ruby: message buffer, timer table: significant changes
[gem5.git] / src / mem / ruby / slicc_interface / AbstractController.cc
1 /*
2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include "mem/ruby/slicc_interface/AbstractController.hh"
30
31 #include "debug/RubyQueue.hh"
32 #include "mem/protocol/MemoryMsg.hh"
33 #include "mem/ruby/system/RubySystem.hh"
34 #include "mem/ruby/system/Sequencer.hh"
35 #include "sim/system.hh"
36
37 AbstractController::AbstractController(const Params *p)
38 : MemObject(p), Consumer(this), m_version(p->version),
39 m_clusterID(p->cluster_id),
40 m_masterId(p->system->getMasterId(name())), m_is_blocking(false),
41 m_number_of_TBEs(p->number_of_TBEs),
42 m_transitions_per_cycle(p->transitions_per_cycle),
43 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
44 memoryPort(csprintf("%s.memory", name()), this, "")
45 {
46 if (m_version == 0) {
47 // Combine the statistics from all controllers
48 // of this particular type.
49 Stats::registerDumpCallback(new StatsCallback(this));
50 }
51 }
52
53 void
54 AbstractController::init()
55 {
56 params()->ruby_system->registerAbstractController(this);
57 m_delayHistogram.init(10);
58 uint32_t size = Network::getNumberOfVirtualNetworks();
59 for (uint32_t i = 0; i < size; i++) {
60 m_delayVCHistogram.push_back(new Stats::Histogram());
61 m_delayVCHistogram[i]->init(10);
62 }
63 }
64
65 void
66 AbstractController::resetStats()
67 {
68 m_delayHistogram.reset();
69 uint32_t size = Network::getNumberOfVirtualNetworks();
70 for (uint32_t i = 0; i < size; i++) {
71 m_delayVCHistogram[i]->reset();
72 }
73 }
74
75 void
76 AbstractController::regStats()
77 {
78 m_fully_busy_cycles
79 .name(name() + ".fully_busy_cycles")
80 .desc("cycles for which number of transistions == max transitions")
81 .flags(Stats::nozero);
82 }
83
84 void
85 AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
86 {
87 assert(virtualNetwork < m_delayVCHistogram.size());
88 m_delayHistogram.sample(delay);
89 m_delayVCHistogram[virtualNetwork]->sample(delay);
90 }
91
92 void
93 AbstractController::stallBuffer(MessageBuffer* buf, Addr addr)
94 {
95 if (m_waiting_buffers.count(addr) == 0) {
96 MsgVecType* msgVec = new MsgVecType;
97 msgVec->resize(m_in_ports, NULL);
98 m_waiting_buffers[addr] = msgVec;
99 }
100 DPRINTF(RubyQueue, "stalling %s port %d addr %s\n", buf, m_cur_in_port,
101 addr);
102 assert(m_in_ports > m_cur_in_port);
103 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
104 }
105
106 void
107 AbstractController::wakeUpBuffers(Addr addr)
108 {
109 if (m_waiting_buffers.count(addr) > 0) {
110 //
111 // Wake up all possible lower rank (i.e. lower priority) buffers that could
112 // be waiting on this message.
113 //
114 for (int in_port_rank = m_cur_in_port - 1;
115 in_port_rank >= 0;
116 in_port_rank--) {
117 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
118 (*(m_waiting_buffers[addr]))[in_port_rank]->
119 reanalyzeMessages(addr, clockEdge());
120 }
121 }
122 delete m_waiting_buffers[addr];
123 m_waiting_buffers.erase(addr);
124 }
125 }
126
127 void
128 AbstractController::wakeUpAllBuffers(Addr addr)
129 {
130 if (m_waiting_buffers.count(addr) > 0) {
131 //
132 // Wake up all possible lower rank (i.e. lower priority) buffers that could
133 // be waiting on this message.
134 //
135 for (int in_port_rank = m_in_ports - 1;
136 in_port_rank >= 0;
137 in_port_rank--) {
138 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
139 (*(m_waiting_buffers[addr]))[in_port_rank]->
140 reanalyzeMessages(addr, clockEdge());
141 }
142 }
143 delete m_waiting_buffers[addr];
144 m_waiting_buffers.erase(addr);
145 }
146 }
147
148 void
149 AbstractController::wakeUpAllBuffers()
150 {
151 //
152 // Wake up all possible buffers that could be waiting on any message.
153 //
154
155 std::vector<MsgVecType*> wokeUpMsgVecs;
156 MsgBufType wokeUpMsgBufs;
157
158 if(m_waiting_buffers.size() > 0) {
159 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
160 buf_iter != m_waiting_buffers.end();
161 ++buf_iter) {
162 for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
163 vec_iter != buf_iter->second->end();
164 ++vec_iter) {
165 //
166 // Make sure the MessageBuffer has not already be reanalyzed
167 //
168 if (*vec_iter != NULL &&
169 (wokeUpMsgBufs.count(*vec_iter) == 0)) {
170 (*vec_iter)->reanalyzeAllMessages(clockEdge());
171 wokeUpMsgBufs.insert(*vec_iter);
172 }
173 }
174 wokeUpMsgVecs.push_back(buf_iter->second);
175 }
176
177 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
178 wb_iter != wokeUpMsgVecs.end();
179 ++wb_iter) {
180 delete (*wb_iter);
181 }
182
183 m_waiting_buffers.clear();
184 }
185 }
186
187 void
188 AbstractController::blockOnQueue(Addr addr, MessageBuffer* port)
189 {
190 m_is_blocking = true;
191 m_block_map[addr] = port;
192 }
193
194 void
195 AbstractController::unblock(Addr addr)
196 {
197 m_block_map.erase(addr);
198 if (m_block_map.size() == 0) {
199 m_is_blocking = false;
200 }
201 }
202
203 BaseMasterPort &
204 AbstractController::getMasterPort(const std::string &if_name,
205 PortID idx)
206 {
207 return memoryPort;
208 }
209
210 void
211 AbstractController::queueMemoryRead(const MachineID &id, Addr addr,
212 Cycles latency)
213 {
214 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
215 m_masterId);
216
217 PacketPtr pkt = Packet::createRead(req);
218 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
219 pkt->dataDynamic(newData);
220
221 SenderState *s = new SenderState(id);
222 pkt->pushSenderState(s);
223
224 // Use functional rather than timing accesses during warmup
225 if (RubySystem::getWarmupEnabled()) {
226 memoryPort.sendFunctional(pkt);
227 recvTimingResp(pkt);
228 return;
229 }
230
231 memoryPort.schedTimingReq(pkt, clockEdge(latency));
232 }
233
234 void
235 AbstractController::queueMemoryWrite(const MachineID &id, Addr addr,
236 Cycles latency, const DataBlock &block)
237 {
238 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
239 m_masterId);
240
241 PacketPtr pkt = Packet::createWrite(req);
242 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
243 pkt->dataDynamic(newData);
244 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
245 RubySystem::getBlockSizeBytes());
246
247 SenderState *s = new SenderState(id);
248 pkt->pushSenderState(s);
249
250 // Use functional rather than timing accesses during warmup
251 if (RubySystem::getWarmupEnabled()) {
252 memoryPort.sendFunctional(pkt);
253 recvTimingResp(pkt);
254 return;
255 }
256
257 // Create a block and copy data from the block.
258 memoryPort.schedTimingReq(pkt, clockEdge(latency));
259 }
260
261 void
262 AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr,
263 Cycles latency,
264 const DataBlock &block, int size)
265 {
266 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
267 m_masterId);
268
269 PacketPtr pkt = Packet::createWrite(req);
270 uint8_t *newData = new uint8_t[size];
271 pkt->dataDynamic(newData);
272 memcpy(newData, block.getData(getOffset(addr), size), size);
273
274 SenderState *s = new SenderState(id);
275 pkt->pushSenderState(s);
276
277 // Create a block and copy data from the block.
278 memoryPort.schedTimingReq(pkt, clockEdge(latency));
279 }
280
281 void
282 AbstractController::functionalMemoryRead(PacketPtr pkt)
283 {
284 memoryPort.sendFunctional(pkt);
285 }
286
287 int
288 AbstractController::functionalMemoryWrite(PacketPtr pkt)
289 {
290 int num_functional_writes = 0;
291
292 // Check the buffer from the controller to the memory.
293 if (memoryPort.checkFunctional(pkt)) {
294 num_functional_writes++;
295 }
296
297 // Update memory itself.
298 memoryPort.sendFunctional(pkt);
299 return num_functional_writes + 1;
300 }
301
302 void
303 AbstractController::recvTimingResp(PacketPtr pkt)
304 {
305 assert(getMemoryQueue());
306 assert(pkt->isResponse());
307
308 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
309 (*msg).m_addr = pkt->getAddr();
310 (*msg).m_Sender = m_machineID;
311
312 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
313 (*msg).m_OriginalRequestorMachId = s->id;
314 delete s;
315
316 if (pkt->isRead()) {
317 (*msg).m_Type = MemoryRequestType_MEMORY_READ;
318 (*msg).m_MessageSize = MessageSizeType_Response_Data;
319
320 // Copy data from the packet
321 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
322 RubySystem::getBlockSizeBytes());
323 } else if (pkt->isWrite()) {
324 (*msg).m_Type = MemoryRequestType_MEMORY_WB;
325 (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
326 } else {
327 panic("Incorrect packet type received from memory controller!");
328 }
329
330 getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
331 delete pkt;
332 }
333
334 bool
335 AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
336 {
337 controller->recvTimingResp(pkt);
338 return true;
339 }
340
341 AbstractController::MemoryPort::MemoryPort(const std::string &_name,
342 AbstractController *_controller,
343 const std::string &_label)
344 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
345 reqQueue(*_controller, *this, _label),
346 snoopRespQueue(*_controller, *this, _label),
347 controller(_controller)
348 {
349 }