ruby: MI protocol: add a missing transition
[gem5.git] / src / mem / simple_dram.cc
1 /*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 * Ani Udipi
39 */
40
41 #include "base/trace.hh"
42 #include "debug/Drain.hh"
43 #include "debug/DRAM.hh"
44 #include "debug/DRAMWR.hh"
45 #include "mem/simple_dram.hh"
46 #include "sim/stat_control.hh"
47
48 using namespace std;
49
50 SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
51 AbstractMemory(p),
52 port(name() + ".port", *this),
53 retryRdReq(false), retryWrReq(false),
54 rowHitFlag(false), stopReads(false), actTicks(p->activation_limit, 0),
55 writeEvent(this), respondEvent(this),
56 refreshEvent(this), nextReqEvent(this), drainManager(NULL),
57 bytesPerCacheLine(0),
58 linesPerRowBuffer(p->lines_per_rowbuffer),
59 ranksPerChannel(p->ranks_per_channel),
60 banksPerRank(p->banks_per_rank), rowsPerBank(0),
61 readBufferSize(p->read_buffer_size),
62 writeBufferSize(p->write_buffer_size),
63 writeThresholdPerc(p->write_thresh_perc),
64 tWTR(p->tWTR), tBURST(p->tBURST),
65 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
66 tRFC(p->tRFC), tREFI(p->tREFI),
67 tXAW(p->tXAW), activationLimit(p->activation_limit),
68 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
69 pageMgmt(p->page_policy),
70 busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
71 prevArrival(0), numReqs(0)
72 {
73 // create the bank states based on the dimensions of the ranks and
74 // banks
75 banks.resize(ranksPerChannel);
76 for (size_t c = 0; c < ranksPerChannel; ++c) {
77 banks[c].resize(banksPerRank);
78 }
79
80 // round the write threshold percent to a whole number of entries
81 // in the buffer
82 writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
83 }
84
85 void
86 SimpleDRAM::init()
87 {
88 if (!port.isConnected()) {
89 fatal("SimpleDRAM %s is unconnected!\n", name());
90 } else {
91 port.sendRangeChange();
92 }
93
94 // get the cache line size from the connected port
95 bytesPerCacheLine = port.peerBlockSize();
96
97 // we could deal with plenty options here, but for now do a quick
98 // sanity check
99 if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
100 panic("Unexpected cache line size %d", bytesPerCacheLine);
101
102 // determine the rows per bank by looking at the total capacity
103 uint64_t capacity = AbstractMemory::size();
104 uint64_t i = 1;
105 while (i < 64 && capacity > ((1 << i))) {
106 ++i;
107 }
108
109 // rounded up to nearest power of two
110 DPRINTF(DRAM, "i is %lld\n", i);
111 capacity = 1 << i;
112
113 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
114 AbstractMemory::size());
115 rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
116 banksPerRank * ranksPerChannel);
117
118 }
119
120 void
121 SimpleDRAM::startup()
122 {
123 // print the configuration of the controller
124 printParams();
125
126 // kick off the refresh
127 schedule(&refreshEvent, curTick() + tREFI);
128 }
129
130
131 Tick
132 SimpleDRAM::recvAtomic(PacketPtr pkt)
133 {
134 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
135
136 // do the actual memory access and turn the packet into a response
137 access(pkt);
138
139 Tick latency = 0;
140 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
141 // this value is not supposed to be accurate, just enough to
142 // keep things going, mimic a closed page
143 latency = tRP + tRCD + tCL;
144 }
145 return latency;
146 }
147
148 bool
149 SimpleDRAM::readQueueFull() const
150 {
151 DPRINTF(DRAM, "Read queue limit %d current size %d\n",
152 readBufferSize, dramReadQueue.size() + dramRespQueue.size());
153
154 return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
155 }
156
157 bool
158 SimpleDRAM::writeQueueFull() const
159 {
160 DPRINTF(DRAM, "Write queue limit %d current size %d\n",
161 writeBufferSize, dramWriteQueue.size());
162 return dramWriteQueue.size() == writeBufferSize;
163 }
164
165
166 SimpleDRAM::DRAMPacket*
167 SimpleDRAM::decodeAddr(PacketPtr pkt)
168 {
169 // decode the address based on the address mapping scheme
170 //
171 // with R, C, B and K denoting rank, column, bank and rank,
172 // respectively, and going from MSB to LSB, the two schemes are
173 // RKBC (openmap) and RCKB (closedmap)
174 uint8_t rank;
175 uint16_t bank;
176 uint16_t row;
177
178 Addr addr = pkt->getAddr();
179 Addr temp = addr;
180
181 // truncate the address to the access granularity
182 addr = addr / bytesPerCacheLine;
183
184 // we have removed the lowest order address bits that denote the
185 // position within the cache line, proceed and select the
186 // appropriate bits for bank, rank and row (no column address is
187 // needed)
188 if (addrMapping == Enums::openmap) {
189 // the lowest order bits denote the column to ensure that
190 // sequential cache lines occupy the same row
191 addr = addr / linesPerRowBuffer;
192
193 // after the column bits, we get the bank bits to interleave
194 // over the banks
195 bank = addr % banksPerRank;
196 addr = addr / banksPerRank;
197
198 // after the bank, we get the rank bits which thus interleaves
199 // over the ranks
200 rank = addr % ranksPerChannel;
201 addr = addr / ranksPerChannel;
202
203 // lastly, get the row bits
204 row = addr % rowsPerBank;
205 addr = addr / rowsPerBank;
206 } else if (addrMapping == Enums::closemap) {
207 // optimise for closed page mode and utilise maximum
208 // parallelism of the DRAM (at the cost of power)
209
210 // start with the bank bits, as this provides the maximum
211 // opportunity for parallelism between requests
212 bank = addr % banksPerRank;
213 addr = addr / banksPerRank;
214
215 // next get the rank bits
216 rank = addr % ranksPerChannel;
217 addr = addr / ranksPerChannel;
218
219 // next the column bits which we do not need to keep track of
220 // and simply skip past
221 addr = addr / linesPerRowBuffer;
222
223 // lastly, get the row bits
224 row = addr % rowsPerBank;
225 addr = addr / rowsPerBank;
226 } else
227 panic("Unknown address mapping policy chosen!");
228
229 assert(rank < ranksPerChannel);
230 assert(bank < banksPerRank);
231 assert(row < rowsPerBank);
232
233 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
234 temp, rank, bank, row);
235
236 // create the corresponding DRAM packet with the entry time and
237 // ready time set to the current tick, they will be updated later
238 DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
239 banks[rank][bank]);
240
241 return dram_pkt;
242 }
243
244 void
245 SimpleDRAM::addToReadQueue(PacketPtr pkt)
246 {
247 // only add to the read queue here. whenever the request is
248 // eventually done, set the readyTime, and call schedule()
249 assert(!pkt->isWrite());
250
251 // First check write buffer to see if the data is already at
252 // the controller
253 std::list<DRAMPacket*>::const_iterator i;
254 Addr addr = pkt->getAddr();
255
256 // @todo: add size check
257 for (i = dramWriteQueue.begin(); i != dramWriteQueue.end(); ++i) {
258 if ((*i)->addr == addr){
259 servicedByWrQ++;
260 DPRINTF(DRAM,"Serviced by write Q\n");
261 bytesRead += bytesPerCacheLine;
262 bytesConsumedRd += pkt->getSize();
263 accessAndRespond(pkt);
264 return;
265 }
266 }
267
268 DRAMPacket* dram_pkt = decodeAddr(pkt);
269
270 assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
271 rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
272
273 DPRINTF(DRAM, "Adding to read queue\n");
274
275 dramReadQueue.push_back(dram_pkt);
276
277 // Update stats
278 uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
279 assert(bank_id < ranksPerChannel * banksPerRank);
280 perBankRdReqs[bank_id]++;
281
282 avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
283
284 // Special case where no arbitration is required between requests
285 if (!nextReqEvent.scheduled() && !stopReads) {
286 DPRINTF(DRAM, "Request %lld - need to schedule immediately");
287 schedule(&nextReqEvent, curTick() + 1);
288 }
289 }
290
291 void
292 SimpleDRAM::processWriteEvent()
293 {
294 assert(!dramWriteQueue.empty());
295 uint32_t numWritesThisTime = 0;
296
297 DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
298 Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
299 Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
300
301 // @todo: are there any dangers with the untimed while loop?
302 while (!dramWriteQueue.empty()) {
303 if (numWritesThisTime > writeThreshold)
304 break;
305
306 chooseNextWrite();
307 DRAMPacket* dram_pkt = dramWriteQueue.front();
308 // What's the earlier the request can be put on the bus
309 Tick schedTime = std::max(curTick(), busBusyUntil);
310
311 DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
312 schedTime + tBURST);
313
314 pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
315 Tick accessLat = lat.second;
316
317 // look at the rowHitFlag set by estimateLatency
318
319 // @todo: Race condition here where another packet gives rise
320 // to another call to estimateLatency in the meanwhile?
321 if (rowHitFlag)
322 writeRowHits++;
323
324 Bank& bank = dram_pkt->bank_ref;
325
326 if (pageMgmt == Enums::open) {
327 bank.openRow = dram_pkt->row;
328 bank.freeAt = schedTime + tBURST + std::max(accessLat, tCL);
329 busBusyUntil = bank.freeAt - tCL;
330
331 if (!rowHitFlag) {
332 bank.tRASDoneAt = bank.freeAt + tRP;
333 recordActivate(bank.freeAt - tCL - tRCD);
334 busBusyUntil = bank.freeAt - tCL - tRCD;
335 }
336 } else if (pageMgmt == Enums::close) {
337 bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
338 // Work backwards from bank.freeAt to determine activate time
339 recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD);
340 busBusyUntil = bank.freeAt - tRP - tRP - tCL - tRCD;
341 DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
342 "banks_id %d is %lld\n",
343 dram_pkt->rank * banksPerRank + dram_pkt->bank,
344 bank.freeAt);
345 } else
346 panic("Unknown page management policy chosen\n");
347
348 DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
349
350 DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
351 "busbusyuntil is %lld\n",
352 schedTime, tBURST, busBusyUntil);
353
354 dramWriteQueue.pop_front();
355 delete dram_pkt;
356
357 numWritesThisTime++;
358 }
359
360 DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
361 "banks busy for %lld ticks\n", numWritesThisTime,
362 busBusyUntil - temp1, maxBankFreeAt() - temp2);
363
364 // Update stats
365 avgWrQLen = dramWriteQueue.size();
366
367 // turn the bus back around for reads again
368 busBusyUntil += tWTR;
369 stopReads = false;
370
371 if (retryWrReq) {
372 retryWrReq = false;
373 port.sendRetry();
374 }
375
376 // if there is nothing left in any queue, signal a drain
377 if (dramWriteQueue.empty() && dramReadQueue.empty() &&
378 dramRespQueue.empty () && drainManager) {
379 drainManager->signalDrainDone();
380 drainManager = NULL;
381 }
382
383 // Once you're done emptying the write queue, check if there's
384 // anything in the read queue, and call schedule if required
385 schedule(&nextReqEvent, busBusyUntil);
386 }
387
388 void
389 SimpleDRAM::triggerWrites()
390 {
391 DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
392 // Flag variable to stop any more read scheduling
393 stopReads = true;
394
395 writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
396
397 DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
398
399 assert(writeStartTime >= curTick());
400 assert(!writeEvent.scheduled());
401 schedule(&writeEvent, writeStartTime);
402 }
403
404 void
405 SimpleDRAM::addToWriteQueue(PacketPtr pkt)
406 {
407 // only add to the write queue here. whenever the request is
408 // eventually done, set the readyTime, and call schedule()
409 assert(pkt->isWrite());
410
411 DRAMPacket* dram_pkt = decodeAddr(pkt);
412
413 assert(dramWriteQueue.size() < writeBufferSize);
414 wrQLenPdf[dramWriteQueue.size()]++;
415
416 DPRINTF(DRAM, "Adding to write queue\n");
417
418 dramWriteQueue.push_back(dram_pkt);
419
420 // Update stats
421 uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
422 assert(bank_id < ranksPerChannel * banksPerRank);
423 perBankWrReqs[bank_id]++;
424
425 avgWrQLen = dramWriteQueue.size();
426
427 // we do not wait for the writes to be send to the actual memory,
428 // but instead take responsibility for the consistency here and
429 // snoop the write queue for any upcoming reads
430
431 bytesConsumedWr += pkt->getSize();
432 bytesWritten += bytesPerCacheLine;
433 accessAndRespond(pkt);
434
435 // If your write buffer is starting to fill up, drain it!
436 if (dramWriteQueue.size() > writeThreshold && !stopReads){
437 triggerWrites();
438 }
439 }
440
441 void
442 SimpleDRAM::printParams() const
443 {
444 // Sanity check print of important parameters
445 DPRINTF(DRAM,
446 "Memory controller %s physical organization\n" \
447 "Bytes per cacheline %d\n" \
448 "Lines per row buffer %d\n" \
449 "Rows per bank %d\n" \
450 "Banks per rank %d\n" \
451 "Ranks per channel %d\n" \
452 "Total mem capacity %u\n",
453 name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
454 banksPerRank, ranksPerChannel, bytesPerCacheLine *
455 linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
456
457 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
458 string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
459 "CLOSEMAP";
460 string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
461
462 DPRINTF(DRAM,
463 "Memory controller %s characteristics\n" \
464 "Read buffer size %d\n" \
465 "Write buffer size %d\n" \
466 "Write buffer thresh %d\n" \
467 "Scheduler %s\n" \
468 "Address mapping %s\n" \
469 "Page policy %s\n",
470 name(), readBufferSize, writeBufferSize, writeThreshold,
471 scheduler, address_mapping, page_policy);
472
473 DPRINTF(DRAM, "Memory controller %s timing specs\n" \
474 "tRCD %d ticks\n" \
475 "tCL %d ticks\n" \
476 "tRP %d ticks\n" \
477 "tBURST %d ticks\n" \
478 "tRFC %d ticks\n" \
479 "tREFI %d ticks\n" \
480 "tWTR %d ticks\n",
481 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
482 }
483
484 void
485 SimpleDRAM::printQs() const {
486
487 list<DRAMPacket*>::const_iterator i;
488
489 DPRINTF(DRAM, "===READ QUEUE===\n\n");
490 for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
491 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
492 }
493 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
494 for (i = dramRespQueue.begin() ; i != dramRespQueue.end() ; ++i) {
495 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
496 }
497 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
498 for (i = dramWriteQueue.begin() ; i != dramWriteQueue.end() ; ++i) {
499 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
500 }
501 }
502
503 bool
504 SimpleDRAM::recvTimingReq(PacketPtr pkt)
505 {
506 /// @todo temporary hack to deal with memory corruption issues until
507 /// 4-phase transactions are complete
508 for (int x = 0; x < pendingDelete.size(); x++)
509 delete pendingDelete[x];
510 pendingDelete.clear();
511
512
513 // This is where we enter from the outside world
514 DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
515 pkt->cmdString(),pkt->getAddr(), pkt->getSize());
516
517 int index;
518
519 if (pkt->getSize() == bytesPerCacheLine)
520 cpuReqs++;
521
522 if (numReqs % 1000000 == 0)
523 printQs();
524
525 // Calc avg gap between requests
526 if (prevArrival != 0) {
527 totGap += curTick() - prevArrival;
528 }
529 prevArrival = curTick();
530
531 // simply drop inhibited packets for now
532 if (pkt->memInhibitAsserted()) {
533 DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
534 pendingDelete.push_back(pkt);
535 return true;
536 }
537
538 unsigned size = pkt->getSize();
539 if (size > bytesPerCacheLine)
540 panic("Request size %d is greater than cache line size %d",
541 size, bytesPerCacheLine);
542
543 if (size == 0)
544 index = log2(bytesPerCacheLine) + 1;
545 else
546 index = log2(size);
547
548 if (size != 0 && (1 << index) != size)
549 index = log2(bytesPerCacheLine) + 2;
550
551 // @todo: Do we really want to do all this before the packet is
552 // actually accepted?
553
554 /* Index 0 - Size 1 byte
555 Index 1 - Size 2 bytes
556 Index 2 - Size 4 bytes
557 .
558 .
559 Index 6 - Size 64 bytes
560 Index 7 - Size 0 bytes
561 Index 8 - Non-power-of-2 size */
562
563 if (pkt->isRead())
564 readPktSize[index]++;
565 else if (pkt->isWrite())
566 writePktSize[index]++;
567 else
568 neitherPktSize[index]++;
569
570 // check local buffers and do not accept if full
571 if (pkt->isRead()) {
572 if (readQueueFull()) {
573 DPRINTF(DRAM,"Read queue full, not accepting\n");
574 // remember that we have to retry this port
575 retryRdReq = true;
576 numRdRetry++;
577 return false;
578 } else {
579 addToReadQueue(pkt);
580 readReqs++;
581 numReqs++;
582 }
583 } else if (pkt->isWrite()) {
584 if (writeQueueFull()) {
585 DPRINTF(DRAM,"Write queue full, not accepting\n");
586 // remember that we have to retry this port
587 retryWrReq = true;
588 numWrRetry++;
589 return false;
590 } else {
591 addToWriteQueue(pkt);
592 writeReqs++;
593 numReqs++;
594 }
595 } else {
596 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
597 neitherReadNorWrite++;
598 accessAndRespond(pkt);
599 }
600
601
602 retryRdReq = false;
603 retryWrReq = false;
604 return true;
605 }
606
607 void
608 SimpleDRAM::processRespondEvent()
609 {
610 DPRINTF(DRAM,
611 "processRespondEvent(): Some req has reached its readyTime\n");
612
613 PacketPtr pkt = dramRespQueue.front()->pkt;
614
615 // Actually responds to the requestor
616 bytesConsumedRd += pkt->getSize();
617 bytesRead += bytesPerCacheLine;
618 accessAndRespond(pkt);
619
620 DRAMPacket* dram_pkt = dramRespQueue.front();
621 dramRespQueue.pop_front();
622 delete dram_pkt;
623
624 // Update stats
625 avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
626
627 if (!dramRespQueue.empty()){
628 assert(dramRespQueue.front()->readyTime >= curTick());
629 assert(!respondEvent.scheduled());
630 schedule(&respondEvent, dramRespQueue.front()->readyTime);
631 } else {
632 // if there is nothing left in any queue, signal a drain
633 if (dramWriteQueue.empty() && dramReadQueue.empty() &&
634 drainManager) {
635 drainManager->signalDrainDone();
636 drainManager = NULL;
637 }
638 }
639 }
640
641 void
642 SimpleDRAM::chooseNextWrite()
643 {
644 // This method does the arbitration between requests. The chosen
645 // packet is simply moved to the head of the queue. The other
646 // methods know that this is the place to look. For example, with
647 // FCFS, this method does nothing
648 assert(!dramWriteQueue.empty());
649
650 if (dramWriteQueue.size() == 1) {
651 DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
652 return;
653 }
654
655 if (memSchedPolicy == Enums::fcfs) {
656
657 // Do nothing, since the correct request is already head
658
659 } else if (memSchedPolicy == Enums::frfcfs) {
660
661 list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
662 bool foundRowHit = false;
663 while (!foundRowHit && i != dramWriteQueue.end()) {
664 DRAMPacket* dram_pkt = *i;
665 const Bank& bank = dram_pkt->bank_ref;
666 if (bank.openRow == dram_pkt->row) { //FR part
667 DPRINTF(DRAMWR,"Row buffer hit\n");
668 dramWriteQueue.erase(i);
669 dramWriteQueue.push_front(dram_pkt);
670 foundRowHit = true;
671 } else { //FCFS part
672 ;
673 }
674 ++i;
675 }
676
677 } else
678 panic("No scheduling policy chosen\n");
679
680 DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
681 }
682
683 bool
684 SimpleDRAM::chooseNextReq()
685 {
686 // This method does the arbitration between requests.
687 // The chosen packet is simply moved to the head of the
688 // queue. The other methods know that this is the place
689 // to look. For example, with FCFS, this method does nothing
690 list<DRAMPacket*>::iterator i;
691 DRAMPacket* dram_pkt;
692
693 if (dramReadQueue.empty()){
694 DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
695 return false;
696 }
697
698 if (dramReadQueue.size() == 1)
699 return true;
700
701 if (memSchedPolicy == Enums::fcfs) {
702
703 // Do nothing, since the correct request is already head
704
705 } else if (memSchedPolicy == Enums::frfcfs) {
706
707 for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
708 dram_pkt = *i;
709 const Bank& bank = dram_pkt->bank_ref;
710 if (bank.openRow == dram_pkt->row) { //FR part
711 DPRINTF(DRAM, "Row buffer hit\n");
712 dramReadQueue.erase(i);
713 dramReadQueue.push_front(dram_pkt);
714 break;
715 } else { //FCFS part
716 ;
717 }
718
719 }
720
721 } else
722 panic("No scheduling policy chosen!\n");
723
724
725 DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
726 return true;
727 }
728
729 void
730 SimpleDRAM::accessAndRespond(PacketPtr pkt)
731 {
732 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
733
734 bool needsResponse = pkt->needsResponse();
735 // do the actual memory access which also turns the packet into a
736 // response
737 access(pkt);
738
739 // turn packet around to go back to requester if response expected
740 if (needsResponse) {
741 // access already turned the packet into a response
742 assert(pkt->isResponse());
743
744 // queue the packet in the response queue to be sent out the
745 // next tick
746 port.schedTimingResp(pkt, curTick() + 1);
747 } else {
748 }
749
750 DPRINTF(DRAM, "Done\n");
751
752 return;
753 }
754
755 pair<Tick, Tick>
756 SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
757 {
758 // If a request reaches a bank at tick 'inTime', how much time
759 // *after* that does it take to finish the request, depending
760 // on bank status and page open policy. Note that this method
761 // considers only the time taken for the actual read or write
762 // to complete, NOT any additional time thereafter for tRAS or
763 // tRP.
764 Tick accLat = 0;
765 Tick bankLat = 0;
766 rowHitFlag = false;
767
768 const Bank& bank = dram_pkt->bank_ref;
769 if (pageMgmt == Enums::open) { // open-page policy
770 if (bank.openRow == dram_pkt->row) {
771 // When we have a row-buffer hit,
772 // we don't care about tRAS having expired or not,
773 // but do care about bank being free for access
774 rowHitFlag = true;
775
776 if (bank.freeAt < inTime) {
777 // CAS latency only
778 accLat += tCL;
779 bankLat += tCL;
780 } else {
781 accLat += 0;
782 bankLat += 0;
783 }
784
785 } else {
786 // Row-buffer miss, need to close existing row
787 // once tRAS has expired, then open the new one,
788 // then add cas latency.
789 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
790
791 if (freeTime > inTime)
792 accLat += freeTime - inTime;
793
794 accLat += tRP + tRCD + tCL;
795 bankLat += tRP + tRCD + tCL;
796 }
797 } else if (pageMgmt == Enums::close) {
798
799 // With a close page policy, no notion of
800 // bank.tRASDoneAt
801 if (bank.freeAt > inTime)
802 accLat += bank.freeAt - inTime;
803
804 // page already closed, simply open the row, and
805 // add cas latency
806 accLat += tRCD + tCL;
807 bankLat += tRCD + tCL;
808 } else
809 panic("No page management policy chosen\n");
810
811 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
812 bankLat, accLat);
813
814 return make_pair(bankLat, accLat);
815 }
816
817 void
818 SimpleDRAM::processNextReqEvent()
819 {
820 scheduleNextReq();
821 }
822
823 void
824 SimpleDRAM::recordActivate(Tick act_tick)
825 {
826 assert(actTicks.size() == activationLimit);
827
828 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
829
830 // sanity check
831 if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) {
832 panic("Got %d activates in window %d (%d - %d) which is smaller "
833 "than %d\n", activationLimit, act_tick - actTicks.back(),
834 act_tick, actTicks.back(), tXAW);
835 }
836
837 // shift the times used for the book keeping, the last element
838 // (highest index) is the oldest one and hence the lowest value
839 actTicks.pop_back();
840
841 // record an new activation (in the future)
842 actTicks.push_front(act_tick);
843
844 // cannot activate more than X times in time window tXAW, push the
845 // next one (the X + 1'st activate) to be tXAW away from the
846 // oldest in our window of X
847 if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) {
848 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
849 "than %d\n", activationLimit, actTicks.back() + tXAW);
850 for(int i = 0; i < ranksPerChannel; i++)
851 for(int j = 0; j < banksPerRank; j++)
852 // next activate must not happen before end of window
853 banks[i][j].freeAt = std::max(banks[i][j].freeAt,
854 actTicks.back() + tXAW);
855 }
856 }
857
858 void
859 SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
860 {
861
862 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
863 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
864
865 assert(curTick() >= prevdramaccess);
866 prevdramaccess = curTick();
867
868 // estimate the bank and access latency
869 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
870 Tick bankLat = lat.first;
871 Tick accessLat = lat.second;
872
873 // This request was woken up at this time based on a prior call
874 // to estimateLatency(). However, between then and now, both the
875 // accessLatency and/or busBusyUntil may have changed. We need
876 // to correct for that.
877
878 Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
879 busBusyUntil - (curTick() + accessLat) : 0;
880
881 Bank& bank = dram_pkt->bank_ref;
882
883 // Update bank state
884 if (pageMgmt == Enums::open) {
885 bank.openRow = dram_pkt->row;
886 bank.freeAt = curTick() + addDelay + accessLat;
887 // If you activated a new row do to this access, the next access
888 // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP.
889 // Also need to account for t_XAW
890 if (!rowHitFlag) {
891 bank.tRASDoneAt = bank.freeAt + tRP;
892 recordActivate(bank.freeAt - tCL - tRCD); //since this is open page,
893 //no tRP by default
894 }
895 } else if (pageMgmt == Enums::close) { // accounting for tRAS also
896 // assuming that tRAS ~= 3 * tRP, and tRC ~= 4 * tRP, as is common
897 // (refer Jacob/Ng/Wang and Micron datasheets)
898 bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
899 recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD); //essentially (freeAt - tRC)
900 DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
901 } else
902 panic("No page management policy chosen\n");
903
904 // Update request parameters
905 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
906
907
908 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
909 "readytime is %lld busbusyuntil is %lld. " \
910 "Scheduling at readyTime\n", dram_pkt->addr,
911 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
912
913 // Make sure requests are not overlapping on the databus
914 assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
915
916 // Update bus state
917 busBusyUntil = dram_pkt->readyTime;
918
919 DPRINTF(DRAM,"Access time is %lld\n",
920 dram_pkt->readyTime - dram_pkt->entryTime);
921
922 // Update stats
923 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
924 totBankLat += bankLat;
925 totBusLat += tBURST;
926 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
927
928 if (rowHitFlag)
929 readRowHits++;
930
931 // At this point we're done dealing with the request
932 // It will be moved to a separate response queue with a
933 // correct readyTime, and eventually be sent back at that
934 //time
935 moveToRespQ();
936
937 // The absolute soonest you have to start thinking about the
938 // next request is the longest access time that can occur before
939 // busBusyUntil. Assuming you need to meet tRAS, then precharge,
940 // open a new row, and access, it is ~4*tRCD.
941
942
943 Tick newTime = (busBusyUntil > 4 * tRCD) ?
944 std::max(busBusyUntil - 4 * tRCD, curTick()) :
945 curTick();
946
947 if (!nextReqEvent.scheduled() && !stopReads){
948 schedule(&nextReqEvent, newTime);
949 } else {
950 if (newTime < nextReqEvent.when())
951 reschedule(&nextReqEvent, newTime);
952 }
953
954
955 }
956
957 void
958 SimpleDRAM::moveToRespQ()
959 {
960 // Remove from read queue
961 DRAMPacket* dram_pkt = dramReadQueue.front();
962 dramReadQueue.pop_front();
963
964 // Insert into response queue sorted by readyTime
965 // It will be sent back to the requestor at its
966 // readyTime
967 if (dramRespQueue.empty()) {
968 dramRespQueue.push_front(dram_pkt);
969 assert(!respondEvent.scheduled());
970 assert(dram_pkt->readyTime >= curTick());
971 schedule(&respondEvent, dram_pkt->readyTime);
972 } else {
973 bool done = false;
974 std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
975 while (!done && i != dramRespQueue.end()) {
976 if ((*i)->readyTime > dram_pkt->readyTime) {
977 dramRespQueue.insert(i, dram_pkt);
978 done = true;
979 }
980 ++i;
981 }
982
983 if (!done)
984 dramRespQueue.push_back(dram_pkt);
985
986 assert(respondEvent.scheduled());
987
988 if (dramRespQueue.front()->readyTime < respondEvent.when()) {
989 assert(dramRespQueue.front()->readyTime >= curTick());
990 reschedule(&respondEvent, dramRespQueue.front()->readyTime);
991 }
992 }
993
994 if (retryRdReq) {
995 retryRdReq = false;
996 port.sendRetry();
997 }
998 }
999
1000 void
1001 SimpleDRAM::scheduleNextReq()
1002 {
1003 DPRINTF(DRAM, "Reached scheduleNextReq()\n");
1004
1005 // Figure out which request goes next, and move it to front()
1006 if (!chooseNextReq()) {
1007 // In the case there is no read request to go next, see if we
1008 // are asked to drain, and if so trigger writes, this also
1009 // ensures that if we hit the write limit we will do this
1010 // multiple times until we are completely drained
1011 if (drainManager && !dramWriteQueue.empty() && !writeEvent.scheduled())
1012 triggerWrites();
1013 } else {
1014 doDRAMAccess(dramReadQueue.front());
1015 }
1016 }
1017
1018 Tick
1019 SimpleDRAM::maxBankFreeAt() const
1020 {
1021 Tick banksFree = 0;
1022
1023 for(int i = 0; i < ranksPerChannel; i++)
1024 for(int j = 0; j < banksPerRank; j++)
1025 banksFree = std::max(banks[i][j].freeAt, banksFree);
1026
1027 return banksFree;
1028 }
1029
1030 void
1031 SimpleDRAM::processRefreshEvent()
1032 {
1033 DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
1034
1035 Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
1036
1037 for(int i = 0; i < ranksPerChannel; i++)
1038 for(int j = 0; j < banksPerRank; j++)
1039 banks[i][j].freeAt = banksFree;
1040
1041 schedule(&refreshEvent, curTick() + tREFI);
1042 }
1043
1044 void
1045 SimpleDRAM::regStats()
1046 {
1047 using namespace Stats;
1048
1049 AbstractMemory::regStats();
1050
1051 readReqs
1052 .name(name() + ".readReqs")
1053 .desc("Total number of read requests seen");
1054
1055 writeReqs
1056 .name(name() + ".writeReqs")
1057 .desc("Total number of write requests seen");
1058
1059 servicedByWrQ
1060 .name(name() + ".servicedByWrQ")
1061 .desc("Number of read reqs serviced by write Q");
1062
1063 cpuReqs
1064 .name(name() + ".cpureqs")
1065 .desc("Reqs generatd by CPU via cache - shady");
1066
1067 neitherReadNorWrite
1068 .name(name() + ".neitherReadNorWrite")
1069 .desc("Reqs where no action is needed");
1070
1071 perBankRdReqs
1072 .init(banksPerRank * ranksPerChannel)
1073 .name(name() + ".perBankRdReqs")
1074 .desc("Track reads on a per bank basis");
1075
1076 perBankWrReqs
1077 .init(banksPerRank * ranksPerChannel)
1078 .name(name() + ".perBankWrReqs")
1079 .desc("Track writes on a per bank basis");
1080
1081 avgRdQLen
1082 .name(name() + ".avgRdQLen")
1083 .desc("Average read queue length over time")
1084 .precision(2);
1085
1086 avgWrQLen
1087 .name(name() + ".avgWrQLen")
1088 .desc("Average write queue length over time")
1089 .precision(2);
1090
1091 totQLat
1092 .name(name() + ".totQLat")
1093 .desc("Total cycles spent in queuing delays");
1094
1095 totBankLat
1096 .name(name() + ".totBankLat")
1097 .desc("Total cycles spent in bank access");
1098
1099 totBusLat
1100 .name(name() + ".totBusLat")
1101 .desc("Total cycles spent in databus access");
1102
1103 totMemAccLat
1104 .name(name() + ".totMemAccLat")
1105 .desc("Sum of mem lat for all requests");
1106
1107 avgQLat
1108 .name(name() + ".avgQLat")
1109 .desc("Average queueing delay per request")
1110 .precision(2);
1111
1112 avgQLat = totQLat / (readReqs - servicedByWrQ);
1113
1114 avgBankLat
1115 .name(name() + ".avgBankLat")
1116 .desc("Average bank access latency per request")
1117 .precision(2);
1118
1119 avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1120
1121 avgBusLat
1122 .name(name() + ".avgBusLat")
1123 .desc("Average bus latency per request")
1124 .precision(2);
1125
1126 avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1127
1128 avgMemAccLat
1129 .name(name() + ".avgMemAccLat")
1130 .desc("Average memory access latency")
1131 .precision(2);
1132
1133 avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1134
1135 numRdRetry
1136 .name(name() + ".numRdRetry")
1137 .desc("Number of times rd buffer was full causing retry");
1138
1139 numWrRetry
1140 .name(name() + ".numWrRetry")
1141 .desc("Number of times wr buffer was full causing retry");
1142
1143 readRowHits
1144 .name(name() + ".readRowHits")
1145 .desc("Number of row buffer hits during reads");
1146
1147 writeRowHits
1148 .name(name() + ".writeRowHits")
1149 .desc("Number of row buffer hits during writes");
1150
1151 readRowHitRate
1152 .name(name() + ".readRowHitRate")
1153 .desc("Row buffer hit rate for reads")
1154 .precision(2);
1155
1156 readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1157
1158 writeRowHitRate
1159 .name(name() + ".writeRowHitRate")
1160 .desc("Row buffer hit rate for writes")
1161 .precision(2);
1162
1163 writeRowHitRate = (writeRowHits / writeReqs) * 100;
1164
1165 readPktSize
1166 .init(log2(bytesPerCacheLine)+3)
1167 .name(name() + ".readPktSize")
1168 .desc("Categorize read packet sizes");
1169
1170 writePktSize
1171 .init(log2(bytesPerCacheLine)+3)
1172 .name(name() + ".writePktSize")
1173 .desc("categorize write packet sizes");
1174
1175 neitherPktSize
1176 .init(log2(bytesPerCacheLine)+3)
1177 .name(name() + ".neitherpktsize")
1178 .desc("categorize neither packet sizes");
1179
1180 rdQLenPdf
1181 .init(readBufferSize + 1)
1182 .name(name() + ".rdQLenPdf")
1183 .desc("What read queue length does an incoming req see");
1184
1185 wrQLenPdf
1186 .init(writeBufferSize + 1)
1187 .name(name() + ".wrQLenPdf")
1188 .desc("What write queue length does an incoming req see");
1189
1190
1191 bytesRead
1192 .name(name() + ".bytesRead")
1193 .desc("Total number of bytes read from memory");
1194
1195 bytesWritten
1196 .name(name() + ".bytesWritten")
1197 .desc("Total number of bytes written to memory");
1198
1199 bytesConsumedRd
1200 .name(name() + ".bytesConsumedRd")
1201 .desc("bytesRead derated as per pkt->getSize()");
1202
1203 bytesConsumedWr
1204 .name(name() + ".bytesConsumedWr")
1205 .desc("bytesWritten derated as per pkt->getSize()");
1206
1207 avgRdBW
1208 .name(name() + ".avgRdBW")
1209 .desc("Average achieved read bandwidth in MB/s")
1210 .precision(2);
1211
1212 avgRdBW = (bytesRead / 1000000) / simSeconds;
1213
1214 avgWrBW
1215 .name(name() + ".avgWrBW")
1216 .desc("Average achieved write bandwidth in MB/s")
1217 .precision(2);
1218
1219 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1220
1221 avgConsumedRdBW
1222 .name(name() + ".avgConsumedRdBW")
1223 .desc("Average consumed read bandwidth in MB/s")
1224 .precision(2);
1225
1226 avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1227
1228 avgConsumedWrBW
1229 .name(name() + ".avgConsumedWrBW")
1230 .desc("Average consumed write bandwidth in MB/s")
1231 .precision(2);
1232
1233 avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1234
1235 peakBW
1236 .name(name() + ".peakBW")
1237 .desc("Theoretical peak bandwidth in MB/s")
1238 .precision(2);
1239
1240 peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1241
1242 busUtil
1243 .name(name() + ".busUtil")
1244 .desc("Data bus utilization in percentage")
1245 .precision(2);
1246
1247 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1248
1249 totGap
1250 .name(name() + ".totGap")
1251 .desc("Total gap between requests");
1252
1253 avgGap
1254 .name(name() + ".avgGap")
1255 .desc("Average gap between requests")
1256 .precision(2);
1257
1258 avgGap = totGap / (readReqs + writeReqs);
1259 }
1260
1261 void
1262 SimpleDRAM::recvFunctional(PacketPtr pkt)
1263 {
1264 // rely on the abstract memory
1265 functionalAccess(pkt);
1266 }
1267
1268 BaseSlavePort&
1269 SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1270 {
1271 if (if_name != "port") {
1272 return MemObject::getSlavePort(if_name, idx);
1273 } else {
1274 return port;
1275 }
1276 }
1277
1278 unsigned int
1279 SimpleDRAM::drain(DrainManager *dm)
1280 {
1281 unsigned int count = port.drain(dm);
1282
1283 // if there is anything in any of our internal queues, keep track
1284 // of that as well
1285 if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1286 dramRespQueue.empty())) {
1287 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1288 " resp: %d\n", dramWriteQueue.size(), dramReadQueue.size(),
1289 dramRespQueue.size());
1290 ++count;
1291 drainManager = dm;
1292 // the only part that is not drained automatically over time
1293 // is the write queue, thus trigger writes if there are any
1294 // waiting and no reads waiting, otherwise wait until the
1295 // reads are done
1296 if (dramReadQueue.empty() && !dramWriteQueue.empty() &&
1297 !writeEvent.scheduled())
1298 triggerWrites();
1299 }
1300
1301 if (count)
1302 setDrainState(Drainable::Draining);
1303 else
1304 setDrainState(Drainable::Drained);
1305 return count;
1306 }
1307
1308 SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1309 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1310 memory(_memory)
1311 { }
1312
1313 AddrRangeList
1314 SimpleDRAM::MemoryPort::getAddrRanges() const
1315 {
1316 AddrRangeList ranges;
1317 ranges.push_back(memory.getAddrRange());
1318 return ranges;
1319 }
1320
1321 void
1322 SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1323 {
1324 pkt->pushLabel(memory.name());
1325
1326 if (!queue.checkFunctional(pkt)) {
1327 // Default implementation of SimpleTimingPort::recvFunctional()
1328 // calls recvAtomic() and throws away the latency; we can save a
1329 // little here by just not calculating the latency.
1330 memory.recvFunctional(pkt);
1331 }
1332
1333 pkt->popLabel();
1334 }
1335
1336 Tick
1337 SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1338 {
1339 return memory.recvAtomic(pkt);
1340 }
1341
1342 bool
1343 SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1344 {
1345 // pass it to the memory controller
1346 return memory.recvTimingReq(pkt);
1347 }
1348
1349 SimpleDRAM*
1350 SimpleDRAMParams::create()
1351 {
1352 return new SimpleDRAM(this);
1353 }