateTBE;
565 inv_sendCacheInvalidate;
566 p_popIncomingDMARequestQueue;
567 }
568
569 transition(M_DWR, PUTX, M_DWRI) {
570 qw_queueMemoryWBRequest_partialTBE;
571 c_clearOwner;
572 i_popIncomingRequestQueue;
573 }
574
575 transition(M_DWRI, Memory_Ack, I) {
576 l_sendWriteBackAck;
577 da_sendDMAAck;
578 w_deallocateTBE;
579 l_popMemQueue;
580 }
581
582 transition(M, GETX, M) {
583 f_forwardRequest;
584 e_ownerIsRequestor;
585 i_popIncomingRequestQueue;
586 }
587
588 transition(M, PUTX, MI) {
589 c_clearOwner;
590 v_allocateTBEFromRequestNet;
591 l_queueMemoryWBRequest;
592 i_popIncomingRequestQueue;
593 }
594
595 transition(MI, Memory_Ack, I) {
596 l_sendWriteBackAck;
597 w_deallocateTBE;
598 l_popMemQueue;
599 }
600
601 transition(M, PUTX_NotOwner, M) {
602 b_sendWriteBackNack;
603 i_popIncomingRequestQueue;
604 }
605
606 transition(I, PUTX_NotOwner, I) {
607 b_sendWriteBackNack;
608 i_popIncomingRequestQueue;
609 }
610 }