1327eccfb0b17f0aebf821f14a846e456cbecf44
[gem5.git] / src / mem / ruby / slicc_interface / AbstractController.cc
1 /*
2 * Copyright (c) 2017 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 #include "mem/ruby/slicc_interface/AbstractController.hh"
42
43 #include "debug/RubyQueue.hh"
44 #include "mem/protocol/MemoryMsg.hh"
45 #include "mem/ruby/network/Network.hh"
46 #include "mem/ruby/system/GPUCoalescer.hh"
47 #include "mem/ruby/system/RubySystem.hh"
48 #include "mem/ruby/system/Sequencer.hh"
49 #include "sim/system.hh"
50
51 AbstractController::AbstractController(const Params *p)
52 : MemObject(p), Consumer(this), m_version(p->version),
53 m_clusterID(p->cluster_id),
54 m_masterId(p->system->getMasterId(this)), m_is_blocking(false),
55 m_number_of_TBEs(p->number_of_TBEs),
56 m_transitions_per_cycle(p->transitions_per_cycle),
57 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
58 memoryPort(csprintf("%s.memory", name()), this, ""),
59 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end())
60 {
61 if (m_version == 0) {
62 // Combine the statistics from all controllers
63 // of this particular type.
64 Stats::registerDumpCallback(new StatsCallback(this));
65 }
66 }
67
68 void
69 AbstractController::init()
70 {
71 params()->ruby_system->registerAbstractController(this);
72 m_delayHistogram.init(10);
73 uint32_t size = Network::getNumberOfVirtualNetworks();
74 for (uint32_t i = 0; i < size; i++) {
75 m_delayVCHistogram.push_back(new Stats::Histogram());
76 m_delayVCHistogram[i]->init(10);
77 }
78 }
79
80 void
81 AbstractController::resetStats()
82 {
83 m_delayHistogram.reset();
84 uint32_t size = Network::getNumberOfVirtualNetworks();
85 for (uint32_t i = 0; i < size; i++) {
86 m_delayVCHistogram[i]->reset();
87 }
88 }
89
90 void
91 AbstractController::regStats()
92 {
93 MemObject::regStats();
94
95 m_fully_busy_cycles
96 .name(name() + ".fully_busy_cycles")
97 .desc("cycles for which number of transistions == max transitions")
98 .flags(Stats::nozero);
99 }
100
101 void
102 AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
103 {
104 assert(virtualNetwork < m_delayVCHistogram.size());
105 m_delayHistogram.sample(delay);
106 m_delayVCHistogram[virtualNetwork]->sample(delay);
107 }
108
109 void
110 AbstractController::stallBuffer(MessageBuffer* buf, Addr addr)
111 {
112 if (m_waiting_buffers.count(addr) == 0) {
113 MsgVecType* msgVec = new MsgVecType;
114 msgVec->resize(m_in_ports, NULL);
115 m_waiting_buffers[addr] = msgVec;
116 }
117 DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port,
118 addr);
119 assert(m_in_ports > m_cur_in_port);
120 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
121 }
122
123 void
124 AbstractController::wakeUpBuffers(Addr addr)
125 {
126 if (m_waiting_buffers.count(addr) > 0) {
127 //
128 // Wake up all possible lower rank (i.e. lower priority) buffers that could
129 // be waiting on this message.
130 //
131 for (int in_port_rank = m_cur_in_port - 1;
132 in_port_rank >= 0;
133 in_port_rank--) {
134 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
135 (*(m_waiting_buffers[addr]))[in_port_rank]->
136 reanalyzeMessages(addr, clockEdge());
137 }
138 }
139 delete m_waiting_buffers[addr];
140 m_waiting_buffers.erase(addr);
141 }
142 }
143
144 void
145 AbstractController::wakeUpAllBuffers(Addr addr)
146 {
147 if (m_waiting_buffers.count(addr) > 0) {
148 //
149 // Wake up all possible lower rank (i.e. lower priority) buffers that could
150 // be waiting on this message.
151 //
152 for (int in_port_rank = m_in_ports - 1;
153 in_port_rank >= 0;
154 in_port_rank--) {
155 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
156 (*(m_waiting_buffers[addr]))[in_port_rank]->
157 reanalyzeMessages(addr, clockEdge());
158 }
159 }
160 delete m_waiting_buffers[addr];
161 m_waiting_buffers.erase(addr);
162 }
163 }
164
165 void
166 AbstractController::wakeUpAllBuffers()
167 {
168 //
169 // Wake up all possible buffers that could be waiting on any message.
170 //
171
172 std::vector<MsgVecType*> wokeUpMsgVecs;
173 MsgBufType wokeUpMsgBufs;
174
175 if (m_waiting_buffers.size() > 0) {
176 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
177 buf_iter != m_waiting_buffers.end();
178 ++buf_iter) {
179 for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
180 vec_iter != buf_iter->second->end();
181 ++vec_iter) {
182 //
183 // Make sure the MessageBuffer has not already be reanalyzed
184 //
185 if (*vec_iter != NULL &&
186 (wokeUpMsgBufs.count(*vec_iter) == 0)) {
187 (*vec_iter)->reanalyzeAllMessages(clockEdge());
188 wokeUpMsgBufs.insert(*vec_iter);
189 }
190 }
191 wokeUpMsgVecs.push_back(buf_iter->second);
192 }
193
194 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
195 wb_iter != wokeUpMsgVecs.end();
196 ++wb_iter) {
197 delete (*wb_iter);
198 }
199
200 m_waiting_buffers.clear();
201 }
202 }
203
204 void
205 AbstractController::blockOnQueue(Addr addr, MessageBuffer* port)
206 {
207 m_is_blocking = true;
208 m_block_map[addr] = port;
209 }
210
211 bool
212 AbstractController::isBlocked(Addr addr) const
213 {
214 return m_is_blocking && (m_block_map.find(addr) != m_block_map.end());
215 }
216
217 void
218 AbstractController::unblock(Addr addr)
219 {
220 m_block_map.erase(addr);
221 if (m_block_map.size() == 0) {
222 m_is_blocking = false;
223 }
224 }
225
226 bool
227 AbstractController::isBlocked(Addr addr)
228 {
229 return (m_block_map.count(addr) > 0);
230 }
231
232 BaseMasterPort &
233 AbstractController::getMasterPort(const std::string &if_name,
234 PortID idx)
235 {
236 return memoryPort;
237 }
238
239 void
240 AbstractController::queueMemoryRead(const MachineID &id, Addr addr,
241 Cycles latency)
242 {
243 RequestPtr req = std::make_shared<Request>(
244 addr, RubySystem::getBlockSizeBytes(), 0, m_masterId);
245
246 PacketPtr pkt = Packet::createRead(req);
247 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
248 pkt->dataDynamic(newData);
249
250 SenderState *s = new SenderState(id);
251 pkt->pushSenderState(s);
252
253 // Use functional rather than timing accesses during warmup
254 if (RubySystem::getWarmupEnabled()) {
255 memoryPort.sendFunctional(pkt);
256 recvTimingResp(pkt);
257 return;
258 }
259
260 memoryPort.schedTimingReq(pkt, clockEdge(latency));
261 }
262
263 void
264 AbstractController::queueMemoryWrite(const MachineID &id, Addr addr,
265 Cycles latency, const DataBlock &block)
266 {
267 RequestPtr req = std::make_shared<Request>(
268 addr, RubySystem::getBlockSizeBytes(), 0, m_masterId);
269
270 PacketPtr pkt = Packet::createWrite(req);
271 pkt->allocate();
272 pkt->setData(block.getData(0, RubySystem::getBlockSizeBytes()));
273
274 SenderState *s = new SenderState(id);
275 pkt->pushSenderState(s);
276
277 // Use functional rather than timing accesses during warmup
278 if (RubySystem::getWarmupEnabled()) {
279 memoryPort.sendFunctional(pkt);
280 recvTimingResp(pkt);
281 return;
282 }
283
284 // Create a block and copy data from the block.
285 memoryPort.schedTimingReq(pkt, clockEdge(latency));
286 }
287
288 void
289 AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr,
290 Cycles latency,
291 const DataBlock &block, int size)
292 {
293 RequestPtr req = std::make_shared<Request>(addr, size, 0, m_masterId);
294
295 PacketPtr pkt = Packet::createWrite(req);
296 pkt->allocate();
297 pkt->setData(block.getData(getOffset(addr), size));
298
299 SenderState *s = new SenderState(id);
300 pkt->pushSenderState(s);
301
302 // Create a block and copy data from the block.
303 memoryPort.schedTimingReq(pkt, clockEdge(latency));
304 }
305
306 void
307 AbstractController::functionalMemoryRead(PacketPtr pkt)
308 {
309 memoryPort.sendFunctional(pkt);
310 }
311
312 int
313 AbstractController::functionalMemoryWrite(PacketPtr pkt)
314 {
315 int num_functional_writes = 0;
316
317 // Check the buffer from the controller to the memory.
318 if (memoryPort.trySatisfyFunctional(pkt)) {
319 num_functional_writes++;
320 }
321
322 // Update memory itself.
323 memoryPort.sendFunctional(pkt);
324 return num_functional_writes + 1;
325 }
326
327 void
328 AbstractController::recvTimingResp(PacketPtr pkt)
329 {
330 assert(getMemoryQueue());
331 assert(pkt->isResponse());
332
333 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
334 (*msg).m_addr = pkt->getAddr();
335 (*msg).m_Sender = m_machineID;
336
337 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
338 (*msg).m_OriginalRequestorMachId = s->id;
339 delete s;
340
341 if (pkt->isRead()) {
342 (*msg).m_Type = MemoryRequestType_MEMORY_READ;
343 (*msg).m_MessageSize = MessageSizeType_Response_Data;
344
345 // Copy data from the packet
346 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
347 RubySystem::getBlockSizeBytes());
348 } else if (pkt->isWrite()) {
349 (*msg).m_Type = MemoryRequestType_MEMORY_WB;
350 (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
351 } else {
352 panic("Incorrect packet type received from memory controller!");
353 }
354
355 getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
356 delete pkt;
357 }
358
359 Tick
360 AbstractController::recvAtomic(PacketPtr pkt)
361 {
362 return ticksToCycles(memoryPort.sendAtomic(pkt));
363 }
364
365 MachineID
366 AbstractController::mapAddressToMachine(Addr addr, MachineType mtype) const
367 {
368 NodeID node = m_net_ptr->addressToNodeID(addr, mtype);
369 MachineID mach = {mtype, node};
370 return mach;
371 }
372
373 bool
374 AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
375 {
376 controller->recvTimingResp(pkt);
377 return true;
378 }
379
380 AbstractController::MemoryPort::MemoryPort(const std::string &_name,
381 AbstractController *_controller,
382 const std::string &_label)
383 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
384 reqQueue(*_controller, *this, _label),
385 snoopRespQueue(*_controller, *this, false, _label),
386 controller(_controller)
387 {
388 }