mem: Add support for multi-channel DRAM configurations
[gem5.git] / src / mem / simple_dram.hh
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 * Ani Udipi
39 */
40
41 /**
42 * @file
43 * SimpleDRAM declaration
44 */
45
46 #ifndef __MEM_SIMPLE_DRAM_HH__
47 #define __MEM_SIMPLE_DRAM_HH__
48
49 #include <deque>
50
51 #include "base/statistics.hh"
52 #include "enums/AddrMap.hh"
53 #include "enums/MemSched.hh"
54 #include "enums/PageManage.hh"
55 #include "mem/abstract_mem.hh"
56 #include "mem/qport.hh"
57 #include "params/SimpleDRAM.hh"
58 #include "sim/eventq.hh"
59
60 /**
61 * The simple DRAM is a basic single-channel memory controller aiming
62 * to mimic a high-level DRAM controller and the most important timing
63 * constraints associated with the DRAM. The focus is really on
64 * modelling the impact on the system rather than the DRAM itself,
65 * hence the focus is on the controller model and not on the
66 * memory. By adhering to the correct timing constraints, ultimately
67 * there is no need for a memory model in addition to the controller
68 * model.
69 *
70 * As a basic design principle, this controller is not cycle callable,
71 * but instead uses events to decide when new decisions can be made,
72 * when resources become available, when things are to be considered
73 * done, and when to send things back. Through these simple
74 * principles, we achieve a performant model that is not
75 * cycle-accurate, but enables us to evaluate the system impact of a
76 * wide range of memory technologies, and also collect statistics
77 * about the use of the memory.
78 */
79 class SimpleDRAM : public AbstractMemory
80 {
81
82 private:
83
84 // For now, make use of a queued slave port to avoid dealing with
85 // flow control for the responses being sent back
86 class MemoryPort : public QueuedSlavePort
87 {
88
89 SlavePacketQueue queue;
90 SimpleDRAM& memory;
91
92 public:
93
94 MemoryPort(const std::string& name, SimpleDRAM& _memory);
95
96 protected:
97
98 Tick recvAtomic(PacketPtr pkt);
99
100 void recvFunctional(PacketPtr pkt);
101
102 bool recvTimingReq(PacketPtr);
103
104 virtual AddrRangeList getAddrRanges() const;
105
106 };
107
108 /**
109 * Our incoming port, for a multi-ported controller add a crossbar
110 * in front of it
111 */
112 MemoryPort port;
113
114 /**
115 * Remember if we have to retry a request when available.
116 */
117 bool retryRdReq;
118 bool retryWrReq;
119
120 /**
121 * Remember that a row buffer hit occured
122 */
123 bool rowHitFlag;
124
125 /**
126 * Use this flag to shutoff reads, i.e. do not schedule any reads
127 * beyond those already done so that we can turn the bus around
128 * and do a few writes, or refresh, or whatever
129 */
130 bool stopReads;
131
132 /** List to keep track of activate ticks */
133 std::deque<Tick> actTicks;
134
135 /**
136 * A basic class to track the bank state indirectly via
137 * times "freeAt" and "tRASDoneAt" and what page is currently open
138 */
139 class Bank
140 {
141
142 public:
143
144 static const uint32_t INVALID_ROW = -1;
145
146 uint32_t openRow;
147
148 Tick freeAt;
149 Tick tRASDoneAt;
150
151 Bank() : openRow(INVALID_ROW), freeAt(0), tRASDoneAt(0)
152 { }
153 };
154
155 /**
156 * A DRAM packet stores packets along with the timestamp of when
157 * the packet entered the queue, and also the decoded address.
158 */
159 class DRAMPacket {
160
161 public:
162
163 /** When did request enter the controller */
164 const Tick entryTime;
165
166 /** When will request leave the controller */
167 Tick readyTime;
168
169 /** This comes from the outside world */
170 const PacketPtr pkt;
171
172 /** Will be populated by address decoder */
173 const uint8_t rank;
174 const uint16_t bank;
175 const uint16_t row;
176 const Addr addr;
177 Bank& bank_ref;
178
179 DRAMPacket(PacketPtr _pkt, uint8_t _rank,
180 uint16_t _bank, uint16_t _row, Addr _addr, Bank& _bank_ref)
181 : entryTime(curTick()), readyTime(curTick()),
182 pkt(_pkt), rank(_rank), bank(_bank), row(_row), addr(_addr),
183 bank_ref(_bank_ref)
184 { }
185
186 };
187
188 /**
189 * Bunch of things requires to setup "events" in gem5
190 * When event "writeEvent" occurs for example, the method
191 * processWriteEvent is called; no parameters are allowed
192 * in these methods
193 */
194 void processWriteEvent();
195 EventWrapper<SimpleDRAM, &SimpleDRAM::processWriteEvent> writeEvent;
196
197 void processRespondEvent();
198 EventWrapper<SimpleDRAM, &SimpleDRAM::processRespondEvent> respondEvent;
199
200 void processRefreshEvent();
201 EventWrapper<SimpleDRAM, &SimpleDRAM::processRefreshEvent> refreshEvent;
202
203 void processNextReqEvent();
204 EventWrapper<SimpleDRAM,&SimpleDRAM::processNextReqEvent> nextReqEvent;
205
206
207 /**
208 * Check if the read queue has room for more entries
209 *
210 * @return true if read queue is full, false otherwise
211 */
212 bool readQueueFull() const;
213
214 /**
215 * Check if the write queue has room for more entries
216 *
217 * @return true if write queue is full, false otherwise
218 */
219 bool writeQueueFull() const;
220
221 /**
222 * When a new read comes in, first check if the write q has a
223 * pending request to the same address.\ If not, decode the
224 * address to populate rank/bank/row, create a "dram_pkt", and
225 * push it to the back of the read queue.\ If this is the only
226 * read request in the system, schedule an event to start
227 * servicing it.
228 *
229 * @param pkt The request packet from the outside world
230 */
231 void addToReadQueue(PacketPtr pkt);
232
233 /**
234 * Decode the incoming pkt, create a dram_pkt and push to the
235 * back of the write queue. \If the write q length is more than
236 * the threshold specified by the user, ie the queue is beginning
237 * to get full, stop reads, and start draining writes.
238 *
239 * @param pkt The request packet from the outside world
240 */
241 void addToWriteQueue(PacketPtr pkt);
242
243 /**
244 * Actually do the DRAM access - figure out the latency it
245 * will take to service the req based on bank state, channel state etc
246 * and then update those states to account for this request.\ Based
247 * on this, update the packet's "readyTime" and move it to the
248 * response q from where it will eventually go back to the outside
249 * world.
250 *
251 * @param pkt The DRAM packet created from the outside world pkt
252 */
253 void doDRAMAccess(DRAMPacket* dram_pkt);
254
255 /**
256 * Check when the channel is free to turnaround, add turnaround
257 * delay and schedule a whole bunch of writes.
258 */
259 void triggerWrites();
260
261 /**
262 * When a packet reaches its "readyTime" in the response Q,
263 * use the "access()" method in AbstractMemory to actually
264 * create the response packet, and send it back to the outside
265 * world requestor.
266 *
267 * @param pkt The packet from the outside world
268 */
269 void accessAndRespond(PacketPtr pkt);
270
271 /**
272 * Address decoder to figure out physical mapping onto ranks,
273 * banks, and rows.
274 *
275 * @param pkt The packet from the outside world
276 * @return A DRAMPacket pointer with the decoded information
277 */
278 DRAMPacket* decodeAddr(PacketPtr pkt);
279
280 /**
281 * The memory schduler/arbiter - picks which request needs to
282 * go next, based on the specified policy such as fcfs or frfcfs
283 * and moves it to the head of the read queue
284 *
285 * @return True if a request was chosen, False if Q is empty
286 */
287 bool chooseNextReq();
288
289 /**
290 * Calls chooseNextReq() to pick the right request, then calls
291 * doDRAMAccess on that request in order to actually service
292 * that request
293 */
294 void scheduleNextReq();
295
296 /**
297 *Looks at the state of the banks, channels, row buffer hits etc
298 * to estimate how long a request will take to complete.
299 *
300 * @param dram_pkt The request for which we want to estimate latency
301 * @param inTime The tick at which you want to probe the memory
302 *
303 * @return A pair of ticks, one indicating how many ticks *after*
304 * inTime the request require, and the other indicating how
305 * much of that was just the bank access time, ignoring the
306 * ticks spent simply waiting for resources to become free
307 */
308 std::pair<Tick, Tick> estimateLatency(DRAMPacket* dram_pkt, Tick inTime);
309
310 /**
311 * Move the request at the head of the read queue to the response
312 * queue, sorting by readyTime.\ If it is the only packet in the
313 * response queue, schedule a respond event to send it back to the
314 * outside world
315 */
316 void moveToRespQ();
317
318 /**
319 * Scheduling policy within the write Q
320 */
321 void chooseNextWrite();
322
323 /**
324 * Looking at all banks, determine the moment in time when they
325 * are all free.
326 *
327 * @return The tick when all banks are free
328 */
329 Tick maxBankFreeAt() const;
330
331
332 /**
333 * Keep track of when row activations happen, in order to enforce
334 * the maximum number of activations in the activation window. The
335 * method updates the time that the banks become available based
336 * on the current limits.
337 */
338 void recordActivate(Tick act_tick);
339
340 void printParams() const;
341 void printQs() const;
342
343 /**
344 * The controller's main read and write queues
345 */
346 std::list<DRAMPacket*> dramReadQueue;
347 std::list<DRAMPacket*> dramWriteQueue;
348
349 /**
350 * Response queue where read packets wait after we're done working
351 * with them, but it's not time to send the response yet.\ It is
352 * seperate mostly to keep the code clean and help with gem5 events,
353 * but for all logical purposes such as sizing the read queue, this
354 * and the main read queue need to be added together.
355 */
356 std::list<DRAMPacket*> dramRespQueue;
357
358 /** If we need to drain, keep the drain manager around until we're done
359 * here.
360 */
361 DrainManager *drainManager;
362
363 /**
364 * Multi-dimensional vector of banks, first dimension is ranks,
365 * second is bank
366 */
367 std::vector<std::vector<Bank> > banks;
368
369 /**
370 * The following are basic design parameters of the memory
371 * controller, and are initialized based on parameter values. The
372 * bytesPerCacheLine is based on the neighbouring port and thus
373 * determined outside the constructor. Similarly, the rowsPerBank
374 * is determined based on the capacity, number of ranks and banks,
375 * the cache line size, and the row buffer size.
376 */
377 uint32_t bytesPerCacheLine;
378 const uint32_t linesPerRowBuffer;
379 const uint32_t ranksPerChannel;
380 const uint32_t banksPerRank;
381 const uint32_t channels;
382 uint32_t rowsPerBank;
383 const uint32_t readBufferSize;
384 const uint32_t writeBufferSize;
385 const double writeThresholdPerc;
386 uint32_t writeThreshold;
387
388 /**
389 * Basic memory timing parameters initialized based on parameter
390 * values.
391 */
392 const Tick tWTR;
393 const Tick tBURST;
394 const Tick tRCD;
395 const Tick tCL;
396 const Tick tRP;
397 const Tick tRFC;
398 const Tick tREFI;
399 const Tick tXAW;
400 const uint32_t activationLimit;
401
402 /**
403 * Memory controller configuration initialized based on parameter
404 * values.
405 */
406 Enums::MemSched memSchedPolicy;
407 Enums::AddrMap addrMapping;
408 Enums::PageManage pageMgmt;
409
410 /**
411 * Till when has the main data bus been spoken for already?
412 */
413 Tick busBusyUntil;
414
415 Tick prevdramaccess;
416 Tick writeStartTime;
417 Tick prevArrival;
418 int numReqs;
419
420 // All statistics that the model needs to capture
421 Stats::Scalar readReqs;
422 Stats::Scalar writeReqs;
423 Stats::Scalar cpuReqs;
424 Stats::Scalar bytesRead;
425 Stats::Scalar bytesWritten;
426 Stats::Scalar bytesConsumedRd;
427 Stats::Scalar bytesConsumedWr;
428 Stats::Scalar servicedByWrQ;
429 Stats::Scalar neitherReadNorWrite;
430 Stats::Vector perBankRdReqs;
431 Stats::Vector perBankWrReqs;
432 Stats::Scalar numRdRetry;
433 Stats::Scalar numWrRetry;
434 Stats::Scalar totGap;
435 Stats::Vector readPktSize;
436 Stats::Vector writePktSize;
437 Stats::Vector neitherPktSize;
438 Stats::Vector rdQLenPdf;
439 Stats::Vector wrQLenPdf;
440
441
442 // Latencies summed over all requests
443 Stats::Scalar totQLat;
444 Stats::Scalar totMemAccLat;
445 Stats::Scalar totBusLat;
446 Stats::Scalar totBankLat;
447
448 // Average latencies per request
449 Stats::Formula avgQLat;
450 Stats::Formula avgBankLat;
451 Stats::Formula avgBusLat;
452 Stats::Formula avgMemAccLat;
453
454 // Average bandwidth
455 Stats::Formula avgRdBW;
456 Stats::Formula avgWrBW;
457 Stats::Formula avgConsumedRdBW;
458 Stats::Formula avgConsumedWrBW;
459 Stats::Formula peakBW;
460 Stats::Formula busUtil;
461
462 // Average queue lengths
463 Stats::Average avgRdQLen;
464 Stats::Average avgWrQLen;
465
466 // Row hit count and rate
467 Stats::Scalar readRowHits;
468 Stats::Scalar writeRowHits;
469 Stats::Formula readRowHitRate;
470 Stats::Formula writeRowHitRate;
471 Stats::Formula avgGap;
472
473 /** @todo this is a temporary workaround until the 4-phase code is
474 * committed. upstream caches needs this packet until true is returned, so
475 * hold onto it for deletion until a subsequent call
476 */
477 std::vector<PacketPtr> pendingDelete;
478
479 public:
480
481 void regStats();
482
483 SimpleDRAM(const SimpleDRAMParams* p);
484
485 unsigned int drain(DrainManager* dm);
486
487 virtual BaseSlavePort& getSlavePort(const std::string& if_name,
488 PortID idx = InvalidPortID);
489
490 virtual void init();
491 virtual void startup();
492
493 protected:
494
495 Tick recvAtomic(PacketPtr pkt);
496 void recvFunctional(PacketPtr pkt);
497 bool recvTimingReq(PacketPtr pkt);
498
499 };
500
501 #endif //__MEM_SIMPLE_DRAM_HH__