clang/gcc: Fix compilation issues with clang 3.0 and gcc 4.6
[gem5.git] / src / mem / ruby / profiler / Profiler.cc
1 /*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 This file has been modified by Kevin Moore and Dan Nussbaum of the
31 Scalable Systems Research Group at Sun Microsystems Laboratories
32 (http://research.sun.com/scalable/) to support the Adaptive
33 Transactional Memory Test Platform (ATMTP).
34
35 Please send email to atmtp-interest@sun.com with feedback, questions, or
36 to request future announcements about ATMTP.
37
38 ----------------------------------------------------------------------
39
40 File modification date: 2008-02-23
41
42 ----------------------------------------------------------------------
43 */
44
45 // Allows use of times() library call, which determines virtual runtime
46 #include <sys/resource.h>
47 #include <sys/times.h>
48 #include <sys/types.h>
49 #include <unistd.h>
50
51 #include <algorithm>
52 #include <fstream>
53
54 #include "base/stl_helpers.hh"
55 #include "base/str.hh"
56 #include "mem/protocol/MachineType.hh"
57 #include "mem/protocol/RubyRequest.hh"
58 #include "mem/ruby/network/Network.hh"
59 #include "mem/ruby/profiler/AddressProfiler.hh"
60 #include "mem/ruby/profiler/Profiler.hh"
61 #include "mem/ruby/system/System.hh"
62
63 using namespace std;
64 using m5::stl_helpers::operator<<;
65
66 static double process_memory_total();
67 static double process_memory_resident();
68
69 Profiler::Profiler(const Params *p)
70 : SimObject(p)
71 {
72 m_inst_profiler_ptr = NULL;
73 m_address_profiler_ptr = NULL;
74
75 m_real_time_start_time = time(NULL); // Not reset in clearStats()
76 m_stats_period = 1000000; // Default
77 m_periodic_output_file_ptr = &cerr;
78
79 m_hot_lines = p->hot_lines;
80 m_all_instructions = p->all_instructions;
81
82 m_num_of_sequencers = p->num_of_sequencers;
83
84 m_hot_lines = false;
85 m_all_instructions = false;
86
87 m_address_profiler_ptr = new AddressProfiler(m_num_of_sequencers);
88 m_address_profiler_ptr->setHotLines(m_hot_lines);
89 m_address_profiler_ptr->setAllInstructions(m_all_instructions);
90
91 if (m_all_instructions) {
92 m_inst_profiler_ptr = new AddressProfiler(m_num_of_sequencers);
93 m_inst_profiler_ptr->setHotLines(m_hot_lines);
94 m_inst_profiler_ptr->setAllInstructions(m_all_instructions);
95 }
96
97 p->ruby_system->registerProfiler(this);
98 }
99
100 Profiler::~Profiler()
101 {
102 if (m_periodic_output_file_ptr != &cerr) {
103 delete m_periodic_output_file_ptr;
104 }
105 }
106
107 void
108 Profiler::wakeup()
109 {
110 // FIXME - avoid the repeated code
111
112 vector<integer_t> perProcCycleCount(m_num_of_sequencers);
113
114 for (int i = 0; i < m_num_of_sequencers; i++) {
115 perProcCycleCount[i] =
116 g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
117 // The +1 allows us to avoid division by zero
118 }
119
120 ostream &out = *m_periodic_output_file_ptr;
121
122 out << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl
123 << "mbytes_resident: " << process_memory_resident() << endl
124 << "mbytes_total: " << process_memory_total() << endl;
125
126 if (process_memory_total() > 0) {
127 out << "resident_ratio: "
128 << process_memory_resident() / process_memory_total() << endl;
129 }
130
131 out << "miss_latency: " << m_allMissLatencyHistogram << endl;
132
133 out << endl;
134
135 if (m_all_instructions) {
136 m_inst_profiler_ptr->printStats(out);
137 }
138
139 //g_system_ptr->getNetwork()->printStats(out);
140 g_eventQueue_ptr->scheduleEvent(this, m_stats_period);
141 }
142
143 void
144 Profiler::setPeriodicStatsFile(const string& filename)
145 {
146 cout << "Recording periodic statistics to file '" << filename << "' every "
147 << m_stats_period << " Ruby cycles" << endl;
148
149 if (m_periodic_output_file_ptr != &cerr) {
150 delete m_periodic_output_file_ptr;
151 }
152
153 m_periodic_output_file_ptr = new ofstream(filename.c_str());
154 g_eventQueue_ptr->scheduleEvent(this, 1);
155 }
156
157 void
158 Profiler::setPeriodicStatsInterval(integer_t period)
159 {
160 cout << "Recording periodic statistics every " << m_stats_period
161 << " Ruby cycles" << endl;
162
163 m_stats_period = period;
164 g_eventQueue_ptr->scheduleEvent(this, 1);
165 }
166
167 void
168 Profiler::printConfig(ostream& out) const
169 {
170 out << endl;
171 out << "Profiler Configuration" << endl;
172 out << "----------------------" << endl;
173 out << "periodic_stats_period: " << m_stats_period << endl;
174 }
175
176 void
177 Profiler::print(ostream& out) const
178 {
179 out << "[Profiler]";
180 }
181
182 void
183 Profiler::printStats(ostream& out, bool short_stats)
184 {
185 out << endl;
186 if (short_stats) {
187 out << "SHORT ";
188 }
189 out << "Profiler Stats" << endl;
190 out << "--------------" << endl;
191
192 time_t real_time_current = time(NULL);
193 double seconds = difftime(real_time_current, m_real_time_start_time);
194 double minutes = seconds / 60.0;
195 double hours = minutes / 60.0;
196 double days = hours / 24.0;
197 Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start;
198
199 if (!short_stats) {
200 out << "Elapsed_time_in_seconds: " << seconds << endl;
201 out << "Elapsed_time_in_minutes: " << minutes << endl;
202 out << "Elapsed_time_in_hours: " << hours << endl;
203 out << "Elapsed_time_in_days: " << days << endl;
204 out << endl;
205 }
206
207 // print the virtual runtimes as well
208 struct tms vtime;
209 times(&vtime);
210 seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0;
211 minutes = seconds / 60.0;
212 hours = minutes / 60.0;
213 days = hours / 24.0;
214 out << "Virtual_time_in_seconds: " << seconds << endl;
215 out << "Virtual_time_in_minutes: " << minutes << endl;
216 out << "Virtual_time_in_hours: " << hours << endl;
217 out << "Virtual_time_in_days: " << days << endl;
218 out << endl;
219
220 out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl;
221 out << "Ruby_start_time: " << m_ruby_start << endl;
222 out << "Ruby_cycles: " << ruby_cycles << endl;
223 out << endl;
224
225 if (!short_stats) {
226 out << "mbytes_resident: " << process_memory_resident() << endl;
227 out << "mbytes_total: " << process_memory_total() << endl;
228 if (process_memory_total() > 0) {
229 out << "resident_ratio: "
230 << process_memory_resident()/process_memory_total() << endl;
231 }
232 out << endl;
233 }
234
235 vector<integer_t> perProcCycleCount(m_num_of_sequencers);
236
237 for (int i = 0; i < m_num_of_sequencers; i++) {
238 perProcCycleCount[i] =
239 g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
240 // The +1 allows us to avoid division by zero
241 }
242
243 out << "ruby_cycles_executed: " << perProcCycleCount << endl;
244
245 out << endl;
246
247 if (!short_stats) {
248 out << "Busy Controller Counts:" << endl;
249 for (int i = 0; i < MachineType_NUM; i++) {
250 int size = MachineType_base_count((MachineType)i);
251 for (int j = 0; j < size; j++) {
252 MachineID machID;
253 machID.type = (MachineType)i;
254 machID.num = j;
255 out << machID << ":" << m_busyControllerCount[i][j] << " ";
256 if ((j + 1) % 8 == 0) {
257 out << endl;
258 }
259 }
260 out << endl;
261 }
262 out << endl;
263
264 out << "Busy Bank Count:" << m_busyBankCount << endl;
265 out << endl;
266
267 out << "sequencer_requests_outstanding: "
268 << m_sequencer_requests << endl;
269 out << endl;
270 }
271
272 if (!short_stats) {
273 out << "All Non-Zero Cycle Demand Cache Accesses" << endl;
274 out << "----------------------------------------" << endl;
275 out << "miss_latency: " << m_allMissLatencyHistogram << endl;
276 for (int i = 0; i < m_missLatencyHistograms.size(); i++) {
277 if (m_missLatencyHistograms[i].size() > 0) {
278 out << "miss_latency_" << RubyRequestType(i) << ": "
279 << m_missLatencyHistograms[i] << endl;
280 }
281 }
282 for (int i = 0; i < m_machLatencyHistograms.size(); i++) {
283 if (m_machLatencyHistograms[i].size() > 0) {
284 out << "miss_latency_" << GenericMachineType(i) << ": "
285 << m_machLatencyHistograms[i] << endl;
286 }
287 }
288
289 out << "miss_latency_wCC_issue_to_initial_request: "
290 << m_wCCIssueToInitialRequestHistogram << endl;
291 out << "miss_latency_wCC_initial_forward_request: "
292 << m_wCCInitialRequestToForwardRequestHistogram << endl;
293 out << "miss_latency_wCC_forward_to_first_response: "
294 << m_wCCForwardRequestToFirstResponseHistogram << endl;
295 out << "miss_latency_wCC_first_response_to_completion: "
296 << m_wCCFirstResponseToCompleteHistogram << endl;
297 out << "imcomplete_wCC_Times: " << m_wCCIncompleteTimes << endl;
298 out << "miss_latency_dir_issue_to_initial_request: "
299 << m_dirIssueToInitialRequestHistogram << endl;
300 out << "miss_latency_dir_initial_forward_request: "
301 << m_dirInitialRequestToForwardRequestHistogram << endl;
302 out << "miss_latency_dir_forward_to_first_response: "
303 << m_dirForwardRequestToFirstResponseHistogram << endl;
304 out << "miss_latency_dir_first_response_to_completion: "
305 << m_dirFirstResponseToCompleteHistogram << endl;
306 out << "imcomplete_dir_Times: " << m_dirIncompleteTimes << endl;
307
308 for (int i = 0; i < m_missMachLatencyHistograms.size(); i++) {
309 for (int j = 0; j < m_missMachLatencyHistograms[i].size(); j++) {
310 if (m_missMachLatencyHistograms[i][j].size() > 0) {
311 out << "miss_latency_" << RubyRequestType(i)
312 << "_" << GenericMachineType(j) << ": "
313 << m_missMachLatencyHistograms[i][j] << endl;
314 }
315 }
316 }
317
318 out << endl;
319
320 out << "All Non-Zero Cycle SW Prefetch Requests" << endl;
321 out << "------------------------------------" << endl;
322 out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl;
323 for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) {
324 if (m_SWPrefetchLatencyHistograms[i].size() > 0) {
325 out << "prefetch_latency_" << RubyRequestType(i) << ": "
326 << m_SWPrefetchLatencyHistograms[i] << endl;
327 }
328 }
329 for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) {
330 if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) {
331 out << "prefetch_latency_" << GenericMachineType(i) << ": "
332 << m_SWPrefetchMachLatencyHistograms[i] << endl;
333 }
334 }
335 out << "prefetch_latency_L2Miss:"
336 << m_SWPrefetchL2MissLatencyHistogram << endl;
337
338 if (m_all_sharing_histogram.size() > 0) {
339 out << "all_sharing: " << m_all_sharing_histogram << endl;
340 out << "read_sharing: " << m_read_sharing_histogram << endl;
341 out << "write_sharing: " << m_write_sharing_histogram << endl;
342
343 out << "all_sharing_percent: ";
344 m_all_sharing_histogram.printPercent(out);
345 out << endl;
346
347 out << "read_sharing_percent: ";
348 m_read_sharing_histogram.printPercent(out);
349 out << endl;
350
351 out << "write_sharing_percent: ";
352 m_write_sharing_histogram.printPercent(out);
353 out << endl;
354
355 int64 total_miss = m_cache_to_cache + m_memory_to_cache;
356 out << "all_misses: " << total_miss << endl;
357 out << "cache_to_cache_misses: " << m_cache_to_cache << endl;
358 out << "memory_to_cache_misses: " << m_memory_to_cache << endl;
359 out << "cache_to_cache_percent: "
360 << 100.0 * (double(m_cache_to_cache) / double(total_miss))
361 << endl;
362 out << "memory_to_cache_percent: "
363 << 100.0 * (double(m_memory_to_cache) / double(total_miss))
364 << endl;
365 out << endl;
366 }
367
368 if (m_outstanding_requests.size() > 0) {
369 out << "outstanding_requests: ";
370 m_outstanding_requests.printPercent(out);
371 out << endl;
372 out << endl;
373 }
374 }
375
376 if (!short_stats) {
377 out << "Request vs. RubySystem State Profile" << endl;
378 out << "--------------------------------" << endl;
379 out << endl;
380
381 map<string, int>::const_iterator i = m_requestProfileMap.begin();
382 map<string, int>::const_iterator end = m_requestProfileMap.end();
383 for (; i != end; ++i) {
384 const string &key = i->first;
385 int count = i->second;
386
387 double percent = (100.0 * double(count)) / double(m_requests);
388 vector<string> items;
389 tokenize(items, key, ':');
390 vector<string>::iterator j = items.begin();
391 vector<string>::iterator end = items.end();
392 for (; j != end; ++i)
393 out << setw(10) << *j;
394 out << setw(11) << count;
395 out << setw(14) << percent << endl;
396 }
397 out << endl;
398
399 out << "filter_action: " << m_filter_action_histogram << endl;
400
401 if (!m_all_instructions) {
402 m_address_profiler_ptr->printStats(out);
403 }
404
405 if (m_all_instructions) {
406 m_inst_profiler_ptr->printStats(out);
407 }
408
409 out << endl;
410 out << "Message Delayed Cycles" << endl;
411 out << "----------------------" << endl;
412 out << "Total_delay_cycles: " << m_delayedCyclesHistogram << endl;
413 out << "Total_nonPF_delay_cycles: "
414 << m_delayedCyclesNonPFHistogram << endl;
415 for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) {
416 out << " virtual_network_" << i << "_delay_cycles: "
417 << m_delayedCyclesVCHistograms[i] << endl;
418 }
419
420 printResourceUsage(out);
421 }
422 }
423
424 void
425 Profiler::printResourceUsage(ostream& out) const
426 {
427 out << endl;
428 out << "Resource Usage" << endl;
429 out << "--------------" << endl;
430
431 integer_t pagesize = getpagesize(); // page size in bytes
432 out << "page_size: " << pagesize << endl;
433
434 rusage usage;
435 getrusage (RUSAGE_SELF, &usage);
436
437 out << "user_time: " << usage.ru_utime.tv_sec << endl;
438 out << "system_time: " << usage.ru_stime.tv_sec << endl;
439 out << "page_reclaims: " << usage.ru_minflt << endl;
440 out << "page_faults: " << usage.ru_majflt << endl;
441 out << "swaps: " << usage.ru_nswap << endl;
442 out << "block_inputs: " << usage.ru_inblock << endl;
443 out << "block_outputs: " << usage.ru_oublock << endl;
444 }
445
446 void
447 Profiler::clearStats()
448 {
449 m_ruby_start = g_eventQueue_ptr->getTime();
450
451 m_cycles_executed_at_start.resize(m_num_of_sequencers);
452 for (int i = 0; i < m_num_of_sequencers; i++) {
453 if (g_system_ptr == NULL) {
454 m_cycles_executed_at_start[i] = 0;
455 } else {
456 m_cycles_executed_at_start[i] = g_system_ptr->getCycleCount(i);
457 }
458 }
459
460 m_busyControllerCount.resize(MachineType_NUM); // all machines
461 for (int i = 0; i < MachineType_NUM; i++) {
462 int size = MachineType_base_count((MachineType)i);
463 m_busyControllerCount[i].resize(size);
464 for (int j = 0; j < size; j++) {
465 m_busyControllerCount[i][j] = 0;
466 }
467 }
468 m_busyBankCount = 0;
469
470 m_delayedCyclesHistogram.clear();
471 m_delayedCyclesNonPFHistogram.clear();
472 int size = RubySystem::getNetwork()->getNumberOfVirtualNetworks();
473 m_delayedCyclesVCHistograms.resize(size);
474 for (int i = 0; i < size; i++) {
475 m_delayedCyclesVCHistograms[i].clear();
476 }
477
478 m_missLatencyHistograms.resize(RubyRequestType_NUM);
479 for (int i = 0; i < m_missLatencyHistograms.size(); i++) {
480 m_missLatencyHistograms[i].clear(200);
481 }
482 m_machLatencyHistograms.resize(GenericMachineType_NUM+1);
483 for (int i = 0; i < m_machLatencyHistograms.size(); i++) {
484 m_machLatencyHistograms[i].clear(200);
485 }
486 m_missMachLatencyHistograms.resize(RubyRequestType_NUM);
487 for (int i = 0; i < m_missLatencyHistograms.size(); i++) {
488 m_missMachLatencyHistograms[i].resize(GenericMachineType_NUM+1);
489 for (int j = 0; j < m_missMachLatencyHistograms[i].size(); j++) {
490 m_missMachLatencyHistograms[i][j].clear(200);
491 }
492 }
493 m_allMissLatencyHistogram.clear(200);
494 m_wCCIssueToInitialRequestHistogram.clear(200);
495 m_wCCInitialRequestToForwardRequestHistogram.clear(200);
496 m_wCCForwardRequestToFirstResponseHistogram.clear(200);
497 m_wCCFirstResponseToCompleteHistogram.clear(200);
498 m_wCCIncompleteTimes = 0;
499 m_dirIssueToInitialRequestHistogram.clear(200);
500 m_dirInitialRequestToForwardRequestHistogram.clear(200);
501 m_dirForwardRequestToFirstResponseHistogram.clear(200);
502 m_dirFirstResponseToCompleteHistogram.clear(200);
503 m_dirIncompleteTimes = 0;
504
505 m_SWPrefetchLatencyHistograms.resize(RubyRequestType_NUM);
506 for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) {
507 m_SWPrefetchLatencyHistograms[i].clear(200);
508 }
509 m_SWPrefetchMachLatencyHistograms.resize(GenericMachineType_NUM+1);
510 for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) {
511 m_SWPrefetchMachLatencyHistograms[i].clear(200);
512 }
513 m_allSWPrefetchLatencyHistogram.clear(200);
514
515 m_sequencer_requests.clear();
516 m_read_sharing_histogram.clear();
517 m_write_sharing_histogram.clear();
518 m_all_sharing_histogram.clear();
519 m_cache_to_cache = 0;
520 m_memory_to_cache = 0;
521
522 // clear HashMaps
523 m_requestProfileMap.clear();
524
525 // count requests profiled
526 m_requests = 0;
527
528 m_outstanding_requests.clear();
529 m_outstanding_persistent_requests.clear();
530
531 // Flush the prefetches through the system - used so that there
532 // are no outstanding requests after stats are cleared
533 //g_eventQueue_ptr->triggerAllEvents();
534
535 // update the start time
536 m_ruby_start = g_eventQueue_ptr->getTime();
537 }
538
539 void
540 Profiler::addAddressTraceSample(const RubyRequest& msg, NodeID id)
541 {
542 if (msg.getType() != RubyRequestType_IFETCH) {
543 // Note: The following line should be commented out if you
544 // want to use the special profiling that is part of the GS320
545 // protocol
546
547 // NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be
548 // profiled by the AddressProfiler
549 m_address_profiler_ptr->
550 addTraceSample(msg.getLineAddress(), msg.getProgramCounter(),
551 msg.getType(), msg.getAccessMode(), id, false);
552 }
553 }
554
555 void
556 Profiler::profileSharing(const Address& addr, AccessType type,
557 NodeID requestor, const Set& sharers,
558 const Set& owner)
559 {
560 Set set_contacted(owner);
561 if (type == AccessType_Write) {
562 set_contacted.addSet(sharers);
563 }
564 set_contacted.remove(requestor);
565 int number_contacted = set_contacted.count();
566
567 if (type == AccessType_Write) {
568 m_write_sharing_histogram.add(number_contacted);
569 } else {
570 m_read_sharing_histogram.add(number_contacted);
571 }
572 m_all_sharing_histogram.add(number_contacted);
573
574 if (number_contacted == 0) {
575 m_memory_to_cache++;
576 } else {
577 m_cache_to_cache++;
578 }
579 }
580
581 void
582 Profiler::profileMsgDelay(int virtualNetwork, int delayCycles)
583 {
584 assert(virtualNetwork < m_delayedCyclesVCHistograms.size());
585 m_delayedCyclesHistogram.add(delayCycles);
586 m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles);
587 if (virtualNetwork != 0) {
588 m_delayedCyclesNonPFHistogram.add(delayCycles);
589 }
590 }
591
592 // profiles original cache requests including PUTs
593 void
594 Profiler::profileRequest(const string& requestStr)
595 {
596 m_requests++;
597
598 // if it doesn't exist, conveniently, it will be created with the
599 // default value which is 0
600 m_requestProfileMap[requestStr]++;
601 }
602
603 void
604 Profiler::controllerBusy(MachineID machID)
605 {
606 m_busyControllerCount[(int)machID.type][(int)machID.num]++;
607 }
608
609 void
610 Profiler::profilePFWait(Time waitTime)
611 {
612 m_prefetchWaitHistogram.add(waitTime);
613 }
614
615 void
616 Profiler::bankBusy()
617 {
618 m_busyBankCount++;
619 }
620
621 // non-zero cycle demand request
622 void
623 Profiler::missLatency(Time cycles,
624 RubyRequestType type,
625 const GenericMachineType respondingMach)
626 {
627 m_allMissLatencyHistogram.add(cycles);
628 m_missLatencyHistograms[type].add(cycles);
629 m_machLatencyHistograms[respondingMach].add(cycles);
630 m_missMachLatencyHistograms[type][respondingMach].add(cycles);
631 }
632
633 void
634 Profiler::missLatencyWcc(Time issuedTime,
635 Time initialRequestTime,
636 Time forwardRequestTime,
637 Time firstResponseTime,
638 Time completionTime)
639 {
640 if ((issuedTime <= initialRequestTime) &&
641 (initialRequestTime <= forwardRequestTime) &&
642 (forwardRequestTime <= firstResponseTime) &&
643 (firstResponseTime <= completionTime)) {
644 m_wCCIssueToInitialRequestHistogram.add(initialRequestTime - issuedTime);
645
646 m_wCCInitialRequestToForwardRequestHistogram.add(forwardRequestTime -
647 initialRequestTime);
648
649 m_wCCForwardRequestToFirstResponseHistogram.add(firstResponseTime -
650 forwardRequestTime);
651
652 m_wCCFirstResponseToCompleteHistogram.add(completionTime -
653 firstResponseTime);
654 } else {
655 m_wCCIncompleteTimes++;
656 }
657 }
658
659 void
660 Profiler::missLatencyDir(Time issuedTime,
661 Time initialRequestTime,
662 Time forwardRequestTime,
663 Time firstResponseTime,
664 Time completionTime)
665 {
666 if ((issuedTime <= initialRequestTime) &&
667 (initialRequestTime <= forwardRequestTime) &&
668 (forwardRequestTime <= firstResponseTime) &&
669 (firstResponseTime <= completionTime)) {
670 m_dirIssueToInitialRequestHistogram.add(initialRequestTime - issuedTime);
671
672 m_dirInitialRequestToForwardRequestHistogram.add(forwardRequestTime -
673 initialRequestTime);
674
675 m_dirForwardRequestToFirstResponseHistogram.add(firstResponseTime -
676 forwardRequestTime);
677
678 m_dirFirstResponseToCompleteHistogram.add(completionTime -
679 firstResponseTime);
680 } else {
681 m_dirIncompleteTimes++;
682 }
683 }
684
685 // non-zero cycle prefetch request
686 void
687 Profiler::swPrefetchLatency(Time cycles,
688 RubyRequestType type,
689 const GenericMachineType respondingMach)
690 {
691 m_allSWPrefetchLatencyHistogram.add(cycles);
692 m_SWPrefetchLatencyHistograms[type].add(cycles);
693 m_SWPrefetchMachLatencyHistograms[respondingMach].add(cycles);
694 if (respondingMach == GenericMachineType_Directory ||
695 respondingMach == GenericMachineType_NUM) {
696 m_SWPrefetchL2MissLatencyHistogram.add(cycles);
697 }
698 }
699
700 // Helper function
701 static double
702 process_memory_total()
703 {
704 // 4kB page size, 1024*1024 bytes per MB,
705 const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0);
706 ifstream proc_file;
707 proc_file.open("/proc/self/statm");
708 int total_size_in_pages = 0;
709 int res_size_in_pages = 0;
710 proc_file >> total_size_in_pages;
711 proc_file >> res_size_in_pages;
712 return double(total_size_in_pages) * MULTIPLIER; // size in megabytes
713 }
714
715 static double
716 process_memory_resident()
717 {
718 // 4kB page size, 1024*1024 bytes per MB,
719 const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0);
720 ifstream proc_file;
721 proc_file.open("/proc/self/statm");
722 int total_size_in_pages = 0;
723 int res_size_in_pages = 0;
724 proc_file >> total_size_in_pages;
725 proc_file >> res_size_in_pages;
726 return double(res_size_in_pages) * MULTIPLIER; // size in megabytes
727 }
728
729 void
730 Profiler::rubyWatch(int id)
731 {
732 uint64 tr = 0;
733 Address watch_address = Address(tr);
734
735 DPRINTFN("%7s %3s RUBY WATCH %d\n", g_eventQueue_ptr->getTime(), id,
736 watch_address);
737
738 // don't care about success or failure
739 m_watch_address_set.insert(watch_address);
740 }
741
742 bool
743 Profiler::watchAddress(Address addr)
744 {
745 return m_watch_address_set.count(addr) > 0;
746 }
747
748 Profiler *
749 RubyProfilerParams::create()
750 {
751 return new Profiler(this);
752 }