305a7bcaf9679f25b378645a8bda350fde31b143
[gem5.git] / src / mem / simple_dram.cc
1 /*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 * Ani Udipi
39 */
40
41 #include "base/trace.hh"
42 #include "debug/Drain.hh"
43 #include "debug/DRAM.hh"
44 #include "debug/DRAMWR.hh"
45 #include "mem/simple_dram.hh"
46 #include "sim/stat_control.hh"
47
48 using namespace std;
49
50 SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
51 AbstractMemory(p),
52 port(name() + ".port", *this),
53 retryRdReq(false), retryWrReq(false),
54 rowHitFlag(false), stopReads(false),
55 writeEvent(this), respondEvent(this),
56 refreshEvent(this), nextReqEvent(this), drainManager(NULL),
57 bytesPerCacheLine(0),
58 linesPerRowBuffer(p->lines_per_rowbuffer),
59 ranksPerChannel(p->ranks_per_channel),
60 banksPerRank(p->banks_per_rank), rowsPerBank(0),
61 readBufferSize(p->read_buffer_size),
62 writeBufferSize(p->write_buffer_size),
63 writeThresholdPerc(p->write_thresh_perc),
64 tWTR(p->tWTR), tBURST(p->tBURST),
65 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
66 tRFC(p->tRFC), tREFI(p->tREFI),
67 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
68 pageMgmt(p->page_policy),
69 busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
70 prevArrival(0), numReqs(0)
71 {
72 // create the bank states based on the dimensions of the ranks and
73 // banks
74 banks.resize(ranksPerChannel);
75 for (size_t c = 0; c < ranksPerChannel; ++c) {
76 banks[c].resize(banksPerRank);
77 }
78
79 // round the write threshold percent to a whole number of entries
80 // in the buffer
81 writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
82 }
83
84 void
85 SimpleDRAM::init()
86 {
87 if (!port.isConnected()) {
88 fatal("SimpleDRAM %s is unconnected!\n", name());
89 } else {
90 port.sendRangeChange();
91 }
92
93 // get the cache line size from the connected port
94 bytesPerCacheLine = port.peerBlockSize();
95
96 // we could deal with plenty options here, but for now do a quick
97 // sanity check
98 if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
99 panic("Unexpected cache line size %d", bytesPerCacheLine);
100
101 // determine the rows per bank by looking at the total capacity
102 uint64_t capacity = AbstractMemory::size();
103 uint64_t i = 1;
104 while (i < 64 && capacity > ((1 << i))) {
105 ++i;
106 }
107
108 // rounded up to nearest power of two
109 DPRINTF(DRAM, "i is %lld\n", i);
110 capacity = 1 << i;
111
112 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
113 AbstractMemory::size());
114 rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
115 banksPerRank * ranksPerChannel);
116
117 }
118
119 void
120 SimpleDRAM::startup()
121 {
122 // print the configuration of the controller
123 printParams();
124
125 // kick off the refresh
126 schedule(&refreshEvent, curTick() + tREFI);
127 }
128
129
130 Tick
131 SimpleDRAM::recvAtomic(PacketPtr pkt)
132 {
133 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
134
135 // do the actual memory access and turn the packet into a response
136 access(pkt);
137
138 Tick latency = 0;
139 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
140 // this value is not supposed to be accurate, just enough to
141 // keep things going, mimic a closed page
142 latency = tRP + tRCD + tCL;
143 }
144 return latency;
145 }
146
147 bool
148 SimpleDRAM::readQueueFull() const
149 {
150 DPRINTF(DRAM, "Read queue limit %d current size %d\n",
151 readBufferSize, dramReadQueue.size() + dramRespQueue.size());
152
153 return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
154 }
155
156 bool
157 SimpleDRAM::writeQueueFull() const
158 {
159 DPRINTF(DRAM, "Write queue limit %d current size %d\n",
160 writeBufferSize, dramWriteQueue.size());
161 return dramWriteQueue.size() == writeBufferSize;
162 }
163
164
165 SimpleDRAM::DRAMPacket*
166 SimpleDRAM::decodeAddr(PacketPtr pkt)
167 {
168 uint8_t rank;
169 uint16_t bank;
170 uint16_t row;
171
172 Addr addr = pkt->getAddr();
173 Addr temp = addr;
174
175 // truncate the address to the access granularity
176 addr = addr / bytesPerCacheLine;
177
178 if (addrMapping == Enums::openmap) {
179 addr = addr / linesPerRowBuffer;
180
181 bank = addr % banksPerRank;
182 addr = addr / banksPerRank;
183
184 rank = addr % ranksPerChannel;
185 addr = addr / ranksPerChannel;
186
187 row = addr % rowsPerBank;
188 addr = addr / rowsPerBank;
189 } else if (addrMapping == Enums::closemap) {
190 bank = addr % banksPerRank;
191 addr = addr / banksPerRank;
192
193 rank = addr % ranksPerChannel;
194 addr = addr / ranksPerChannel;
195
196 addr = addr / linesPerRowBuffer;
197
198 row = addr % rowsPerBank;
199 addr = addr / rowsPerBank;
200 } else
201 panic("Unknown address mapping policy chosen!");
202
203 assert(rank < ranksPerChannel);
204 assert(bank < banksPerRank);
205 assert(row < rowsPerBank);
206
207 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
208 temp, rank, bank, row);
209
210 // create the corresponding DRAM packet with the entry time and
211 // ready time set to the current tick, they will be updated later
212 DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
213 banks[rank][bank]);
214
215 return dram_pkt;
216 }
217
218 void
219 SimpleDRAM::addToReadQueue(PacketPtr pkt)
220 {
221 // only add to the read queue here. whenever the request is
222 // eventually done, set the readyTime, and call schedule()
223 assert(!pkt->isWrite());
224
225 // First check write buffer to see if the data is already at
226 // the controller
227 std::list<DRAMPacket*>::const_iterator i;
228 Addr addr = pkt->getAddr();
229
230 // @todo: add size check
231 for (i = dramWriteQueue.begin(); i != dramWriteQueue.end(); ++i) {
232 if ((*i)->addr == addr){
233 servicedByWrQ++;
234 DPRINTF(DRAM,"Serviced by write Q\n");
235 bytesRead += bytesPerCacheLine;
236 bytesConsumedRd += pkt->getSize();
237 accessAndRespond(pkt);
238 return;
239 }
240 }
241
242 DRAMPacket* dram_pkt = decodeAddr(pkt);
243
244 assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
245 rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
246
247 DPRINTF(DRAM, "Adding to read queue\n");
248
249 dramReadQueue.push_back(dram_pkt);
250
251 // Update stats
252 uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
253 assert(bank_id < ranksPerChannel * banksPerRank);
254 perBankRdReqs[bank_id]++;
255
256 avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
257
258 // Special case where no arbitration is required between requests
259 if (!nextReqEvent.scheduled() && !stopReads) {
260 DPRINTF(DRAM, "Request %lld - need to schedule immediately");
261 schedule(&nextReqEvent, curTick() + 1);
262 }
263 }
264
265 void
266 SimpleDRAM::processWriteEvent()
267 {
268 assert(!dramWriteQueue.empty());
269 uint32_t numWritesThisTime = 0;
270
271 DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
272 Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
273 Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
274
275 // @todo: are there any dangers with the untimed while loop?
276 while (!dramWriteQueue.empty()) {
277 if (numWritesThisTime > writeThreshold)
278 break;
279
280 chooseNextWrite();
281 DRAMPacket* dram_pkt = dramWriteQueue.front();
282 // What's the earlier the request can be put on the bus
283 Tick schedTime = std::max(curTick(), busBusyUntil);
284
285 DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
286 schedTime + tBURST);
287
288 pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
289 Tick accessLat = lat.second;
290
291 // look at the rowHitFlag set by estimateLatency
292
293 // @todo: Race condition here where another packet gives rise
294 // to another call to estimateLatency in the meanwhile?
295 if (rowHitFlag)
296 writeRowHits++;
297
298 Bank& bank = dram_pkt->bank_ref;
299
300 if (pageMgmt == Enums::open) {
301 bank.openRow = dram_pkt->row;
302 bank.freeAt = schedTime + tBURST + std::max(accessLat, tCL);
303 busBusyUntil = bank.freeAt - tCL;
304
305 if (!rowHitFlag) {
306 bank.tRASDoneAt = bank.freeAt + tRP;
307 busBusyUntil = bank.freeAt - tCL - tRCD;
308 }
309 } else if (pageMgmt == Enums::close) {
310 bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
311 busBusyUntil = bank.freeAt - tRP - tRP - tCL - tRCD;
312 DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
313 "banks_id %d is %lld\n",
314 dram_pkt->rank * banksPerRank + dram_pkt->bank,
315 bank.freeAt);
316 } else
317 panic("Unknown page management policy chosen\n");
318
319 DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
320
321 DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
322 "busbusyuntil is %lld\n",
323 schedTime, tBURST, busBusyUntil);
324
325 dramWriteQueue.pop_front();
326 delete dram_pkt;
327
328 numWritesThisTime++;
329 }
330
331 DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
332 "banks busy for %lld ticks\n", numWritesThisTime,
333 busBusyUntil - temp1, maxBankFreeAt() - temp2);
334
335 // Update stats
336 avgWrQLen = dramWriteQueue.size();
337
338 // turn the bus back around for reads again
339 busBusyUntil += tWTR;
340 stopReads = false;
341
342 if (retryWrReq) {
343 retryWrReq = false;
344 port.sendRetry();
345 }
346
347 // if there is nothing left in any queue, signal a drain
348 if (dramWriteQueue.empty() && dramReadQueue.empty() &&
349 dramRespQueue.empty () && drainManager) {
350 drainManager->signalDrainDone();
351 drainManager = NULL;
352 }
353
354 // Once you're done emptying the write queue, check if there's
355 // anything in the read queue, and call schedule if required
356 schedule(&nextReqEvent, busBusyUntil);
357 }
358
359 void
360 SimpleDRAM::triggerWrites()
361 {
362 DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
363 // Flag variable to stop any more read scheduling
364 stopReads = true;
365
366 writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
367
368 DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
369
370 assert(writeStartTime >= curTick());
371 assert(!writeEvent.scheduled());
372 schedule(&writeEvent, writeStartTime);
373 }
374
375 void
376 SimpleDRAM::addToWriteQueue(PacketPtr pkt)
377 {
378 // only add to the write queue here. whenever the request is
379 // eventually done, set the readyTime, and call schedule()
380 assert(pkt->isWrite());
381
382 DRAMPacket* dram_pkt = decodeAddr(pkt);
383
384 assert(dramWriteQueue.size() < writeBufferSize);
385 wrQLenPdf[dramWriteQueue.size()]++;
386
387 DPRINTF(DRAM, "Adding to write queue\n");
388
389 dramWriteQueue.push_back(dram_pkt);
390
391 // Update stats
392 uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
393 assert(bank_id < ranksPerChannel * banksPerRank);
394 perBankWrReqs[bank_id]++;
395
396 avgWrQLen = dramWriteQueue.size();
397
398 // we do not wait for the writes to be send to the actual memory,
399 // but instead take responsibility for the consistency here and
400 // snoop the write queue for any upcoming reads
401
402 bytesConsumedWr += pkt->getSize();
403 bytesWritten += bytesPerCacheLine;
404 accessAndRespond(pkt);
405
406 // If your write buffer is starting to fill up, drain it!
407 if (dramWriteQueue.size() > writeThreshold && !stopReads){
408 triggerWrites();
409 }
410 }
411
412 void
413 SimpleDRAM::printParams() const
414 {
415 // Sanity check print of important parameters
416 DPRINTF(DRAM,
417 "Memory controller %s physical organization\n" \
418 "Bytes per cacheline %d\n" \
419 "Lines per row buffer %d\n" \
420 "Rows per bank %d\n" \
421 "Banks per rank %d\n" \
422 "Ranks per channel %d\n" \
423 "Total mem capacity %u\n",
424 name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
425 banksPerRank, ranksPerChannel, bytesPerCacheLine *
426 linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
427
428 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
429 string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
430 "CLOSEMAP";
431 string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
432
433 DPRINTF(DRAM,
434 "Memory controller %s characteristics\n" \
435 "Read buffer size %d\n" \
436 "Write buffer size %d\n" \
437 "Write buffer thresh %d\n" \
438 "Scheduler %s\n" \
439 "Address mapping %s\n" \
440 "Page policy %s\n",
441 name(), readBufferSize, writeBufferSize, writeThreshold,
442 scheduler, address_mapping, page_policy);
443
444 DPRINTF(DRAM, "Memory controller %s timing specs\n" \
445 "tRCD %d ticks\n" \
446 "tCL %d ticks\n" \
447 "tRP %d ticks\n" \
448 "tBURST %d ticks\n" \
449 "tRFC %d ticks\n" \
450 "tREFI %d ticks\n" \
451 "tWTR %d ticks\n",
452 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
453 }
454
455 void
456 SimpleDRAM::printQs() const {
457
458 list<DRAMPacket*>::const_iterator i;
459
460 DPRINTF(DRAM, "===READ QUEUE===\n\n");
461 for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
462 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
463 }
464 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
465 for (i = dramRespQueue.begin() ; i != dramRespQueue.end() ; ++i) {
466 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
467 }
468 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
469 for (i = dramWriteQueue.begin() ; i != dramWriteQueue.end() ; ++i) {
470 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
471 }
472 }
473
474 bool
475 SimpleDRAM::recvTimingReq(PacketPtr pkt)
476 {
477 /// @todo temporary hack to deal with memory corruption issues until
478 /// 4-phase transactions are complete
479 for (int x = 0; x < pendingDelete.size(); x++)
480 delete pendingDelete[x];
481 pendingDelete.clear();
482
483
484 // This is where we enter from the outside world
485 DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
486 pkt->cmdString(),pkt->getAddr(), pkt->getSize());
487
488 int index;
489
490 if (pkt->getSize() == bytesPerCacheLine)
491 cpuReqs++;
492
493 if (numReqs % 1000000 == 0)
494 printQs();
495
496 // Calc avg gap between requests
497 if (prevArrival != 0) {
498 totGap += curTick() - prevArrival;
499 }
500 prevArrival = curTick();
501
502 // simply drop inhibited packets for now
503 if (pkt->memInhibitAsserted()) {
504 DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
505 pendingDelete.push_back(pkt);
506 return true;
507 }
508
509 unsigned size = pkt->getSize();
510 if (size > bytesPerCacheLine)
511 panic("Request size %d is greater than cache line size %d",
512 size, bytesPerCacheLine);
513
514 if (size == 0)
515 index = log2(bytesPerCacheLine) + 1;
516 else
517 index = log2(size);
518
519 if (size != 0 && (1 << index) != size)
520 index = log2(bytesPerCacheLine) + 2;
521
522 // @todo: Do we really want to do all this before the packet is
523 // actually accepted?
524
525 /* Index 0 - Size 1 byte
526 Index 1 - Size 2 bytes
527 Index 2 - Size 4 bytes
528 .
529 .
530 Index 6 - Size 64 bytes
531 Index 7 - Size 0 bytes
532 Index 8 - Non-power-of-2 size */
533
534 if (pkt->isRead())
535 readPktSize[index]++;
536 else if (pkt->isWrite())
537 writePktSize[index]++;
538 else
539 neitherPktSize[index]++;
540
541 // check local buffers and do not accept if full
542 if (pkt->isRead()) {
543 if (readQueueFull()) {
544 DPRINTF(DRAM,"Read queue full, not accepting\n");
545 // remember that we have to retry this port
546 retryRdReq = true;
547 numRdRetry++;
548 return false;
549 } else {
550 addToReadQueue(pkt);
551 readReqs++;
552 numReqs++;
553 }
554 } else if (pkt->isWrite()) {
555 if (writeQueueFull()) {
556 DPRINTF(DRAM,"Write queue full, not accepting\n");
557 // remember that we have to retry this port
558 retryWrReq = true;
559 numWrRetry++;
560 return false;
561 } else {
562 addToWriteQueue(pkt);
563 writeReqs++;
564 numReqs++;
565 }
566 } else {
567 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
568 neitherReadNorWrite++;
569 accessAndRespond(pkt);
570 }
571
572
573 retryRdReq = false;
574 retryWrReq = false;
575 return true;
576 }
577
578 void
579 SimpleDRAM::processRespondEvent()
580 {
581 DPRINTF(DRAM,
582 "processRespondEvent(): Some req has reached its readyTime\n");
583
584 PacketPtr pkt = dramRespQueue.front()->pkt;
585
586 // Actually responds to the requestor
587 bytesConsumedRd += pkt->getSize();
588 bytesRead += bytesPerCacheLine;
589 accessAndRespond(pkt);
590
591 DRAMPacket* dram_pkt = dramRespQueue.front();
592 dramRespQueue.pop_front();
593 delete dram_pkt;
594
595 // Update stats
596 avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
597
598 if (!dramRespQueue.empty()){
599 assert(dramRespQueue.front()->readyTime >= curTick());
600 assert(!respondEvent.scheduled());
601 schedule(&respondEvent, dramRespQueue.front()->readyTime);
602 } else {
603 // if there is nothing left in any queue, signal a drain
604 if (dramWriteQueue.empty() && dramReadQueue.empty() &&
605 drainManager) {
606 drainManager->signalDrainDone();
607 drainManager = NULL;
608 }
609 }
610 }
611
612 void
613 SimpleDRAM::chooseNextWrite()
614 {
615 // This method does the arbitration between requests. The chosen
616 // packet is simply moved to the head of the queue. The other
617 // methods know that this is the place to look. For example, with
618 // FCFS, this method does nothing
619 assert(!dramWriteQueue.empty());
620
621 if (dramWriteQueue.size() == 1) {
622 DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
623 return;
624 }
625
626 if (memSchedPolicy == Enums::fcfs) {
627
628 // Do nothing, since the correct request is already head
629
630 } else if (memSchedPolicy == Enums::frfcfs) {
631
632 list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
633 bool foundRowHit = false;
634 while (!foundRowHit && i != dramWriteQueue.end()) {
635 DRAMPacket* dram_pkt = *i;
636 const Bank& bank = dram_pkt->bank_ref;
637 if (bank.openRow == dram_pkt->row) { //FR part
638 DPRINTF(DRAMWR,"Row buffer hit\n");
639 dramWriteQueue.erase(i);
640 dramWriteQueue.push_front(dram_pkt);
641 foundRowHit = true;
642 } else { //FCFS part
643 ;
644 }
645 ++i;
646 }
647
648 } else
649 panic("No scheduling policy chosen\n");
650
651 DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
652 }
653
654 bool
655 SimpleDRAM::chooseNextReq()
656 {
657 // This method does the arbitration between requests.
658 // The chosen packet is simply moved to the head of the
659 // queue. The other methods know that this is the place
660 // to look. For example, with FCFS, this method does nothing
661 list<DRAMPacket*>::iterator i;
662 DRAMPacket* dram_pkt;
663
664 if (dramReadQueue.empty()){
665 DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
666 return false;
667 }
668
669 if (dramReadQueue.size() == 1)
670 return true;
671
672 if (memSchedPolicy == Enums::fcfs) {
673
674 // Do nothing, since the correct request is already head
675
676 } else if (memSchedPolicy == Enums::frfcfs) {
677
678 for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
679 dram_pkt = *i;
680 const Bank& bank = dram_pkt->bank_ref;
681 if (bank.openRow == dram_pkt->row) { //FR part
682 DPRINTF(DRAM, "Row buffer hit\n");
683 dramReadQueue.erase(i);
684 dramReadQueue.push_front(dram_pkt);
685 break;
686 } else { //FCFS part
687 ;
688 }
689
690 }
691
692 } else
693 panic("No scheduling policy chosen!\n");
694
695
696 DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
697 return true;
698 }
699
700 void
701 SimpleDRAM::accessAndRespond(PacketPtr pkt)
702 {
703 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
704
705 bool needsResponse = pkt->needsResponse();
706 // do the actual memory access which also turns the packet into a
707 // response
708 access(pkt);
709
710 // turn packet around to go back to requester if response expected
711 if (needsResponse) {
712 // access already turned the packet into a response
713 assert(pkt->isResponse());
714
715 // queue the packet in the response queue to be sent out the
716 // next tick
717 port.schedTimingResp(pkt, curTick() + 1);
718 } else {
719 }
720
721 DPRINTF(DRAM, "Done\n");
722
723 return;
724 }
725
726 pair<Tick, Tick>
727 SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
728 {
729 // If a request reaches a bank at tick 'inTime', how much time
730 // *after* that does it take to finish the request, depending
731 // on bank status and page open policy. Note that this method
732 // considers only the time taken for the actual read or write
733 // to complete, NOT any additional time thereafter for tRAS or
734 // tRP.
735 Tick accLat = 0;
736 Tick bankLat = 0;
737 rowHitFlag = false;
738
739 const Bank& bank = dram_pkt->bank_ref;
740 if (pageMgmt == Enums::open) { // open-page policy
741 if (bank.openRow == dram_pkt->row) {
742 // When we have a row-buffer hit,
743 // we don't care about tRAS having expired or not,
744 // but do care about bank being free for access
745 rowHitFlag = true;
746
747 if (bank.freeAt < inTime) {
748 // CAS latency only
749 accLat += tCL;
750 bankLat += tCL;
751 } else {
752 accLat += 0;
753 bankLat += 0;
754 }
755
756 } else {
757 // Row-buffer miss, need to close existing row
758 // once tRAS has expired, then open the new one,
759 // then add cas latency.
760 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
761
762 if (freeTime > inTime)
763 accLat += freeTime - inTime;
764
765 accLat += tRP + tRCD + tCL;
766 bankLat += tRP + tRCD + tCL;
767 }
768 } else if (pageMgmt == Enums::close) {
769
770 // With a close page policy, no notion of
771 // bank.tRASDoneAt
772 if (bank.freeAt > inTime)
773 accLat += bank.freeAt - inTime;
774
775 // page already closed, simply open the row, and
776 // add cas latency
777 accLat += tRCD + tCL;
778 bankLat += tRCD + tCL;
779 } else
780 panic("No page management policy chosen\n");
781
782 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
783 bankLat, accLat);
784
785 return make_pair(bankLat, accLat);
786 }
787
788 void
789 SimpleDRAM::processNextReqEvent()
790 {
791 scheduleNextReq();
792 }
793
794 void
795 SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
796 {
797
798 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
799 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
800
801 assert(curTick() >= prevdramaccess);
802 prevdramaccess = curTick();
803
804 // estimate the bank and access latency
805 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
806 Tick bankLat = lat.first;
807 Tick accessLat = lat.second;
808
809 // This request was woken up at this time based on a prior call
810 // to estimateLatency(). However, between then and now, both the
811 // accessLatency and/or busBusyUntil may have changed. We need
812 // to correct for that.
813
814 Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
815 busBusyUntil - (curTick() + accessLat) : 0;
816
817 Bank& bank = dram_pkt->bank_ref;
818
819 // Update bank state
820 if (pageMgmt == Enums::open) {
821 bank.openRow = dram_pkt->row;
822 bank.freeAt = curTick() + addDelay + accessLat;
823 // If you activated a new row do to this access, the next access
824 // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP
825 if (!rowHitFlag)
826 bank.tRASDoneAt = bank.freeAt + tRP;
827
828 } else if (pageMgmt == Enums::close) { // accounting for tRAS also
829 // assuming that tRAS ~= 3 * tRP, and tRAS ~= 4 * tRP, as is common
830 // (refer Jacob/Ng/Wang and Micron datasheets)
831 bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
832 DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
833 } else
834 panic("No page management policy chosen\n");
835
836 // Update request parameters
837 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
838
839
840 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
841 "readytime is %lld busbusyuntil is %lld. " \
842 "Scheduling at readyTime\n", dram_pkt->addr,
843 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
844
845 // Make sure requests are not overlapping on the databus
846 assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
847
848 // Update bus state
849 busBusyUntil = dram_pkt->readyTime;
850
851 DPRINTF(DRAM,"Access time is %lld\n",
852 dram_pkt->readyTime - dram_pkt->entryTime);
853
854 // Update stats
855 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
856 totBankLat += bankLat;
857 totBusLat += tBURST;
858 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
859
860 if (rowHitFlag)
861 readRowHits++;
862
863 // At this point we're done dealing with the request
864 // It will be moved to a separate response queue with a
865 // correct readyTime, and eventually be sent back at that
866 //time
867 moveToRespQ();
868
869 // The absolute soonest you have to start thinking about the
870 // next request is the longest access time that can occur before
871 // busBusyUntil. Assuming you need to meet tRAS, then precharge,
872 // open a new row, and access, it is ~4*tRCD.
873
874
875 Tick newTime = (busBusyUntil > 4 * tRCD) ?
876 std::max(busBusyUntil - 4 * tRCD, curTick()) :
877 curTick();
878
879 if (!nextReqEvent.scheduled() && !stopReads){
880 schedule(&nextReqEvent, newTime);
881 } else {
882 if (newTime < nextReqEvent.when())
883 reschedule(&nextReqEvent, newTime);
884 }
885
886
887 }
888
889 void
890 SimpleDRAM::moveToRespQ()
891 {
892 // Remove from read queue
893 DRAMPacket* dram_pkt = dramReadQueue.front();
894 dramReadQueue.pop_front();
895
896 // Insert into response queue sorted by readyTime
897 // It will be sent back to the requestor at its
898 // readyTime
899 if (dramRespQueue.empty()) {
900 dramRespQueue.push_front(dram_pkt);
901 assert(!respondEvent.scheduled());
902 assert(dram_pkt->readyTime >= curTick());
903 schedule(&respondEvent, dram_pkt->readyTime);
904 } else {
905 bool done = false;
906 std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
907 while (!done && i != dramRespQueue.end()) {
908 if ((*i)->readyTime > dram_pkt->readyTime) {
909 dramRespQueue.insert(i, dram_pkt);
910 done = true;
911 }
912 ++i;
913 }
914
915 if (!done)
916 dramRespQueue.push_back(dram_pkt);
917
918 assert(respondEvent.scheduled());
919
920 if (dramRespQueue.front()->readyTime < respondEvent.when()) {
921 assert(dramRespQueue.front()->readyTime >= curTick());
922 reschedule(&respondEvent, dramRespQueue.front()->readyTime);
923 }
924 }
925
926 if (retryRdReq) {
927 retryRdReq = false;
928 port.sendRetry();
929 }
930 }
931
932 void
933 SimpleDRAM::scheduleNextReq()
934 {
935 DPRINTF(DRAM, "Reached scheduleNextReq()\n");
936
937 // Figure out which request goes next, and move it to front()
938 if (!chooseNextReq()) {
939 // In the case there is no read request to go next, see if we
940 // are asked to drain, and if so trigger writes, this also
941 // ensures that if we hit the write limit we will do this
942 // multiple times until we are completely drained
943 if (drainManager && !dramWriteQueue.empty() && !writeEvent.scheduled())
944 triggerWrites();
945 } else {
946 doDRAMAccess(dramReadQueue.front());
947 }
948 }
949
950 Tick
951 SimpleDRAM::maxBankFreeAt() const
952 {
953 Tick banksFree = 0;
954
955 for(int i = 0; i < ranksPerChannel; i++)
956 for(int j = 0; j < banksPerRank; j++)
957 banksFree = std::max(banks[i][j].freeAt, banksFree);
958
959 return banksFree;
960 }
961
962 void
963 SimpleDRAM::processRefreshEvent()
964 {
965 DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
966
967 Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
968
969 for(int i = 0; i < ranksPerChannel; i++)
970 for(int j = 0; j < banksPerRank; j++)
971 banks[i][j].freeAt = banksFree;
972
973 schedule(&refreshEvent, curTick() + tREFI);
974 }
975
976 void
977 SimpleDRAM::regStats()
978 {
979 using namespace Stats;
980
981 AbstractMemory::regStats();
982
983 readReqs
984 .name(name() + ".readReqs")
985 .desc("Total number of read requests seen");
986
987 writeReqs
988 .name(name() + ".writeReqs")
989 .desc("Total number of write requests seen");
990
991 servicedByWrQ
992 .name(name() + ".servicedByWrQ")
993 .desc("Number of read reqs serviced by write Q");
994
995 cpuReqs
996 .name(name() + ".cpureqs")
997 .desc("Reqs generatd by CPU via cache - shady");
998
999 neitherReadNorWrite
1000 .name(name() + ".neitherReadNorWrite")
1001 .desc("Reqs where no action is needed");
1002
1003 perBankRdReqs
1004 .init(banksPerRank * ranksPerChannel)
1005 .name(name() + ".perBankRdReqs")
1006 .desc("Track reads on a per bank basis");
1007
1008 perBankWrReqs
1009 .init(banksPerRank * ranksPerChannel)
1010 .name(name() + ".perBankWrReqs")
1011 .desc("Track writes on a per bank basis");
1012
1013 avgRdQLen
1014 .name(name() + ".avgRdQLen")
1015 .desc("Average read queue length over time")
1016 .precision(2);
1017
1018 avgWrQLen
1019 .name(name() + ".avgWrQLen")
1020 .desc("Average write queue length over time")
1021 .precision(2);
1022
1023 totQLat
1024 .name(name() + ".totQLat")
1025 .desc("Total cycles spent in queuing delays");
1026
1027 totBankLat
1028 .name(name() + ".totBankLat")
1029 .desc("Total cycles spent in bank access");
1030
1031 totBusLat
1032 .name(name() + ".totBusLat")
1033 .desc("Total cycles spent in databus access");
1034
1035 totMemAccLat
1036 .name(name() + ".totMemAccLat")
1037 .desc("Sum of mem lat for all requests");
1038
1039 avgQLat
1040 .name(name() + ".avgQLat")
1041 .desc("Average queueing delay per request")
1042 .precision(2);
1043
1044 avgQLat = totQLat / (readReqs - servicedByWrQ);
1045
1046 avgBankLat
1047 .name(name() + ".avgBankLat")
1048 .desc("Average bank access latency per request")
1049 .precision(2);
1050
1051 avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1052
1053 avgBusLat
1054 .name(name() + ".avgBusLat")
1055 .desc("Average bus latency per request")
1056 .precision(2);
1057
1058 avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1059
1060 avgMemAccLat
1061 .name(name() + ".avgMemAccLat")
1062 .desc("Average memory access latency")
1063 .precision(2);
1064
1065 avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1066
1067 numRdRetry
1068 .name(name() + ".numRdRetry")
1069 .desc("Number of times rd buffer was full causing retry");
1070
1071 numWrRetry
1072 .name(name() + ".numWrRetry")
1073 .desc("Number of times wr buffer was full causing retry");
1074
1075 readRowHits
1076 .name(name() + ".readRowHits")
1077 .desc("Number of row buffer hits during reads");
1078
1079 writeRowHits
1080 .name(name() + ".writeRowHits")
1081 .desc("Number of row buffer hits during writes");
1082
1083 readRowHitRate
1084 .name(name() + ".readRowHitRate")
1085 .desc("Row buffer hit rate for reads")
1086 .precision(2);
1087
1088 readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1089
1090 writeRowHitRate
1091 .name(name() + ".writeRowHitRate")
1092 .desc("Row buffer hit rate for writes")
1093 .precision(2);
1094
1095 writeRowHitRate = (writeRowHits / writeReqs) * 100;
1096
1097 readPktSize
1098 .init(log2(bytesPerCacheLine)+3)
1099 .name(name() + ".readPktSize")
1100 .desc("Categorize read packet sizes");
1101
1102 writePktSize
1103 .init(log2(bytesPerCacheLine)+3)
1104 .name(name() + ".writePktSize")
1105 .desc("categorize write packet sizes");
1106
1107 neitherPktSize
1108 .init(log2(bytesPerCacheLine)+3)
1109 .name(name() + ".neitherpktsize")
1110 .desc("categorize neither packet sizes");
1111
1112 rdQLenPdf
1113 .init(readBufferSize + 1)
1114 .name(name() + ".rdQLenPdf")
1115 .desc("What read queue length does an incoming req see");
1116
1117 wrQLenPdf
1118 .init(writeBufferSize + 1)
1119 .name(name() + ".wrQLenPdf")
1120 .desc("What write queue length does an incoming req see");
1121
1122
1123 bytesRead
1124 .name(name() + ".bytesRead")
1125 .desc("Total number of bytes read from memory");
1126
1127 bytesWritten
1128 .name(name() + ".bytesWritten")
1129 .desc("Total number of bytes written to memory");
1130
1131 bytesConsumedRd
1132 .name(name() + ".bytesConsumedRd")
1133 .desc("bytesRead derated as per pkt->getSize()");
1134
1135 bytesConsumedWr
1136 .name(name() + ".bytesConsumedWr")
1137 .desc("bytesWritten derated as per pkt->getSize()");
1138
1139 avgRdBW
1140 .name(name() + ".avgRdBW")
1141 .desc("Average achieved read bandwidth in MB/s")
1142 .precision(2);
1143
1144 avgRdBW = (bytesRead / 1000000) / simSeconds;
1145
1146 avgWrBW
1147 .name(name() + ".avgWrBW")
1148 .desc("Average achieved write bandwidth in MB/s")
1149 .precision(2);
1150
1151 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1152
1153 avgConsumedRdBW
1154 .name(name() + ".avgConsumedRdBW")
1155 .desc("Average consumed read bandwidth in MB/s")
1156 .precision(2);
1157
1158 avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1159
1160 avgConsumedWrBW
1161 .name(name() + ".avgConsumedWrBW")
1162 .desc("Average consumed write bandwidth in MB/s")
1163 .precision(2);
1164
1165 avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1166
1167 peakBW
1168 .name(name() + ".peakBW")
1169 .desc("Theoretical peak bandwidth in MB/s")
1170 .precision(2);
1171
1172 peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1173
1174 busUtil
1175 .name(name() + ".busUtil")
1176 .desc("Data bus utilization in percentage")
1177 .precision(2);
1178
1179 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1180
1181 totGap
1182 .name(name() + ".totGap")
1183 .desc("Total gap between requests");
1184
1185 avgGap
1186 .name(name() + ".avgGap")
1187 .desc("Average gap between requests")
1188 .precision(2);
1189
1190 avgGap = totGap / (readReqs + writeReqs);
1191 }
1192
1193 void
1194 SimpleDRAM::recvFunctional(PacketPtr pkt)
1195 {
1196 // rely on the abstract memory
1197 functionalAccess(pkt);
1198 }
1199
1200 BaseSlavePort&
1201 SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1202 {
1203 if (if_name != "port") {
1204 return MemObject::getSlavePort(if_name, idx);
1205 } else {
1206 return port;
1207 }
1208 }
1209
1210 unsigned int
1211 SimpleDRAM::drain(DrainManager *dm)
1212 {
1213 unsigned int count = port.drain(dm);
1214
1215 // if there is anything in any of our internal queues, keep track
1216 // of that as well
1217 if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1218 dramRespQueue.empty())) {
1219 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1220 " resp: %d\n", dramWriteQueue.size(), dramReadQueue.size(),
1221 dramRespQueue.size());
1222 ++count;
1223 drainManager = dm;
1224 // the only part that is not drained automatically over time
1225 // is the write queue, thus trigger writes if there are any
1226 // waiting and no reads waiting, otherwise wait until the
1227 // reads are done
1228 if (dramReadQueue.empty() && !dramWriteQueue.empty() &&
1229 !writeEvent.scheduled())
1230 triggerWrites();
1231 }
1232
1233 if (count)
1234 setDrainState(Drainable::Draining);
1235 else
1236 setDrainState(Drainable::Drained);
1237 return count;
1238 }
1239
1240 SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1241 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1242 memory(_memory)
1243 { }
1244
1245 AddrRangeList
1246 SimpleDRAM::MemoryPort::getAddrRanges() const
1247 {
1248 AddrRangeList ranges;
1249 ranges.push_back(memory.getAddrRange());
1250 return ranges;
1251 }
1252
1253 void
1254 SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1255 {
1256 pkt->pushLabel(memory.name());
1257
1258 if (!queue.checkFunctional(pkt)) {
1259 // Default implementation of SimpleTimingPort::recvFunctional()
1260 // calls recvAtomic() and throws away the latency; we can save a
1261 // little here by just not calculating the latency.
1262 memory.recvFunctional(pkt);
1263 }
1264
1265 pkt->popLabel();
1266 }
1267
1268 Tick
1269 SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1270 {
1271 return memory.recvAtomic(pkt);
1272 }
1273
1274 bool
1275 SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1276 {
1277 // pass it to the memory controller
1278 return memory.recvTimingReq(pkt);
1279 }
1280
1281 SimpleDRAM*
1282 SimpleDRAMParams::create()
1283 {
1284 return new SimpleDRAM(this);
1285 }