mem: Clean up the xbars a little.
[gem5.git] / src / mem / xbar.hh
1 /*
2 * Copyright (c) 2011-2015, 2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ron Dreslinski
41 * Ali Saidi
42 * Andreas Hansson
43 * William Wang
44 */
45
46 /**
47 * @file
48 * Declaration of an abstract crossbar base class.
49 */
50
51 #ifndef __MEM_XBAR_HH__
52 #define __MEM_XBAR_HH__
53
54 #include <deque>
55 #include <unordered_map>
56
57 #include "base/addr_range_map.hh"
58 #include "base/types.hh"
59 #include "mem/mem_object.hh"
60 #include "mem/qport.hh"
61 #include "params/BaseXBar.hh"
62 #include "sim/stats.hh"
63
64 /**
65 * The base crossbar contains the common elements of the non-coherent
66 * and coherent crossbar. It is an abstract class that does not have
67 * any of the functionality relating to the actual reception and
68 * transmission of packets, as this is left for the subclasses.
69 *
70 * The BaseXBar is responsible for the basic flow control (busy or
71 * not), the administration of retries, and the address decoding.
72 */
73 class BaseXBar : public MemObject
74 {
75
76 protected:
77
78 /**
79 * A layer is an internal crossbar arbitration point with its own
80 * flow control. Each layer is a converging multiplexer tree. By
81 * instantiating one layer per destination port (and per packet
82 * type, i.e. request, response, snoop request and snoop
83 * response), we model full crossbar structures like AXI, ACE,
84 * PCIe, etc.
85 *
86 * The template parameter, PortClass, indicates the destination
87 * port type for the layer. The retry list holds either master
88 * ports or slave ports, depending on the direction of the
89 * layer. Thus, a request layer has a retry list containing slave
90 * ports, whereas a response layer holds master ports.
91 */
92 template <typename SrcType, typename DstType>
93 class Layer : public Drainable
94 {
95
96 public:
97
98 /**
99 * Create a layer and give it a name. The layer uses
100 * the crossbar an event manager.
101 *
102 * @param _port destination port the layer converges at
103 * @param _xbar the crossbar this layer belongs to
104 * @param _name the layer's name
105 */
106 Layer(DstType& _port, BaseXBar& _xbar, const std::string& _name);
107
108 /**
109 * Drain according to the normal semantics, so that the crossbar
110 * can tell the layer to drain, and pass an event to signal
111 * back when drained.
112 *
113 * @param de drain event to call once drained
114 *
115 * @return 1 if busy or waiting to retry, or 0 if idle
116 */
117 DrainState drain() override;
118
119 const std::string name() const { return xbar.name() + _name; }
120
121
122 /**
123 * Determine if the layer accepts a packet from a specific
124 * port. If not, the port in question is also added to the
125 * retry list. In either case the state of the layer is
126 * updated accordingly.
127 *
128 * @param port Source port presenting the packet
129 *
130 * @return True if the layer accepts the packet
131 */
132 bool tryTiming(SrcType* src_port);
133
134 /**
135 * Deal with a destination port accepting a packet by potentially
136 * removing the source port from the retry list (if retrying) and
137 * occupying the layer accordingly.
138 *
139 * @param busy_time Time to spend as a result of a successful send
140 */
141 void succeededTiming(Tick busy_time);
142
143 /**
144 * Deal with a destination port not accepting a packet by
145 * potentially adding the source port to the retry list (if
146 * not already at the front) and occupying the layer
147 * accordingly.
148 *
149 * @param src_port Source port
150 * @param busy_time Time to spend as a result of a failed send
151 */
152 void failedTiming(SrcType* src_port, Tick busy_time);
153
154 void occupyLayer(Tick until);
155
156 /**
157 * Send a retry to the port at the head of waitingForLayer. The
158 * caller must ensure that the list is not empty.
159 */
160 void retryWaiting();
161
162 /**
163 * Handle a retry from a neighbouring module. This wraps
164 * retryWaiting by verifying that there are ports waiting
165 * before calling retryWaiting.
166 */
167 void recvRetry();
168
169 void regStats();
170
171 protected:
172
173 /**
174 * Sending the actual retry, in a manner specific to the
175 * individual layers. Note that for a MasterPort, there is
176 * both a RequestLayer and a SnoopResponseLayer using the same
177 * port, but using different functions for the flow control.
178 */
179 virtual void sendRetry(SrcType* retry_port) = 0;
180
181 private:
182
183 /** The destination port this layer converges at. */
184 DstType& port;
185
186 /** The crossbar this layer is a part of. */
187 BaseXBar& xbar;
188
189 std::string _name;
190
191 /**
192 * We declare an enum to track the state of the layer. The
193 * starting point is an idle state where the layer is waiting
194 * for a packet to arrive. Upon arrival, the layer
195 * transitions to the busy state, where it remains either
196 * until the packet transfer is done, or the header time is
197 * spent. Once the layer leaves the busy state, it can
198 * either go back to idle, if no packets have arrived while it
199 * was busy, or the layer goes on to retry the first port
200 * in waitingForLayer. A similar transition takes place from
201 * idle to retry if the layer receives a retry from one of
202 * its connected ports. The retry state lasts until the port
203 * in questions calls sendTiming and returns control to the
204 * layer, or goes to a busy state if the port does not
205 * immediately react to the retry by calling sendTiming.
206 */
207 enum State { IDLE, BUSY, RETRY };
208
209 State state;
210
211 /**
212 * A deque of ports that retry should be called on because
213 * the original send was delayed due to a busy layer.
214 */
215 std::deque<SrcType*> waitingForLayer;
216
217 /**
218 * Track who is waiting for the retry when receiving it from a
219 * peer. If no port is waiting NULL is stored.
220 */
221 SrcType* waitingForPeer;
222
223 /**
224 * Release the layer after being occupied and return to an
225 * idle state where we proceed to send a retry to any
226 * potential waiting port, or drain if asked to do so.
227 */
228 void releaseLayer();
229 EventFunctionWrapper releaseEvent;
230
231 /**
232 * Stats for occupancy and utilization. These stats capture
233 * the time the layer spends in the busy state and are thus only
234 * relevant when the memory system is in timing mode.
235 */
236 Stats::Scalar occupancy;
237 Stats::Formula utilization;
238
239 };
240
241 class ReqLayer : public Layer<SlavePort, MasterPort>
242 {
243 public:
244 /**
245 * Create a request layer and give it a name.
246 *
247 * @param _port destination port the layer converges at
248 * @param _xbar the crossbar this layer belongs to
249 * @param _name the layer's name
250 */
251 ReqLayer(MasterPort& _port, BaseXBar& _xbar, const std::string& _name) :
252 Layer(_port, _xbar, _name)
253 {}
254
255 protected:
256 void
257 sendRetry(SlavePort* retry_port) override
258 {
259 retry_port->sendRetryReq();
260 }
261 };
262
263 class RespLayer : public Layer<MasterPort, SlavePort>
264 {
265 public:
266 /**
267 * Create a response layer and give it a name.
268 *
269 * @param _port destination port the layer converges at
270 * @param _xbar the crossbar this layer belongs to
271 * @param _name the layer's name
272 */
273 RespLayer(SlavePort& _port, BaseXBar& _xbar,
274 const std::string& _name) :
275 Layer(_port, _xbar, _name)
276 {}
277
278 protected:
279 void
280 sendRetry(MasterPort* retry_port) override
281 {
282 retry_port->sendRetryResp();
283 }
284 };
285
286 class SnoopRespLayer : public Layer<SlavePort, MasterPort>
287 {
288 public:
289 /**
290 * Create a snoop response layer and give it a name.
291 *
292 * @param _port destination port the layer converges at
293 * @param _xbar the crossbar this layer belongs to
294 * @param _name the layer's name
295 */
296 SnoopRespLayer(MasterPort& _port, BaseXBar& _xbar,
297 const std::string& _name) :
298 Layer(_port, _xbar, _name)
299 {}
300
301 protected:
302
303 void
304 sendRetry(SlavePort* retry_port) override
305 {
306 retry_port->sendRetrySnoopResp();
307 }
308 };
309
310 /**
311 * Cycles of front-end pipeline including the delay to accept the request
312 * and to decode the address.
313 */
314 const Cycles frontendLatency;
315 const Cycles forwardLatency;
316 const Cycles responseLatency;
317 /** the width of the xbar in bytes */
318 const uint32_t width;
319
320 AddrRangeMap<PortID, 3> portMap;
321
322 /**
323 * Remember where request packets came from so that we can route
324 * responses to the appropriate port. This relies on the fact that
325 * the underlying Request pointer inside the Packet stays
326 * constant.
327 */
328 std::unordered_map<RequestPtr, PortID> routeTo;
329
330 /** all contigous ranges seen by this crossbar */
331 AddrRangeList xbarRanges;
332
333 AddrRange defaultRange;
334
335 /**
336 * Function called by the port when the crossbar is recieving a
337 * range change.
338 *
339 * @param master_port_id id of the port that received the change
340 */
341 virtual void recvRangeChange(PortID master_port_id);
342
343 /**
344 * Find which port connected to this crossbar (if any) should be
345 * given a packet with this address range.
346 *
347 * @param addr_range Address range to find port for.
348 * @return id of port that the packet should be sent out of.
349 */
350 PortID findPort(AddrRange addr_range);
351
352 /**
353 * Return the address ranges the crossbar is responsible for.
354 *
355 * @return a list of non-overlapping address ranges
356 */
357 AddrRangeList getAddrRanges() const;
358
359 /**
360 * Calculate the timing parameters for the packet. Updates the
361 * headerDelay and payloadDelay fields of the packet
362 * object with the relative number of ticks required to transmit
363 * the header and the payload, respectively.
364 *
365 * @param pkt Packet to populate with timings
366 * @param header_delay Header delay to be added
367 */
368 void calcPacketTiming(PacketPtr pkt, Tick header_delay);
369
370 /**
371 * Remember for each of the master ports of the crossbar if we got
372 * an address range from the connected slave. For convenience,
373 * also keep track of if we got ranges from all the slave modules
374 * or not.
375 */
376 std::vector<bool> gotAddrRanges;
377 bool gotAllAddrRanges;
378
379 /** The master and slave ports of the crossbar */
380 std::vector<QueuedSlavePort*> slavePorts;
381 std::vector<MasterPort*> masterPorts;
382
383 /** Port that handles requests that don't match any of the interfaces.*/
384 PortID defaultPortID;
385
386 /** If true, use address range provided by default device. Any
387 address not handled by another port and not in default device's
388 range will cause a fatal error. If false, just send all
389 addresses not handled by another port to default device. */
390 const bool useDefaultRange;
391
392 BaseXBar(const BaseXBarParams *p);
393
394 /**
395 * Stats for transaction distribution and data passing through the
396 * crossbar. The transaction distribution is globally counting
397 * different types of commands. The packet count and total packet
398 * size are two-dimensional vectors that are indexed by the
399 * slave port and master port id (thus the neighbouring master and
400 * neighbouring slave), summing up both directions (request and
401 * response).
402 */
403 Stats::Vector transDist;
404 Stats::Vector2d pktCount;
405 Stats::Vector2d pktSize;
406
407 public:
408
409 virtual ~BaseXBar();
410
411 void init() override;
412
413 /** A function used to return the port associated with this object. */
414 Port &getPort(const std::string &if_name,
415 PortID idx=InvalidPortID) override;
416
417 void regStats() override;
418 };
419
420 #endif //__MEM_XBAR_HH__