sim: Move the draining interface into a separate base class
[gem5.git] / src / mem / simple_dram.cc
1 /*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 * Ani Udipi
39 */
40
41 #include "debug/DRAM.hh"
42 #include "debug/DRAMWR.hh"
43 #include "mem/simple_dram.hh"
44 #include "sim/stat_control.hh"
45
46 using namespace std;
47
48 SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
49 AbstractMemory(p),
50 port(name() + ".port", *this),
51 retryRdReq(false), retryWrReq(false),
52 rowHitFlag(false), stopReads(false),
53 writeEvent(this), respondEvent(this),
54 refreshEvent(this), nextReqEvent(this), drainManager(NULL),
55 bytesPerCacheLine(0),
56 linesPerRowBuffer(p->lines_per_rowbuffer),
57 ranksPerChannel(p->ranks_per_channel),
58 banksPerRank(p->banks_per_rank), rowsPerBank(0),
59 readBufferSize(p->read_buffer_size),
60 writeBufferSize(p->write_buffer_size),
61 writeThresholdPerc(p->write_thresh_perc),
62 tWTR(p->tWTR), tBURST(p->tBURST),
63 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
64 tRFC(p->tRFC), tREFI(p->tREFI),
65 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
66 pageMgmt(p->page_policy),
67 busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
68 prevArrival(0), numReqs(0)
69 {
70 // create the bank states based on the dimensions of the ranks and
71 // banks
72 banks.resize(ranksPerChannel);
73 for (size_t c = 0; c < ranksPerChannel; ++c) {
74 banks[c].resize(banksPerRank);
75 }
76
77 // round the write threshold percent to a whole number of entries
78 // in the buffer
79 writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
80 }
81
82 void
83 SimpleDRAM::init()
84 {
85 if (!port.isConnected()) {
86 fatal("SimpleDRAM %s is unconnected!\n", name());
87 } else {
88 port.sendRangeChange();
89 }
90
91 // get the cache line size from the connected port
92 bytesPerCacheLine = port.peerBlockSize();
93
94 // we could deal with plenty options here, but for now do a quick
95 // sanity check
96 if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
97 panic("Unexpected cache line size %d", bytesPerCacheLine);
98
99 // determine the rows per bank by looking at the total capacity
100 uint64_t capacity = AbstractMemory::size();
101 uint64_t i = 1;
102 while (i < 64 && capacity > ((1 << i))) {
103 ++i;
104 }
105
106 // rounded up to nearest power of two
107 DPRINTF(DRAM, "i is %lld\n", i);
108 capacity = 1 << i;
109
110 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
111 AbstractMemory::size());
112 rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
113 banksPerRank * ranksPerChannel);
114
115 }
116
117 void
118 SimpleDRAM::startup()
119 {
120 // print the configuration of the controller
121 printParams();
122
123 // kick off the refresh
124 schedule(&refreshEvent, curTick() + tREFI);
125 }
126
127
128 Tick
129 SimpleDRAM::recvAtomic(PacketPtr pkt)
130 {
131 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
132
133 // do the actual memory access and turn the packet into a response
134 access(pkt);
135
136 Tick latency = 0;
137 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
138 // this value is not supposed to be accurate, just enough to
139 // keep things going, mimic a closed page
140 latency = tRP + tRCD + tCL;
141 }
142 return latency;
143 }
144
145 bool
146 SimpleDRAM::readQueueFull() const
147 {
148 DPRINTF(DRAM, "Read queue limit %d current size %d\n",
149 readBufferSize, dramReadQueue.size() + dramRespQueue.size());
150
151 return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
152 }
153
154 bool
155 SimpleDRAM::writeQueueFull() const
156 {
157 DPRINTF(DRAM, "Write queue limit %d current size %d\n",
158 writeBufferSize, dramWriteQueue.size());
159 return dramWriteQueue.size() == writeBufferSize;
160 }
161
162
163 SimpleDRAM::DRAMPacket*
164 SimpleDRAM::decodeAddr(PacketPtr pkt)
165 {
166 uint8_t rank;
167 uint16_t bank;
168 uint16_t row;
169
170 Addr addr = pkt->getAddr();
171 Addr temp = addr;
172
173 // truncate the address to the access granularity
174 addr = addr / bytesPerCacheLine;
175
176 if (addrMapping == Enums::openmap) {
177 addr = addr / linesPerRowBuffer;
178
179 bank = addr % banksPerRank;
180 addr = addr / banksPerRank;
181
182 rank = addr % ranksPerChannel;
183 addr = addr / ranksPerChannel;
184
185 row = addr % rowsPerBank;
186 addr = addr / rowsPerBank;
187 } else if (addrMapping == Enums::closemap) {
188 bank = addr % banksPerRank;
189 addr = addr / banksPerRank;
190
191 rank = addr % ranksPerChannel;
192 addr = addr / ranksPerChannel;
193
194 addr = addr / linesPerRowBuffer;
195
196 row = addr % rowsPerBank;
197 addr = addr / rowsPerBank;
198 } else
199 panic("Unknown address mapping policy chosen!");
200
201 assert(rank < ranksPerChannel);
202 assert(bank < banksPerRank);
203 assert(row < rowsPerBank);
204
205 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
206 temp, rank, bank, row);
207
208 // create the corresponding DRAM packet with the entry time and
209 // ready time set to the current tick, they will be updated later
210 DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
211 banks[rank][bank]);
212
213 return dram_pkt;
214 }
215
216 void
217 SimpleDRAM::addToReadQueue(PacketPtr pkt)
218 {
219 // only add to the read queue here. whenever the request is
220 // eventually done, set the readyTime, and call schedule()
221 assert(!pkt->isWrite());
222
223 // First check write buffer to see if the data is already at
224 // the controller
225 std::list<DRAMPacket*>::const_iterator i;
226 Addr addr = pkt->getAddr();
227
228 // @todo: add size check
229 for (i = dramWriteQueue.begin(); i != dramWriteQueue.end(); ++i) {
230 if ((*i)->addr == addr){
231 servicedByWrQ++;
232 DPRINTF(DRAM,"Serviced by write Q\n");
233 bytesRead += bytesPerCacheLine;
234 bytesConsumedRd += pkt->getSize();
235 accessAndRespond(pkt);
236 return;
237 }
238 }
239
240 DRAMPacket* dram_pkt = decodeAddr(pkt);
241
242 assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
243 rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
244
245 DPRINTF(DRAM, "Adding to read queue\n");
246
247 dramReadQueue.push_back(dram_pkt);
248
249 // Update stats
250 uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
251 assert(bank_id < ranksPerChannel * banksPerRank);
252 perBankRdReqs[bank_id]++;
253
254 avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
255
256 // Special case where no arbitration is required between requests
257 if (!nextReqEvent.scheduled() && !stopReads) {
258 DPRINTF(DRAM, "Request %lld - need to schedule immediately");
259 schedule(&nextReqEvent, curTick() + 1);
260 }
261 }
262
263 void
264 SimpleDRAM::processWriteEvent()
265 {
266 assert(!dramWriteQueue.empty());
267 uint32_t numWritesThisTime = 0;
268
269 DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
270 Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
271 Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
272
273 // @todo: are there any dangers with the untimed while loop?
274 while (!dramWriteQueue.empty()) {
275 if (numWritesThisTime > writeThreshold)
276 break;
277
278 chooseNextWrite();
279 DRAMPacket* dram_pkt = dramWriteQueue.front();
280 // What's the earlier the request can be put on the bus
281 Tick schedTime = std::max(curTick(), busBusyUntil);
282
283 DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
284 schedTime + tBURST);
285
286 pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
287 Tick accessLat = lat.second;
288
289 // look at the rowHitFlag set by estimateLatency
290
291 // @todo: Race condition here where another packet gives rise
292 // to another call to estimateLatency in the meanwhile?
293 if (rowHitFlag)
294 writeRowHits++;
295
296 Bank& bank = dram_pkt->bank_ref;
297
298 if (pageMgmt == Enums::open) {
299 bank.openRow = dram_pkt->row;
300 bank.freeAt = schedTime + tBURST + accessLat;
301
302 if (!rowHitFlag)
303 bank.tRASDoneAt = bank.freeAt + tRP;
304
305 } else if (pageMgmt == Enums::close) {
306 bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
307 DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
308 "banks_id %d is %lld\n",
309 dram_pkt->rank * banksPerRank + dram_pkt->bank,
310 bank.freeAt);
311 } else
312 panic("Unknown page management policy chosen\n");
313
314 // @todo: As of now, write goes on the databus asap, maybe
315 // be held up at bank. May want to change it to delay the
316 // schedTime itself.
317 busBusyUntil = schedTime + tBURST;
318 DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
319
320
321 DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
322 "busbusyuntil is %lld\n",
323 schedTime, tBURST, busBusyUntil);
324
325 dramWriteQueue.pop_front();
326 delete dram_pkt;
327
328 numWritesThisTime++;
329 }
330
331 DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
332 "banks busy for %lld ticks\n", numWritesThisTime,
333 busBusyUntil - temp1, maxBankFreeAt() - temp2);
334
335 // Update stats
336 avgWrQLen = dramWriteQueue.size();
337
338 // turn the bus back around for reads again
339 busBusyUntil += tWTR;
340 stopReads = false;
341
342 if (retryWrReq) {
343 retryWrReq = false;
344 port.sendRetry();
345 }
346
347 // if there is nothing left in any queue, signal a drain
348 if (dramWriteQueue.empty() && dramReadQueue.empty() &&
349 dramRespQueue.empty () && drainManager) {
350 drainManager->signalDrainDone();
351 drainManager = NULL;
352 }
353
354 // Once you're done emptying the write queue, check if there's
355 // anything in the read queue, and call schedule if required
356 schedule(&nextReqEvent, busBusyUntil);
357 }
358
359 void
360 SimpleDRAM::triggerWrites()
361 {
362 DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
363 // Flag variable to stop any more read scheduling
364 stopReads = true;
365
366 writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
367
368 DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
369
370 assert(writeStartTime >= curTick());
371 assert(!writeEvent.scheduled());
372 schedule(&writeEvent, writeStartTime);
373 }
374
375 void
376 SimpleDRAM::addToWriteQueue(PacketPtr pkt)
377 {
378 // only add to the write queue here. whenever the request is
379 // eventually done, set the readyTime, and call schedule()
380 assert(pkt->isWrite());
381
382 DRAMPacket* dram_pkt = decodeAddr(pkt);
383
384 assert(dramWriteQueue.size() < writeBufferSize);
385 wrQLenPdf[dramWriteQueue.size()]++;
386
387 DPRINTF(DRAM, "Adding to write queue\n");
388
389 dramWriteQueue.push_back(dram_pkt);
390
391 // Update stats
392 uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
393 assert(bank_id < ranksPerChannel * banksPerRank);
394 perBankWrReqs[bank_id]++;
395
396 avgWrQLen = dramWriteQueue.size();
397
398 // we do not wait for the writes to be send to the actual memory,
399 // but instead take responsibility for the consistency here and
400 // snoop the write queue for any upcoming reads
401
402 bytesConsumedWr += pkt->getSize();
403 bytesWritten += bytesPerCacheLine;
404 accessAndRespond(pkt);
405
406 // If your write buffer is starting to fill up, drain it!
407 if (dramWriteQueue.size() > writeThreshold && !stopReads){
408 triggerWrites();
409 }
410 }
411
412 void
413 SimpleDRAM::printParams() const
414 {
415 // Sanity check print of important parameters
416 DPRINTF(DRAM,
417 "Memory controller %s physical organization\n" \
418 "Bytes per cacheline %d\n" \
419 "Lines per row buffer %d\n" \
420 "Rows per bank %d\n" \
421 "Banks per rank %d\n" \
422 "Ranks per channel %d\n" \
423 "Total mem capacity %u\n",
424 name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
425 banksPerRank, ranksPerChannel, bytesPerCacheLine *
426 linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
427
428 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
429 string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
430 "CLOSEMAP";
431 string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
432
433 DPRINTF(DRAM,
434 "Memory controller %s characteristics\n" \
435 "Read buffer size %d\n" \
436 "Write buffer size %d\n" \
437 "Write buffer thresh %d\n" \
438 "Scheduler %s\n" \
439 "Address mapping %s\n" \
440 "Page policy %s\n",
441 name(), readBufferSize, writeBufferSize, writeThreshold,
442 scheduler, address_mapping, page_policy);
443
444 DPRINTF(DRAM, "Memory controller %s timing specs\n" \
445 "tRCD %d ticks\n" \
446 "tCL %d ticks\n" \
447 "tRP %d ticks\n" \
448 "tBURST %d ticks\n" \
449 "tRFC %d ticks\n" \
450 "tREFI %d ticks\n" \
451 "tWTR %d ticks\n",
452 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
453 }
454
455 void
456 SimpleDRAM::printQs() const {
457
458 list<DRAMPacket*>::const_iterator i;
459
460 DPRINTF(DRAM, "===READ QUEUE===\n\n");
461 for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
462 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
463 }
464 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
465 for (i = dramRespQueue.begin() ; i != dramRespQueue.end() ; ++i) {
466 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
467 }
468 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
469 for (i = dramWriteQueue.begin() ; i != dramWriteQueue.end() ; ++i) {
470 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
471 }
472 }
473
474 bool
475 SimpleDRAM::recvTimingReq(PacketPtr pkt)
476 {
477 // This is where we enter from the outside world
478 DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
479 pkt->cmdString(),pkt->getAddr(), pkt->getSize());
480
481 int index;
482
483 if (pkt->getSize() == bytesPerCacheLine)
484 cpuReqs++;
485
486 if (numReqs % 1000000 == 0)
487 printQs();
488
489 // Calc avg gap between requests
490 if (prevArrival != 0) {
491 totGap += curTick() - prevArrival;
492 }
493 prevArrival = curTick();
494
495 // simply drop inhibited packets for now
496 if (pkt->memInhibitAsserted()) {
497 DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
498 delete pkt;
499 return true;
500 }
501
502 unsigned size = pkt->getSize();
503 if (size > bytesPerCacheLine)
504 panic("Request size %d is greater than cache line size %d",
505 size, bytesPerCacheLine);
506
507 if (size == 0)
508 index = log2(bytesPerCacheLine) + 1;
509 else
510 index = log2(size);
511
512 if (size != 0 && (1 << index) != size)
513 index = log2(bytesPerCacheLine) + 2;
514
515 // @todo: Do we really want to do all this before the packet is
516 // actually accepted?
517
518 /* Index 0 - Size 1 byte
519 Index 1 - Size 2 bytes
520 Index 2 - Size 4 bytes
521 .
522 .
523 Index 6 - Size 64 bytes
524 Index 7 - Size 0 bytes
525 Index 8 - Non-power-of-2 size */
526
527 if (pkt->isRead())
528 readPktSize[index]++;
529 else if (pkt->isWrite())
530 writePktSize[index]++;
531 else
532 neitherPktSize[index]++;
533
534 // check local buffers and do not accept if full
535 if (pkt->isRead()) {
536 if (readQueueFull()) {
537 DPRINTF(DRAM,"Read queue full, not accepting\n");
538 // remember that we have to retry this port
539 retryRdReq = true;
540 numRdRetry++;
541 return false;
542 } else {
543 addToReadQueue(pkt);
544 readReqs++;
545 numReqs++;
546 }
547 } else if (pkt->isWrite()) {
548 if (writeQueueFull()) {
549 DPRINTF(DRAM,"Write queue full, not accepting\n");
550 // remember that we have to retry this port
551 retryWrReq = true;
552 numWrRetry++;
553 return false;
554 } else {
555 addToWriteQueue(pkt);
556 writeReqs++;
557 numReqs++;
558 }
559 } else {
560 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
561 neitherReadNorWrite++;
562 accessAndRespond(pkt);
563 }
564
565
566 retryRdReq = false;
567 retryWrReq = false;
568 return true;
569 }
570
571 void
572 SimpleDRAM::processRespondEvent()
573 {
574 DPRINTF(DRAM,
575 "processRespondEvent(): Some req has reached its readyTime\n");
576
577 PacketPtr pkt = dramRespQueue.front()->pkt;
578
579 // Actually responds to the requestor
580 bytesConsumedRd += pkt->getSize();
581 bytesRead += bytesPerCacheLine;
582 accessAndRespond(pkt);
583
584 DRAMPacket* dram_pkt = dramRespQueue.front();
585 dramRespQueue.pop_front();
586 delete dram_pkt;
587
588 // Update stats
589 avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
590
591 if (!dramRespQueue.empty()){
592 assert(dramRespQueue.front()->readyTime >= curTick());
593 assert(!respondEvent.scheduled());
594 schedule(&respondEvent, dramRespQueue.front()->readyTime);
595 } else {
596 // if there is nothing left in any queue, signal a drain
597 if (dramWriteQueue.empty() && dramReadQueue.empty() &&
598 drainManager) {
599 drainManager->signalDrainDone();
600 drainManager = NULL;
601 }
602 }
603 }
604
605 void
606 SimpleDRAM::chooseNextWrite()
607 {
608 // This method does the arbitration between requests. The chosen
609 // packet is simply moved to the head of the queue. The other
610 // methods know that this is the place to look. For example, with
611 // FCFS, this method does nothing
612 assert(!dramWriteQueue.empty());
613
614 if (dramWriteQueue.size() == 1) {
615 DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
616 return;
617 }
618
619 if (memSchedPolicy == Enums::fcfs) {
620
621 // Do nothing, since the correct request is already head
622
623 } else if (memSchedPolicy == Enums::frfcfs) {
624
625 list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
626 bool foundRowHit = false;
627 while (!foundRowHit && i != dramWriteQueue.end()) {
628 DRAMPacket* dram_pkt = *i;
629 const Bank& bank = dram_pkt->bank_ref;
630 if (bank.openRow == dram_pkt->row) { //FR part
631 DPRINTF(DRAMWR,"Row buffer hit\n");
632 dramWriteQueue.erase(i);
633 dramWriteQueue.push_front(dram_pkt);
634 foundRowHit = true;
635 } else { //FCFS part
636 ;
637 }
638 ++i;
639 }
640
641 } else
642 panic("No scheduling policy chosen\n");
643
644 DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
645 }
646
647 bool
648 SimpleDRAM::chooseNextReq()
649 {
650 // This method does the arbitration between requests.
651 // The chosen packet is simply moved to the head of the
652 // queue. The other methods know that this is the place
653 // to look. For example, with FCFS, this method does nothing
654 list<DRAMPacket*>::iterator i;
655 DRAMPacket* dram_pkt;
656
657 if (dramReadQueue.empty()){
658 DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
659 return false;
660 }
661
662 if (dramReadQueue.size() == 1)
663 return true;
664
665 if (memSchedPolicy == Enums::fcfs) {
666
667 // Do nothing, since the correct request is already head
668
669 } else if (memSchedPolicy == Enums::frfcfs) {
670
671 for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
672 dram_pkt = *i;
673 const Bank& bank = dram_pkt->bank_ref;
674 if (bank.openRow == dram_pkt->row) { //FR part
675 DPRINTF(DRAM, "Row buffer hit\n");
676 dramReadQueue.erase(i);
677 dramReadQueue.push_front(dram_pkt);
678 break;
679 } else { //FCFS part
680 ;
681 }
682
683 }
684
685 } else
686 panic("No scheduling policy chosen!\n");
687
688
689 DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
690 return true;
691 }
692
693 void
694 SimpleDRAM::accessAndRespond(PacketPtr pkt)
695 {
696 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
697
698 bool needsResponse = pkt->needsResponse();
699 // do the actual memory access which also turns the packet into a
700 // response
701 access(pkt);
702
703 // turn packet around to go back to requester if response expected
704 if (needsResponse) {
705 // access already turned the packet into a response
706 assert(pkt->isResponse());
707
708 // queue the packet in the response queue to be sent out the
709 // next tick
710 port.schedTimingResp(pkt, curTick() + 1);
711 } else {
712 }
713
714 DPRINTF(DRAM, "Done\n");
715
716 return;
717 }
718
719 pair<Tick, Tick>
720 SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
721 {
722 // If a request reaches a bank at tick 'inTime', how much time
723 // *after* that does it take to finish the request, depending
724 // on bank status and page open policy. Note that this method
725 // considers only the time taken for the actual read or write
726 // to complete, NOT any additional time thereafter for tRAS or
727 // tRP.
728 Tick accLat = 0;
729 Tick bankLat = 0;
730 rowHitFlag = false;
731
732 const Bank& bank = dram_pkt->bank_ref;
733 if (pageMgmt == Enums::open) { // open-page policy
734 if (bank.openRow == dram_pkt->row) {
735 // When we have a row-buffer hit,
736 // we don't care about tRAS having expired or not,
737 // but do care about bank being free for access
738 rowHitFlag = true;
739
740 if (bank.freeAt < inTime) {
741 // CAS latency only
742 accLat += tCL;
743 bankLat += tCL;
744 } else {
745 accLat += 0;
746 bankLat += 0;
747 }
748
749 } else {
750 // Row-buffer miss, need to close existing row
751 // once tRAS has expired, then open the new one,
752 // then add cas latency.
753 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
754
755 if (freeTime > inTime)
756 accLat += freeTime - inTime;
757
758 accLat += tRP + tRCD + tCL;
759 bankLat += tRP + tRCD + tCL;
760 }
761 } else if (pageMgmt == Enums::close) {
762
763 // With a close page policy, no notion of
764 // bank.tRASDoneAt
765 if (bank.freeAt > inTime)
766 accLat += bank.freeAt - inTime;
767
768 // page already closed, simply open the row, and
769 // add cas latency
770 accLat += tRCD + tCL;
771 bankLat += tRCD + tCL;
772 } else
773 panic("No page management policy chosen\n");
774
775 DPRINTF(DRAM, "Returning %lld from estimateLatency()\n",accLat);
776
777 return make_pair(bankLat, accLat);
778 }
779
780 void
781 SimpleDRAM::processNextReqEvent()
782 {
783 scheduleNextReq();
784 }
785
786 void
787 SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
788 {
789
790 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
791 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
792
793 assert(curTick() >= prevdramaccess);
794 prevdramaccess = curTick();
795
796 // estimate the bank and access latency
797 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
798 Tick bankLat = lat.first;
799 Tick accessLat = lat.second;
800
801 // This request was woken up at this time based on a prior call
802 // to estimateLatency(). However, between then and now, both the
803 // accessLatency and/or busBusyUntil may have changed. We need
804 // to correct for that.
805
806 Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
807 busBusyUntil - (curTick() + accessLat) : 0;
808
809 Bank& bank = dram_pkt->bank_ref;
810
811 // Update bank state
812 if (pageMgmt == Enums::open) {
813 bank.openRow = dram_pkt->row;
814 bank.freeAt = curTick() + addDelay + accessLat;
815 // If you activated a new row do to this access, the next access
816 // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP
817 if (!rowHitFlag)
818 bank.tRASDoneAt = bank.freeAt + tRP;
819
820 } else if (pageMgmt == Enums::close) { // accounting for tRAS also
821 // assuming that tRAS ~= 3 * tRP, and tRAS ~= 4 * tRP, as is common
822 // (refer Jacob/Ng/Wang and Micron datasheets)
823 bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
824 DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
825 } else
826 panic("No page management policy chosen\n");
827
828 // Update request parameters
829 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
830
831
832 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
833 "readytime is %lld busbusyuntil is %lld. " \
834 "Scheduling at readyTime\n", dram_pkt->addr,
835 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
836
837 // Make sure requests are not overlapping on the databus
838 assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
839
840 // Update bus state
841 busBusyUntil = dram_pkt->readyTime;
842
843 DPRINTF(DRAM,"Access time is %lld\n",
844 dram_pkt->readyTime - dram_pkt->entryTime);
845
846 // Update stats
847 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
848 totBankLat += bankLat;
849 totBusLat += tBURST;
850 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
851
852 if (rowHitFlag)
853 readRowHits++;
854
855 // At this point we're done dealing with the request
856 // It will be moved to a separate response queue with a
857 // correct readyTime, and eventually be sent back at that
858 //time
859 moveToRespQ();
860
861 // The absolute soonest you have to start thinking about the
862 // next request is the longest access time that can occur before
863 // busBusyUntil. Assuming you need to meet tRAS, then precharge,
864 // open a new row, and access, it is ~4*tRCD.
865
866
867 Tick newTime = (busBusyUntil > 4 * tRCD) ?
868 std::max(busBusyUntil - 4 * tRCD, curTick()) :
869 curTick();
870
871 if (!nextReqEvent.scheduled() && !stopReads){
872 schedule(&nextReqEvent, newTime);
873 } else {
874 if (newTime < nextReqEvent.when())
875 reschedule(&nextReqEvent, newTime);
876 }
877
878
879 }
880
881 void
882 SimpleDRAM::moveToRespQ()
883 {
884 // Remove from read queue
885 DRAMPacket* dram_pkt = dramReadQueue.front();
886 dramReadQueue.pop_front();
887
888 // Insert into response queue sorted by readyTime
889 // It will be sent back to the requestor at its
890 // readyTime
891 if (dramRespQueue.empty()) {
892 dramRespQueue.push_front(dram_pkt);
893 assert(!respondEvent.scheduled());
894 assert(dram_pkt->readyTime >= curTick());
895 schedule(&respondEvent, dram_pkt->readyTime);
896 } else {
897 bool done = false;
898 std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
899 while (!done && i != dramRespQueue.end()) {
900 if ((*i)->readyTime > dram_pkt->readyTime) {
901 dramRespQueue.insert(i, dram_pkt);
902 done = true;
903 }
904 ++i;
905 }
906
907 if (!done)
908 dramRespQueue.push_back(dram_pkt);
909
910 assert(respondEvent.scheduled());
911
912 if (dramRespQueue.front()->readyTime < respondEvent.when()) {
913 assert(dramRespQueue.front()->readyTime >= curTick());
914 reschedule(&respondEvent, dramRespQueue.front()->readyTime);
915 }
916 }
917
918 if (retryRdReq) {
919 retryRdReq = false;
920 port.sendRetry();
921 }
922 }
923
924 void
925 SimpleDRAM::scheduleNextReq()
926 {
927 DPRINTF(DRAM, "Reached scheduleNextReq()\n");
928
929 // Figure out which request goes next, and move it to front()
930 if (!chooseNextReq())
931 return;
932
933 doDRAMAccess(dramReadQueue.front());
934 }
935
936
937
938
939 Tick
940 SimpleDRAM::maxBankFreeAt() const
941 {
942 Tick banksFree = 0;
943
944 for(int i = 0; i < ranksPerChannel; i++)
945 for(int j = 0; j < banksPerRank; j++)
946 banksFree = std::max(banks[i][j].freeAt, banksFree);
947
948 return banksFree;
949 }
950
951 void
952 SimpleDRAM::processRefreshEvent()
953 {
954 DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
955
956 Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
957
958 for(int i = 0; i < ranksPerChannel; i++)
959 for(int j = 0; j < banksPerRank; j++)
960 banks[i][j].freeAt = banksFree;
961
962 schedule(&refreshEvent, curTick() + tREFI);
963 }
964
965 void
966 SimpleDRAM::regStats()
967 {
968 using namespace Stats;
969
970 AbstractMemory::regStats();
971
972 readReqs
973 .name(name() + ".readReqs")
974 .desc("Total number of read requests seen");
975
976 writeReqs
977 .name(name() + ".writeReqs")
978 .desc("Total number of write requests seen");
979
980 servicedByWrQ
981 .name(name() + ".servicedByWrQ")
982 .desc("Number of read reqs serviced by write Q");
983
984 cpuReqs
985 .name(name() + ".cpureqs")
986 .desc("Reqs generatd by CPU via cache - shady");
987
988 neitherReadNorWrite
989 .name(name() + ".neitherReadNorWrite")
990 .desc("Reqs where no action is needed");
991
992 perBankRdReqs
993 .init(banksPerRank * ranksPerChannel)
994 .name(name() + ".perBankRdReqs")
995 .desc("Track reads on a per bank basis");
996
997 perBankWrReqs
998 .init(banksPerRank * ranksPerChannel)
999 .name(name() + ".perBankWrReqs")
1000 .desc("Track writes on a per bank basis");
1001
1002 avgRdQLen
1003 .name(name() + ".avgRdQLen")
1004 .desc("Average read queue length over time")
1005 .precision(2);
1006
1007 avgWrQLen
1008 .name(name() + ".avgWrQLen")
1009 .desc("Average write queue length over time")
1010 .precision(2);
1011
1012 totQLat
1013 .name(name() + ".totQLat")
1014 .desc("Total cycles spent in queuing delays");
1015
1016 totBankLat
1017 .name(name() + ".totBankLat")
1018 .desc("Total cycles spent in bank access");
1019
1020 totBusLat
1021 .name(name() + ".totBusLat")
1022 .desc("Total cycles spent in databus access");
1023
1024 totMemAccLat
1025 .name(name() + ".totMemAccLat")
1026 .desc("Sum of mem lat for all requests");
1027
1028 avgQLat
1029 .name(name() + ".avgQLat")
1030 .desc("Average queueing delay per request")
1031 .precision(2);
1032
1033 avgQLat = totQLat / (readReqs - servicedByWrQ);
1034
1035 avgBankLat
1036 .name(name() + ".avgBankLat")
1037 .desc("Average bank access latency per request")
1038 .precision(2);
1039
1040 avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1041
1042 avgBusLat
1043 .name(name() + ".avgBusLat")
1044 .desc("Average bus latency per request")
1045 .precision(2);
1046
1047 avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1048
1049 avgMemAccLat
1050 .name(name() + ".avgMemAccLat")
1051 .desc("Average memory access latency")
1052 .precision(2);
1053
1054 avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1055
1056 numRdRetry
1057 .name(name() + ".numRdRetry")
1058 .desc("Number of times rd buffer was full causing retry");
1059
1060 numWrRetry
1061 .name(name() + ".numWrRetry")
1062 .desc("Number of times wr buffer was full causing retry");
1063
1064 readRowHits
1065 .name(name() + ".readRowHits")
1066 .desc("Number of row buffer hits during reads");
1067
1068 writeRowHits
1069 .name(name() + ".writeRowHits")
1070 .desc("Number of row buffer hits during writes");
1071
1072 readRowHitRate
1073 .name(name() + ".readRowHitRate")
1074 .desc("Row buffer hit rate for reads")
1075 .precision(2);
1076
1077 readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1078
1079 writeRowHitRate
1080 .name(name() + ".writeRowHitRate")
1081 .desc("Row buffer hit rate for writes")
1082 .precision(2);
1083
1084 writeRowHitRate = (writeRowHits / writeReqs) * 100;
1085
1086 readPktSize
1087 .init(log2(bytesPerCacheLine)+3)
1088 .name(name() + ".readPktSize")
1089 .desc("Categorize read packet sizes");
1090
1091 writePktSize
1092 .init(log2(bytesPerCacheLine)+3)
1093 .name(name() + ".writePktSize")
1094 .desc("categorize write packet sizes");
1095
1096 neitherPktSize
1097 .init(log2(bytesPerCacheLine)+3)
1098 .name(name() + ".neitherpktsize")
1099 .desc("categorize neither packet sizes");
1100
1101 rdQLenPdf
1102 .init(readBufferSize + 1)
1103 .name(name() + ".rdQLenPdf")
1104 .desc("What read queue length does an incoming req see");
1105
1106 wrQLenPdf
1107 .init(writeBufferSize + 1)
1108 .name(name() + ".wrQLenPdf")
1109 .desc("What write queue length does an incoming req see");
1110
1111
1112 bytesRead
1113 .name(name() + ".bytesRead")
1114 .desc("Total number of bytes read from memory");
1115
1116 bytesWritten
1117 .name(name() + ".bytesWritten")
1118 .desc("Total number of bytes written to memory");
1119
1120 bytesConsumedRd
1121 .name(name() + ".bytesConsumedRd")
1122 .desc("bytesRead derated as per pkt->getSize()");
1123
1124 bytesConsumedWr
1125 .name(name() + ".bytesConsumedWr")
1126 .desc("bytesWritten derated as per pkt->getSize()");
1127
1128 avgRdBW
1129 .name(name() + ".avgRdBW")
1130 .desc("Average achieved read bandwidth in MB/s")
1131 .precision(2);
1132
1133 avgRdBW = (bytesRead / 1000000) / simSeconds;
1134
1135 avgWrBW
1136 .name(name() + ".avgWrBW")
1137 .desc("Average achieved write bandwidth in MB/s")
1138 .precision(2);
1139
1140 avgWrBW = (bytesWritten / 1000000) / simSeconds;
1141
1142 avgConsumedRdBW
1143 .name(name() + ".avgConsumedRdBW")
1144 .desc("Average consumed read bandwidth in MB/s")
1145 .precision(2);
1146
1147 avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1148
1149 avgConsumedWrBW
1150 .name(name() + ".avgConsumedWrBW")
1151 .desc("Average consumed write bandwidth in MB/s")
1152 .precision(2);
1153
1154 avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1155
1156 peakBW
1157 .name(name() + ".peakBW")
1158 .desc("Theoretical peak bandwidth in MB/s")
1159 .precision(2);
1160
1161 peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1162
1163 busUtil
1164 .name(name() + ".busUtil")
1165 .desc("Data bus utilization in percentage")
1166 .precision(2);
1167
1168 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1169
1170 totGap
1171 .name(name() + ".totGap")
1172 .desc("Total gap between requests");
1173
1174 avgGap
1175 .name(name() + ".avgGap")
1176 .desc("Average gap between requests")
1177 .precision(2);
1178
1179 avgGap = totGap / (readReqs + writeReqs);
1180 }
1181
1182 void
1183 SimpleDRAM::recvFunctional(PacketPtr pkt)
1184 {
1185 // rely on the abstract memory
1186 functionalAccess(pkt);
1187 }
1188
1189 BaseSlavePort&
1190 SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1191 {
1192 if (if_name != "port") {
1193 return MemObject::getSlavePort(if_name, idx);
1194 } else {
1195 return port;
1196 }
1197 }
1198
1199 unsigned int
1200 SimpleDRAM::drain(DrainManager *dm)
1201 {
1202 unsigned int count = port.drain(dm);
1203
1204 // if there is anything in any of our internal queues, keep track
1205 // of that as well
1206 if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1207 dramRespQueue.empty())) {
1208 ++count;
1209 drainManager = dm;
1210 }
1211
1212 if (count)
1213 setDrainState(Drainable::Draining);
1214 else
1215 setDrainState(Drainable::Drained);
1216 return count;
1217 }
1218
1219 SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1220 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1221 memory(_memory)
1222 { }
1223
1224 AddrRangeList
1225 SimpleDRAM::MemoryPort::getAddrRanges() const
1226 {
1227 AddrRangeList ranges;
1228 ranges.push_back(memory.getAddrRange());
1229 return ranges;
1230 }
1231
1232 void
1233 SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1234 {
1235 pkt->pushLabel(memory.name());
1236
1237 if (!queue.checkFunctional(pkt)) {
1238 // Default implementation of SimpleTimingPort::recvFunctional()
1239 // calls recvAtomic() and throws away the latency; we can save a
1240 // little here by just not calculating the latency.
1241 memory.recvFunctional(pkt);
1242 }
1243
1244 pkt->popLabel();
1245 }
1246
1247 Tick
1248 SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1249 {
1250 return memory.recvAtomic(pkt);
1251 }
1252
1253 bool
1254 SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1255 {
1256 // pass it to the memory controller
1257 return memory.recvTimingReq(pkt);
1258 }
1259
1260 SimpleDRAM*
1261 SimpleDRAMParams::create()
1262 {
1263 return new SimpleDRAM(this);
1264 }