ruby: Removed RubySystem::getNumberOfSequencers
[gem5.git] / src / mem / ruby / profiler / Profiler.cc
1 /*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 This file has been modified by Kevin Moore and Dan Nussbaum of the
31 Scalable Systems Research Group at Sun Microsystems Laboratories
32 (http://research.sun.com/scalable/) to support the Adaptive
33 Transactional Memory Test Platform (ATMTP).
34
35 Please send email to atmtp-interest@sun.com with feedback, questions, or
36 to request future announcements about ATMTP.
37
38 ----------------------------------------------------------------------
39
40 File modification date: 2008-02-23
41
42 ----------------------------------------------------------------------
43 */
44
45 /*
46 * Profiler.cc
47 *
48 * Description: See Profiler.hh
49 *
50 * $Id$
51 *
52 */
53
54 #include "mem/ruby/profiler/Profiler.hh"
55 #include "mem/ruby/profiler/AddressProfiler.hh"
56 #include "mem/ruby/system/System.hh"
57 #include "mem/ruby/network/Network.hh"
58 #include "mem/gems_common/PrioHeap.hh"
59 #include "mem/protocol/CacheMsg.hh"
60 #include "mem/protocol/Protocol.hh"
61 #include "mem/gems_common/util.hh"
62 #include "mem/gems_common/Map.hh"
63 #include "mem/ruby/common/Debug.hh"
64 #include "mem/protocol/MachineType.hh"
65
66 #include "mem/ruby/system/System.hh"
67
68 // Allows use of times() library call, which determines virtual runtime
69 #include <sys/times.h>
70
71 extern std::ostream * debug_cout_ptr;
72
73 static double process_memory_total();
74 static double process_memory_resident();
75
76 Profiler::Profiler(const Params *p)
77 : SimObject(p)
78 {
79 m_requestProfileMap_ptr = new Map<string, int>;
80
81 m_inst_profiler_ptr = NULL;
82 m_address_profiler_ptr = NULL;
83
84 m_real_time_start_time = time(NULL); // Not reset in clearStats()
85 m_stats_period = 1000000; // Default
86 m_periodic_output_file_ptr = &cerr;
87
88 m_hot_lines = p->hot_lines;
89 m_all_instructions = p->all_instructions;
90
91 m_num_of_sequencers = p->num_of_sequencers;
92
93 //
94 // Initialize the memory controller profiler structs
95 //
96 m_mc_profilers.setSize(p->mem_cntrl_count);
97 for (int mem_cntrl = 0; mem_cntrl < p->mem_cntrl_count; mem_cntrl++) {
98 m_mc_profilers[mem_cntrl] = new memory_control_profiler;
99 m_mc_profilers[mem_cntrl]->m_memReq = 0;
100 m_mc_profilers[mem_cntrl]->m_memBankBusy = 0;
101 m_mc_profilers[mem_cntrl]->m_memBusBusy = 0;
102 m_mc_profilers[mem_cntrl]->m_memReadWriteBusy = 0;
103 m_mc_profilers[mem_cntrl]->m_memDataBusBusy = 0;
104 m_mc_profilers[mem_cntrl]->m_memTfawBusy = 0;
105 m_mc_profilers[mem_cntrl]->m_memRefresh = 0;
106 m_mc_profilers[mem_cntrl]->m_memRead = 0;
107 m_mc_profilers[mem_cntrl]->m_memWrite = 0;
108 m_mc_profilers[mem_cntrl]->m_memWaitCycles = 0;
109 m_mc_profilers[mem_cntrl]->m_memInputQ = 0;
110 m_mc_profilers[mem_cntrl]->m_memBankQ = 0;
111 m_mc_profilers[mem_cntrl]->m_memArbWait = 0;
112 m_mc_profilers[mem_cntrl]->m_memRandBusy = 0;
113 m_mc_profilers[mem_cntrl]->m_memNotOld = 0;
114
115 m_mc_profilers[mem_cntrl]->m_banks_per_rank = p->banks_per_rank;
116 m_mc_profilers[mem_cntrl]->m_ranks_per_dimm = p->ranks_per_dimm;
117 m_mc_profilers[mem_cntrl]->m_dimms_per_channel =
118 p->dimms_per_channel;
119
120 int totalBanks = p->banks_per_rank *
121 p->ranks_per_dimm *
122 p->dimms_per_channel;
123
124 m_mc_profilers[mem_cntrl]->m_memBankCount.setSize(totalBanks);
125 }
126
127 m_hot_lines = false;
128 m_all_instructions = false;
129
130 m_address_profiler_ptr = new AddressProfiler(m_num_of_sequencers);
131 m_address_profiler_ptr -> setHotLines(m_hot_lines);
132 m_address_profiler_ptr -> setAllInstructions(m_all_instructions);
133
134 if (m_all_instructions) {
135 m_inst_profiler_ptr = new AddressProfiler(m_num_of_sequencers);
136 m_inst_profiler_ptr -> setHotLines(m_hot_lines);
137 m_inst_profiler_ptr -> setAllInstructions(m_all_instructions);
138 }
139 }
140
141 Profiler::~Profiler()
142 {
143 if (m_periodic_output_file_ptr != &cerr) {
144 delete m_periodic_output_file_ptr;
145 }
146
147 for (int mem_cntrl = 0;
148 mem_cntrl < m_mc_profilers.size();
149 mem_cntrl++) {
150 delete m_mc_profilers[mem_cntrl];
151 }
152
153 delete m_requestProfileMap_ptr;
154 }
155
156 void Profiler::wakeup()
157 {
158 // FIXME - avoid the repeated code
159
160 Vector<integer_t> perProcCycleCount;
161 perProcCycleCount.setSize(m_num_of_sequencers);
162
163 for(int i=0; i < m_num_of_sequencers; i++) {
164 perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
165 // The +1 allows us to avoid division by zero
166 }
167
168 integer_t total_misses = m_perProcTotalMisses.sum();
169 integer_t simics_cycles_executed = perProcCycleCount.sum();
170 integer_t transactions_started = m_perProcStartTransaction.sum();
171 integer_t transactions_ended = m_perProcEndTransaction.sum();
172
173 (*m_periodic_output_file_ptr) << "ruby_cycles: "
174 << g_eventQueue_ptr->getTime()-m_ruby_start
175 << endl;
176
177 (*m_periodic_output_file_ptr) << "total_misses: "
178 << total_misses
179 << " "
180 << m_perProcTotalMisses
181 << endl;
182
183 (*m_periodic_output_file_ptr) << "simics_cycles_executed: "
184 << simics_cycles_executed
185 << " "
186 << perProcCycleCount
187 << endl;
188
189 (*m_periodic_output_file_ptr) << "transactions_started: "
190 << transactions_started
191 << " "
192 << m_perProcStartTransaction
193 << endl;
194
195 (*m_periodic_output_file_ptr) << "transactions_ended: "
196 << transactions_ended
197 << " "
198 << m_perProcEndTransaction
199 << endl;
200
201 (*m_periodic_output_file_ptr) << "mbytes_resident: "
202 << process_memory_resident()
203 << endl;
204
205 (*m_periodic_output_file_ptr) << "mbytes_total: "
206 << process_memory_total()
207 << endl;
208
209 if (process_memory_total() > 0) {
210 (*m_periodic_output_file_ptr) << "resident_ratio: "
211 << process_memory_resident()/process_memory_total()
212 << endl;
213 }
214
215 (*m_periodic_output_file_ptr) << "miss_latency: "
216 << m_allMissLatencyHistogram
217 << endl;
218
219 *m_periodic_output_file_ptr << endl;
220
221 if (m_all_instructions) {
222 m_inst_profiler_ptr->printStats(*m_periodic_output_file_ptr);
223 }
224
225 //g_system_ptr->getNetwork()->printStats(*m_periodic_output_file_ptr);
226 g_eventQueue_ptr->scheduleEvent(this, m_stats_period);
227 }
228
229 void Profiler::setPeriodicStatsFile(const string& filename)
230 {
231 cout << "Recording periodic statistics to file '" << filename << "' every "
232 << m_stats_period << " Ruby cycles" << endl;
233
234 if (m_periodic_output_file_ptr != &cerr) {
235 delete m_periodic_output_file_ptr;
236 }
237
238 m_periodic_output_file_ptr = new ofstream(filename.c_str());
239 g_eventQueue_ptr->scheduleEvent(this, 1);
240 }
241
242 void Profiler::setPeriodicStatsInterval(integer_t period)
243 {
244 cout << "Recording periodic statistics every " << m_stats_period
245 << " Ruby cycles" << endl;
246
247 m_stats_period = period;
248 g_eventQueue_ptr->scheduleEvent(this, 1);
249 }
250
251 void Profiler::printConfig(ostream& out) const
252 {
253 out << endl;
254 out << "Profiler Configuration" << endl;
255 out << "----------------------" << endl;
256 out << "periodic_stats_period: " << m_stats_period << endl;
257 }
258
259 void Profiler::print(ostream& out) const
260 {
261 out << "[Profiler]";
262 }
263
264 void Profiler::printStats(ostream& out, bool short_stats)
265 {
266 out << endl;
267 if (short_stats) {
268 out << "SHORT ";
269 }
270 out << "Profiler Stats" << endl;
271 out << "--------------" << endl;
272
273 time_t real_time_current = time(NULL);
274 double seconds = difftime(real_time_current, m_real_time_start_time);
275 double minutes = seconds/60.0;
276 double hours = minutes/60.0;
277 double days = hours/24.0;
278 Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start;
279
280 if (!short_stats) {
281 out << "Elapsed_time_in_seconds: " << seconds << endl;
282 out << "Elapsed_time_in_minutes: " << minutes << endl;
283 out << "Elapsed_time_in_hours: " << hours << endl;
284 out << "Elapsed_time_in_days: " << days << endl;
285 out << endl;
286 }
287
288 // print the virtual runtimes as well
289 struct tms vtime;
290 times(&vtime);
291 seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0;
292 minutes = seconds / 60.0;
293 hours = minutes / 60.0;
294 days = hours / 24.0;
295 out << "Virtual_time_in_seconds: " << seconds << endl;
296 out << "Virtual_time_in_minutes: " << minutes << endl;
297 out << "Virtual_time_in_hours: " << hours << endl;
298 out << "Virtual_time_in_days: " << days << endl;
299 out << endl;
300
301 out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl;
302 out << "Ruby_start_time: " << m_ruby_start << endl;
303 out << "Ruby_cycles: " << ruby_cycles << endl;
304 out << endl;
305
306 if (!short_stats) {
307 out << "mbytes_resident: " << process_memory_resident() << endl;
308 out << "mbytes_total: " << process_memory_total() << endl;
309 if (process_memory_total() > 0) {
310 out << "resident_ratio: "
311 << process_memory_resident()/process_memory_total() << endl;
312 }
313 out << endl;
314
315 }
316
317 Vector<integer_t> perProcCycleCount;
318 Vector<double> perProcCyclesPerTrans;
319 Vector<double> perProcMissesPerTrans;
320
321
322 perProcCycleCount.setSize(m_num_of_sequencers);
323 perProcCyclesPerTrans.setSize(m_num_of_sequencers);
324 perProcMissesPerTrans.setSize(m_num_of_sequencers);
325
326 for(int i=0; i < m_num_of_sequencers; i++) {
327 perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
328 // The +1 allows us to avoid division by zero
329
330 int trans = m_perProcEndTransaction[i];
331 if (trans == 0) {
332 perProcCyclesPerTrans[i] = 0;
333 perProcMissesPerTrans[i] = 0;
334 } else {
335 perProcCyclesPerTrans[i] = ruby_cycles / double(trans);
336 perProcMissesPerTrans[i] = m_perProcTotalMisses[i] / double(trans);
337 }
338 }
339
340 integer_t total_misses = m_perProcTotalMisses.sum();
341 integer_t user_misses = m_perProcUserMisses.sum();
342 integer_t supervisor_misses = m_perProcSupervisorMisses.sum();
343 integer_t simics_cycles_executed = perProcCycleCount.sum();
344 integer_t transactions_started = m_perProcStartTransaction.sum();
345 integer_t transactions_ended = m_perProcEndTransaction.sum();
346
347 double cycles_per_transaction = (transactions_ended != 0) ? (m_num_of_sequencers * double(ruby_cycles)) / double(transactions_ended) : 0;
348 double misses_per_transaction = (transactions_ended != 0) ? double(total_misses) / double(transactions_ended) : 0;
349
350 out << "Total_misses: " << total_misses << endl;
351 out << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
352 out << "user_misses: " << user_misses << " " << m_perProcUserMisses << endl;
353 out << "supervisor_misses: " << supervisor_misses << " " << m_perProcSupervisorMisses << endl;
354 out << endl;
355 out << "ruby_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
356 out << endl;
357 out << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
358 out << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
359 out << "cycles_per_transaction: " << cycles_per_transaction << " " << perProcCyclesPerTrans << endl;
360 out << "misses_per_transaction: " << misses_per_transaction << " " << perProcMissesPerTrans << endl;
361
362 out << endl;
363
364 out << endl;
365
366 for (int mem_cntrl = 0;
367 mem_cntrl < m_mc_profilers.size();
368 mem_cntrl++) {
369 uint64 m_memReq = m_mc_profilers[mem_cntrl]->m_memReq;
370 uint64 m_memRefresh = m_mc_profilers[mem_cntrl]->m_memRefresh;
371 uint64 m_memInputQ = m_mc_profilers[mem_cntrl]->m_memInputQ;
372 uint64 m_memBankQ = m_mc_profilers[mem_cntrl]->m_memBankQ;
373 uint64 m_memWaitCycles = m_mc_profilers[mem_cntrl]->m_memWaitCycles;
374 uint64 m_memRead = m_mc_profilers[mem_cntrl]->m_memRead;
375 uint64 m_memWrite = m_mc_profilers[mem_cntrl]->m_memWrite;
376 uint64 m_memBankBusy = m_mc_profilers[mem_cntrl]->m_memBankBusy;
377 uint64 m_memRandBusy = m_mc_profilers[mem_cntrl]->m_memRandBusy;
378 uint64 m_memNotOld = m_mc_profilers[mem_cntrl]->m_memNotOld;
379 uint64 m_memArbWait = m_mc_profilers[mem_cntrl]->m_memArbWait;
380 uint64 m_memBusBusy = m_mc_profilers[mem_cntrl]->m_memBusBusy;
381 uint64 m_memTfawBusy = m_mc_profilers[mem_cntrl]->m_memTfawBusy;
382 uint64 m_memReadWriteBusy = m_mc_profilers[mem_cntrl]->m_memReadWriteBusy;
383 uint64 m_memDataBusBusy = m_mc_profilers[mem_cntrl]->m_memDataBusBusy;
384 Vector<uint64> m_memBankCount = m_mc_profilers[mem_cntrl]->m_memBankCount;
385
386 if (m_memReq || m_memRefresh) { // if there's a memory controller at all
387 uint64 total_stalls = m_memInputQ + m_memBankQ + m_memWaitCycles;
388 double stallsPerReq = total_stalls * 1.0 / m_memReq;
389 out << "Memory control " << mem_cntrl << ":" << endl;
390 out << " memory_total_requests: " << m_memReq << endl; // does not include refreshes
391 out << " memory_reads: " << m_memRead << endl;
392 out << " memory_writes: " << m_memWrite << endl;
393 out << " memory_refreshes: " << m_memRefresh << endl;
394 out << " memory_total_request_delays: " << total_stalls << endl;
395 out << " memory_delays_per_request: " << stallsPerReq << endl;
396 out << " memory_delays_in_input_queue: " << m_memInputQ << endl;
397 out << " memory_delays_behind_head_of_bank_queue: " << m_memBankQ << endl;
398 out << " memory_delays_stalled_at_head_of_bank_queue: " << m_memWaitCycles << endl;
399 // Note: The following "memory stalls" entries are a breakdown of the
400 // cycles which already showed up in m_memWaitCycles. The order is
401 // significant; it is the priority of attributing the cycles.
402 // For example, bank_busy is before arbitration because if the bank was
403 // busy, we didn't even check arbitration.
404 // Note: "not old enough" means that since we grouped waiting heads-of-queues
405 // into batches to avoid starvation, a request in a newer batch
406 // didn't try to arbitrate yet because there are older requests waiting.
407 out << " memory_stalls_for_bank_busy: " << m_memBankBusy << endl;
408 out << " memory_stalls_for_random_busy: " << m_memRandBusy << endl;
409 out << " memory_stalls_for_anti_starvation: " << m_memNotOld << endl;
410 out << " memory_stalls_for_arbitration: " << m_memArbWait << endl;
411 out << " memory_stalls_for_bus: " << m_memBusBusy << endl;
412 out << " memory_stalls_for_tfaw: " << m_memTfawBusy << endl;
413 out << " memory_stalls_for_read_write_turnaround: " << m_memReadWriteBusy << endl;
414 out << " memory_stalls_for_read_read_turnaround: " << m_memDataBusBusy << endl;
415 out << " accesses_per_bank: ";
416 for (int bank=0; bank < m_memBankCount.size(); bank++) {
417 out << m_memBankCount[bank] << " ";
418 //if ((bank % 8) == 7) out << " " << endl;
419 }
420 out << endl;
421 out << endl;
422 }
423 }
424 if (!short_stats) {
425 out << "Busy Controller Counts:" << endl;
426 for(int i=0; i < MachineType_NUM; i++) {
427 for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
428 MachineID machID;
429 machID.type = (MachineType)i;
430 machID.num = j;
431 out << machID << ":" << m_busyControllerCount[i][j] << " ";
432 if ((j+1)%8 == 0) {
433 out << endl;
434 }
435 }
436 out << endl;
437 }
438 out << endl;
439
440 out << "Busy Bank Count:" << m_busyBankCount << endl;
441 out << endl;
442
443 out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl;
444 out << endl;
445 }
446
447 if (!short_stats) {
448 out << "All Non-Zero Cycle Demand Cache Accesses" << endl;
449 out << "----------------------------------------" << endl;
450 out << "miss_latency: " << m_allMissLatencyHistogram << endl;
451 for(int i=0; i<m_missLatencyHistograms.size(); i++) {
452 if (m_missLatencyHistograms[i].size() > 0) {
453 out << "miss_latency_" << RubyRequestType(i) << ": " << m_missLatencyHistograms[i] << endl;
454 }
455 }
456 for(int i=0; i<m_machLatencyHistograms.size(); i++) {
457 if (m_machLatencyHistograms[i].size() > 0) {
458 out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl;
459 }
460 }
461
462 out << endl;
463
464 out << "All Non-Zero Cycle SW Prefetch Requests" << endl;
465 out << "------------------------------------" << endl;
466 out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl;
467 for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
468 if (m_SWPrefetchLatencyHistograms[i].size() > 0) {
469 out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl;
470 }
471 }
472 for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
473 if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) {
474 out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl;
475 }
476 }
477 out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl;
478
479 if (m_all_sharing_histogram.size() > 0) {
480 out << "all_sharing: " << m_all_sharing_histogram << endl;
481 out << "read_sharing: " << m_read_sharing_histogram << endl;
482 out << "write_sharing: " << m_write_sharing_histogram << endl;
483
484 out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl;
485 out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl;
486 out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl;
487
488 int64 total_miss = m_cache_to_cache + m_memory_to_cache;
489 out << "all_misses: " << total_miss << endl;
490 out << "cache_to_cache_misses: " << m_cache_to_cache << endl;
491 out << "memory_to_cache_misses: " << m_memory_to_cache << endl;
492 out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl;
493 out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl;
494 out << endl;
495 }
496
497 if (m_outstanding_requests.size() > 0) {
498 out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl;
499 out << endl;
500 }
501 }
502
503 if (!short_stats) {
504 out << "Request vs. RubySystem State Profile" << endl;
505 out << "--------------------------------" << endl;
506 out << endl;
507
508 Vector<string> requestProfileKeys = m_requestProfileMap_ptr->keys();
509 requestProfileKeys.sortVector();
510
511 for(int i=0; i<requestProfileKeys.size(); i++) {
512 int temp_int = m_requestProfileMap_ptr->lookup(requestProfileKeys[i]);
513 double percent = (100.0*double(temp_int))/double(m_requests);
514 while (requestProfileKeys[i] != "") {
515 out << setw(10) << string_split(requestProfileKeys[i], ':');
516 }
517 out << setw(11) << temp_int;
518 out << setw(14) << percent << endl;
519 }
520 out << endl;
521
522 out << "filter_action: " << m_filter_action_histogram << endl;
523
524 if (!m_all_instructions) {
525 m_address_profiler_ptr->printStats(out);
526 }
527
528 if (m_all_instructions) {
529 m_inst_profiler_ptr->printStats(out);
530 }
531
532 out << endl;
533 out << "Message Delayed Cycles" << endl;
534 out << "----------------------" << endl;
535 out << "Total_delay_cycles: " << m_delayedCyclesHistogram << endl;
536 out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl;
537 for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) {
538 out << " virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl;
539 }
540
541 printResourceUsage(out);
542 }
543
544 }
545
546 void Profiler::printResourceUsage(ostream& out) const
547 {
548 out << endl;
549 out << "Resource Usage" << endl;
550 out << "--------------" << endl;
551
552 integer_t pagesize = getpagesize(); // page size in bytes
553 out << "page_size: " << pagesize << endl;
554
555 rusage usage;
556 getrusage (RUSAGE_SELF, &usage);
557
558 out << "user_time: " << usage.ru_utime.tv_sec << endl;
559 out << "system_time: " << usage.ru_stime.tv_sec << endl;
560 out << "page_reclaims: " << usage.ru_minflt << endl;
561 out << "page_faults: " << usage.ru_majflt << endl;
562 out << "swaps: " << usage.ru_nswap << endl;
563 out << "block_inputs: " << usage.ru_inblock << endl;
564 out << "block_outputs: " << usage.ru_oublock << endl;
565 }
566
567 void Profiler::clearStats()
568 {
569 m_ruby_start = g_eventQueue_ptr->getTime();
570
571 m_cycles_executed_at_start.setSize(m_num_of_sequencers);
572 for (int i=0; i < m_num_of_sequencers; i++) {
573 if (g_system_ptr == NULL) {
574 m_cycles_executed_at_start[i] = 0;
575 } else {
576 m_cycles_executed_at_start[i] = g_system_ptr->getCycleCount(i);
577 }
578 }
579
580 m_perProcTotalMisses.setSize(m_num_of_sequencers);
581 m_perProcUserMisses.setSize(m_num_of_sequencers);
582 m_perProcSupervisorMisses.setSize(m_num_of_sequencers);
583 m_perProcStartTransaction.setSize(m_num_of_sequencers);
584 m_perProcEndTransaction.setSize(m_num_of_sequencers);
585
586 for(int i=0; i < m_num_of_sequencers; i++) {
587 m_perProcTotalMisses[i] = 0;
588 m_perProcUserMisses[i] = 0;
589 m_perProcSupervisorMisses[i] = 0;
590 m_perProcStartTransaction[i] = 0;
591 m_perProcEndTransaction[i] = 0;
592 }
593
594 m_busyControllerCount.setSize(MachineType_NUM); // all machines
595 for(int i=0; i < MachineType_NUM; i++) {
596 m_busyControllerCount[i].setSize(MachineType_base_count((MachineType)i));
597 for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
598 m_busyControllerCount[i][j] = 0;
599 }
600 }
601 m_busyBankCount = 0;
602
603 m_delayedCyclesHistogram.clear();
604 m_delayedCyclesNonPFHistogram.clear();
605 m_delayedCyclesVCHistograms.setSize(RubySystem::getNetwork()->getNumberOfVirtualNetworks());
606 for (int i = 0; i < RubySystem::getNetwork()->getNumberOfVirtualNetworks(); i++) {
607 m_delayedCyclesVCHistograms[i].clear();
608 }
609
610 m_missLatencyHistograms.setSize(RubyRequestType_NUM);
611 for(int i=0; i<m_missLatencyHistograms.size(); i++) {
612 m_missLatencyHistograms[i].clear(200);
613 }
614 m_machLatencyHistograms.setSize(GenericMachineType_NUM+1);
615 for(int i=0; i<m_machLatencyHistograms.size(); i++) {
616 m_machLatencyHistograms[i].clear(200);
617 }
618 m_allMissLatencyHistogram.clear(200);
619
620 m_SWPrefetchLatencyHistograms.setSize(CacheRequestType_NUM);
621 for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
622 m_SWPrefetchLatencyHistograms[i].clear(200);
623 }
624 m_SWPrefetchMachLatencyHistograms.setSize(GenericMachineType_NUM+1);
625 for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
626 m_SWPrefetchMachLatencyHistograms[i].clear(200);
627 }
628 m_allSWPrefetchLatencyHistogram.clear(200);
629
630 m_sequencer_requests.clear();
631 m_read_sharing_histogram.clear();
632 m_write_sharing_histogram.clear();
633 m_all_sharing_histogram.clear();
634 m_cache_to_cache = 0;
635 m_memory_to_cache = 0;
636
637 // clear HashMaps
638 m_requestProfileMap_ptr->clear();
639
640 // count requests profiled
641 m_requests = 0;
642
643 m_outstanding_requests.clear();
644 m_outstanding_persistent_requests.clear();
645
646 //added by SS
647 vector<string>::iterator it;
648
649 for (int mem_cntrl = 0;
650 mem_cntrl < m_mc_profilers.size();
651 mem_cntrl++) {
652 m_mc_profilers[mem_cntrl]->m_memReq = 0;
653 m_mc_profilers[mem_cntrl]->m_memBankBusy = 0;
654 m_mc_profilers[mem_cntrl]->m_memBusBusy = 0;
655 m_mc_profilers[mem_cntrl]->m_memTfawBusy = 0;
656 m_mc_profilers[mem_cntrl]->m_memReadWriteBusy = 0;
657 m_mc_profilers[mem_cntrl]->m_memDataBusBusy = 0;
658 m_mc_profilers[mem_cntrl]->m_memRefresh = 0;
659 m_mc_profilers[mem_cntrl]->m_memRead = 0;
660 m_mc_profilers[mem_cntrl]->m_memWrite = 0;
661 m_mc_profilers[mem_cntrl]->m_memWaitCycles = 0;
662 m_mc_profilers[mem_cntrl]->m_memInputQ = 0;
663 m_mc_profilers[mem_cntrl]->m_memBankQ = 0;
664 m_mc_profilers[mem_cntrl]->m_memArbWait = 0;
665 m_mc_profilers[mem_cntrl]->m_memRandBusy = 0;
666 m_mc_profilers[mem_cntrl]->m_memNotOld = 0;
667
668 for (int bank=0;
669 bank < m_mc_profilers[mem_cntrl]->m_memBankCount.size();
670 bank++) {
671 m_mc_profilers[mem_cntrl]->m_memBankCount[bank] = 0;
672 }
673 }
674 // Flush the prefetches through the system - used so that there are no outstanding requests after stats are cleared
675 //g_eventQueue_ptr->triggerAllEvents();
676
677 // update the start time
678 m_ruby_start = g_eventQueue_ptr->getTime();
679 }
680
681 void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id)
682 {
683 if (msg.getType() != CacheRequestType_IFETCH) {
684
685 // Note: The following line should be commented out if you want to
686 // use the special profiling that is part of the GS320 protocol
687
688 // NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be profiled by the AddressProfiler
689 m_address_profiler_ptr->addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false);
690 }
691 }
692
693 void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner)
694 {
695 Set set_contacted(owner);
696 if (type == AccessType_Write) {
697 set_contacted.addSet(sharers);
698 }
699 set_contacted.remove(requestor);
700 int number_contacted = set_contacted.count();
701
702 if (type == AccessType_Write) {
703 m_write_sharing_histogram.add(number_contacted);
704 } else {
705 m_read_sharing_histogram.add(number_contacted);
706 }
707 m_all_sharing_histogram.add(number_contacted);
708
709 if (number_contacted == 0) {
710 m_memory_to_cache++;
711 } else {
712 m_cache_to_cache++;
713 }
714
715 }
716
717 void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) {
718 assert(virtualNetwork < m_delayedCyclesVCHistograms.size());
719 m_delayedCyclesHistogram.add(delayCycles);
720 m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles);
721 if (virtualNetwork != 0) {
722 m_delayedCyclesNonPFHistogram.add(delayCycles);
723 }
724 }
725
726 // profiles original cache requests including PUTs
727 void Profiler::profileRequest(const string& requestStr)
728 {
729 m_requests++;
730
731 if (m_requestProfileMap_ptr->exist(requestStr)) {
732 (m_requestProfileMap_ptr->lookup(requestStr))++;
733 } else {
734 m_requestProfileMap_ptr->add(requestStr, 1);
735 }
736 }
737
738 void Profiler::startTransaction(int cpu)
739 {
740 m_perProcStartTransaction[cpu]++;
741 }
742
743 void Profiler::endTransaction(int cpu)
744 {
745 m_perProcEndTransaction[cpu]++;
746 }
747
748 void Profiler::controllerBusy(MachineID machID)
749 {
750 m_busyControllerCount[(int)machID.type][(int)machID.num]++;
751 }
752
753 void Profiler::profilePFWait(Time waitTime)
754 {
755 m_prefetchWaitHistogram.add(waitTime);
756 }
757
758 void Profiler::bankBusy()
759 {
760 m_busyBankCount++;
761 }
762
763 // non-zero cycle demand request
764 void Profiler::missLatency(Time t, RubyRequestType type)
765 {
766 m_allMissLatencyHistogram.add(t);
767 m_missLatencyHistograms[type].add(t);
768 }
769
770 // non-zero cycle prefetch request
771 void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach)
772 {
773 m_allSWPrefetchLatencyHistogram.add(t);
774 m_SWPrefetchLatencyHistograms[type].add(t);
775 m_SWPrefetchMachLatencyHistograms[respondingMach].add(t);
776 if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
777 m_SWPrefetchL2MissLatencyHistogram.add(t);
778 }
779 }
780
781 void Profiler::profileTransition(const string& component, NodeID version, Address addr,
782 const string& state, const string& event,
783 const string& next_state, const string& note)
784 {
785 const int EVENT_SPACES = 20;
786 const int ID_SPACES = 3;
787 const int TIME_SPACES = 7;
788 const int COMP_SPACES = 10;
789 const int STATE_SPACES = 6;
790
791 if ((g_debug_ptr->getDebugTime() > 0) &&
792 (g_eventQueue_ptr->getTime() >= g_debug_ptr->getDebugTime())) {
793 (* debug_cout_ptr).flags(ios::right);
794 (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
795 (* debug_cout_ptr) << setw(ID_SPACES) << version << " ";
796 (* debug_cout_ptr) << setw(COMP_SPACES) << component;
797 (* debug_cout_ptr) << setw(EVENT_SPACES) << event << " ";
798
799 (* debug_cout_ptr).flags(ios::right);
800 (* debug_cout_ptr) << setw(STATE_SPACES) << state;
801 (* debug_cout_ptr) << ">";
802 (* debug_cout_ptr).flags(ios::left);
803 (* debug_cout_ptr) << setw(STATE_SPACES) << next_state;
804
805 (* debug_cout_ptr) << " " << addr << " " << note;
806
807 (* debug_cout_ptr) << endl;
808 }
809 }
810
811 // Helper function
812 static double process_memory_total()
813 {
814 const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
815 ifstream proc_file;
816 proc_file.open("/proc/self/statm");
817 int total_size_in_pages = 0;
818 int res_size_in_pages = 0;
819 proc_file >> total_size_in_pages;
820 proc_file >> res_size_in_pages;
821 return double(total_size_in_pages)*MULTIPLIER; // size in megabytes
822 }
823
824 static double process_memory_resident()
825 {
826 const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
827 ifstream proc_file;
828 proc_file.open("/proc/self/statm");
829 int total_size_in_pages = 0;
830 int res_size_in_pages = 0;
831 proc_file >> total_size_in_pages;
832 proc_file >> res_size_in_pages;
833 return double(res_size_in_pages)*MULTIPLIER; // size in megabytes
834 }
835
836 void Profiler::rubyWatch(int id){
837 //int rn_g1 = 0;//SIMICS_get_register_number(id, "g1");
838 uint64 tr = 0;//SIMICS_read_register(id, rn_g1);
839 Address watch_address = Address(tr);
840 const int ID_SPACES = 3;
841 const int TIME_SPACES = 7;
842
843 (* debug_cout_ptr).flags(ios::right);
844 (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
845 (* debug_cout_ptr) << setw(ID_SPACES) << id << " "
846 << "RUBY WATCH "
847 << watch_address
848 << endl;
849
850 if(!m_watch_address_list_ptr->exist(watch_address)){
851 m_watch_address_list_ptr->add(watch_address, 1);
852 }
853 }
854
855 bool Profiler::watchAddress(Address addr){
856 if (m_watch_address_list_ptr->exist(addr))
857 return true;
858 else
859 return false;
860 }
861
862 int64 Profiler::getTotalTransactionsExecuted() const {
863 return m_perProcEndTransaction.sum();
864 }
865
866 // For MemoryControl:
867 void Profiler::profileMemReq(int mem_cntrl, int bank) {
868 m_mc_profilers[mem_cntrl]->m_memReq++;
869 m_mc_profilers[mem_cntrl]->m_memBankCount[bank]++;
870 }
871
872 void Profiler::profileMemBankBusy(int mem_cntrl) {
873 m_mc_profilers[mem_cntrl]->m_memBankBusy++;
874 }
875
876 void Profiler::profileMemBusBusy(int mem_cntrl) {
877 m_mc_profilers[mem_cntrl]->m_memBusBusy++;
878 }
879
880 void Profiler::profileMemReadWriteBusy(int mem_cntrl) {
881 m_mc_profilers[mem_cntrl]->m_memReadWriteBusy++;
882 }
883
884 void Profiler::profileMemDataBusBusy(int mem_cntrl) {
885 m_mc_profilers[mem_cntrl]->m_memDataBusBusy++;
886 }
887
888 void Profiler::profileMemTfawBusy(int mem_cntrl) {
889 m_mc_profilers[mem_cntrl]->m_memTfawBusy++;
890 }
891
892 void Profiler::profileMemRefresh(int mem_cntrl) {
893 m_mc_profilers[mem_cntrl]->m_memRefresh++;
894 }
895
896 void Profiler::profileMemRead(int mem_cntrl) {
897 m_mc_profilers[mem_cntrl]->m_memRead++;
898 }
899
900 void Profiler::profileMemWrite(int mem_cntrl) {
901 m_mc_profilers[mem_cntrl]->m_memWrite++;
902 }
903
904 void Profiler::profileMemWaitCycles(int mem_cntrl, int cycles) {
905 m_mc_profilers[mem_cntrl]->m_memWaitCycles += cycles;
906 }
907
908 void Profiler::profileMemInputQ(int mem_cntrl, int cycles) {
909 m_mc_profilers[mem_cntrl]->m_memInputQ += cycles;
910 }
911
912 void Profiler::profileMemBankQ(int mem_cntrl, int cycles) {
913 m_mc_profilers[mem_cntrl]->m_memBankQ += cycles;
914 }
915
916 void Profiler::profileMemArbWait(int mem_cntrl, int cycles) {
917 m_mc_profilers[mem_cntrl]->m_memArbWait += cycles;
918 }
919
920 void Profiler::profileMemRandBusy(int mem_cntrl) {
921 m_mc_profilers[mem_cntrl]->m_memRandBusy++;
922 }
923
924 void Profiler::profileMemNotOld(int mem_cntrl) {
925 m_mc_profilers[mem_cntrl]->m_memNotOld++;
926 }
927
928
929 Profiler *
930 RubyProfilerParams::create()
931 {
932 return new Profiler(this);
933 }