mem: Add crossbar latencies
[gem5.git] / src / mem / xbar.hh
1 /*
2 * Copyright (c) 2011-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ron Dreslinski
41 * Ali Saidi
42 * Andreas Hansson
43 * William Wang
44 */
45
46 /**
47 * @file
48 * Declaration of an abstract crossbar base class.
49 */
50
51 #ifndef __MEM_XBAR_HH__
52 #define __MEM_XBAR_HH__
53
54 #include <deque>
55
56 #include "base/addr_range_map.hh"
57 #include "base/hashmap.hh"
58 #include "base/types.hh"
59 #include "mem/mem_object.hh"
60 #include "params/BaseXBar.hh"
61 #include "sim/stats.hh"
62
63 /**
64 * The base crossbar contains the common elements of the non-coherent
65 * and coherent crossbar. It is an abstract class that does not have
66 * any of the functionality relating to the actual reception and
67 * transmission of packets, as this is left for the subclasses.
68 *
69 * The BaseXBar is responsible for the basic flow control (busy or
70 * not), the administration of retries, and the address decoding.
71 */
72 class BaseXBar : public MemObject
73 {
74
75 protected:
76
77 /**
78 * A layer is an internal crossbar arbitration point with its own
79 * flow control. Each layer is a converging multiplexer tree. By
80 * instantiating one layer per destination port (and per packet
81 * type, i.e. request, response, snoop request and snoop
82 * response), we model full crossbar structures like AXI, ACE,
83 * PCIe, etc.
84 *
85 * The template parameter, PortClass, indicates the destination
86 * port type for the layer. The retry list holds either master
87 * ports or slave ports, depending on the direction of the
88 * layer. Thus, a request layer has a retry list containing slave
89 * ports, whereas a response layer holds master ports.
90 */
91 template <typename SrcType, typename DstType>
92 class Layer : public Drainable
93 {
94
95 public:
96
97 /**
98 * Create a layer and give it a name. The layer uses
99 * the crossbar an event manager.
100 *
101 * @param _port destination port the layer converges at
102 * @param _xbar the crossbar this layer belongs to
103 * @param _name the layer's name
104 */
105 Layer(DstType& _port, BaseXBar& _xbar, const std::string& _name);
106
107 /**
108 * Drain according to the normal semantics, so that the crossbar
109 * can tell the layer to drain, and pass an event to signal
110 * back when drained.
111 *
112 * @param de drain event to call once drained
113 *
114 * @return 1 if busy or waiting to retry, or 0 if idle
115 */
116 unsigned int drain(DrainManager *dm);
117
118 /**
119 * Get the crossbar layer's name
120 */
121 const std::string name() const { return xbar.name() + _name; }
122
123
124 /**
125 * Determine if the layer accepts a packet from a specific
126 * port. If not, the port in question is also added to the
127 * retry list. In either case the state of the layer is
128 * updated accordingly.
129 *
130 * @param port Source port presenting the packet
131 *
132 * @return True if the layer accepts the packet
133 */
134 bool tryTiming(SrcType* src_port);
135
136 /**
137 * Deal with a destination port accepting a packet by potentially
138 * removing the source port from the retry list (if retrying) and
139 * occupying the layer accordingly.
140 *
141 * @param busy_time Time to spend as a result of a successful send
142 */
143 void succeededTiming(Tick busy_time);
144
145 /**
146 * Deal with a destination port not accepting a packet by
147 * potentially adding the source port to the retry list (if
148 * not already at the front) and occupying the layer
149 * accordingly.
150 *
151 * @param src_port Source port
152 * @param busy_time Time to spend as a result of a failed send
153 */
154 void failedTiming(SrcType* src_port, Tick busy_time);
155
156 /** Occupy the layer until until */
157 void occupyLayer(Tick until);
158
159 /**
160 * Send a retry to the port at the head of waitingForLayer. The
161 * caller must ensure that the list is not empty.
162 */
163 void retryWaiting();
164
165 /**
166 * Handle a retry from a neighbouring module. This wraps
167 * retryWaiting by verifying that there are ports waiting
168 * before calling retryWaiting.
169 */
170 void recvRetry();
171
172 /**
173 * Register stats for the layer
174 */
175 void regStats();
176
177 protected:
178
179 /**
180 * Sending the actual retry, in a manner specific to the
181 * individual layers. Note that for a MasterPort, there is
182 * both a RequestLayer and a SnoopResponseLayer using the same
183 * port, but using different functions for the flow control.
184 */
185 virtual void sendRetry(SrcType* retry_port) = 0;
186
187 private:
188
189 /** The destination port this layer converges at. */
190 DstType& port;
191
192 /** The crossbar this layer is a part of. */
193 BaseXBar& xbar;
194
195 /** A name for this layer. */
196 std::string _name;
197
198 /**
199 * We declare an enum to track the state of the layer. The
200 * starting point is an idle state where the layer is waiting
201 * for a packet to arrive. Upon arrival, the layer
202 * transitions to the busy state, where it remains either
203 * until the packet transfer is done, or the header time is
204 * spent. Once the layer leaves the busy state, it can
205 * either go back to idle, if no packets have arrived while it
206 * was busy, or the layer goes on to retry the first port
207 * in waitingForLayer. A similar transition takes place from
208 * idle to retry if the layer receives a retry from one of
209 * its connected ports. The retry state lasts until the port
210 * in questions calls sendTiming and returns control to the
211 * layer, or goes to a busy state if the port does not
212 * immediately react to the retry by calling sendTiming.
213 */
214 enum State { IDLE, BUSY, RETRY };
215
216 /** track the state of the layer */
217 State state;
218
219 /** manager to signal when drained */
220 DrainManager *drainManager;
221
222 /**
223 * A deque of ports that retry should be called on because
224 * the original send was delayed due to a busy layer.
225 */
226 std::deque<SrcType*> waitingForLayer;
227
228 /**
229 * Track who is waiting for the retry when receiving it from a
230 * peer. If no port is waiting NULL is stored.
231 */
232 SrcType* waitingForPeer;
233
234 /**
235 * Release the layer after being occupied and return to an
236 * idle state where we proceed to send a retry to any
237 * potential waiting port, or drain if asked to do so.
238 */
239 void releaseLayer();
240
241 /** event used to schedule a release of the layer */
242 EventWrapper<Layer, &Layer::releaseLayer> releaseEvent;
243
244 /**
245 * Stats for occupancy and utilization. These stats capture
246 * the time the layer spends in the busy state and are thus only
247 * relevant when the memory system is in timing mode.
248 */
249 Stats::Scalar occupancy;
250 Stats::Formula utilization;
251
252 };
253
254 class ReqLayer : public Layer<SlavePort,MasterPort>
255 {
256 public:
257 /**
258 * Create a request layer and give it a name.
259 *
260 * @param _port destination port the layer converges at
261 * @param _xbar the crossbar this layer belongs to
262 * @param _name the layer's name
263 */
264 ReqLayer(MasterPort& _port, BaseXBar& _xbar, const std::string& _name) :
265 Layer(_port, _xbar, _name) {}
266
267 protected:
268
269 void sendRetry(SlavePort* retry_port)
270 { retry_port->sendRetryReq(); }
271 };
272
273 class RespLayer : public Layer<MasterPort,SlavePort>
274 {
275 public:
276 /**
277 * Create a response layer and give it a name.
278 *
279 * @param _port destination port the layer converges at
280 * @param _xbar the crossbar this layer belongs to
281 * @param _name the layer's name
282 */
283 RespLayer(SlavePort& _port, BaseXBar& _xbar, const std::string& _name) :
284 Layer(_port, _xbar, _name) {}
285
286 protected:
287
288 void sendRetry(MasterPort* retry_port)
289 { retry_port->sendRetryResp(); }
290 };
291
292 class SnoopRespLayer : public Layer<SlavePort,MasterPort>
293 {
294 public:
295 /**
296 * Create a snoop response layer and give it a name.
297 *
298 * @param _port destination port the layer converges at
299 * @param _xbar the crossbar this layer belongs to
300 * @param _name the layer's name
301 */
302 SnoopRespLayer(MasterPort& _port, BaseXBar& _xbar,
303 const std::string& _name) :
304 Layer(_port, _xbar, _name) {}
305
306 protected:
307
308 void sendRetry(SlavePort* retry_port)
309 { retry_port->sendRetrySnoopResp(); }
310 };
311
312 /**
313 * Cycles of front-end pipeline including the delay to accept the request
314 * and to decode the address.
315 */
316 const Cycles frontendLatency;
317 /** Cycles of forward latency */
318 const Cycles forwardLatency;
319 /** Cycles of response latency */
320 const Cycles responseLatency;
321 /** the width of the xbar in bytes */
322 const uint32_t width;
323
324 AddrRangeMap<PortID> portMap;
325
326 /**
327 * Remember where request packets came from so that we can route
328 * responses to the appropriate port. This relies on the fact that
329 * the underlying Request pointer inside the Packet stays
330 * constant.
331 */
332 m5::unordered_map<RequestPtr, PortID> routeTo;
333
334 /** all contigous ranges seen by this crossbar */
335 AddrRangeList xbarRanges;
336
337 AddrRange defaultRange;
338
339 /**
340 * Function called by the port when the crossbar is recieving a
341 * range change.
342 *
343 * @param master_port_id id of the port that received the change
344 */
345 void recvRangeChange(PortID master_port_id);
346
347 /** Find which port connected to this crossbar (if any) should be
348 * given a packet with this address.
349 *
350 * @param addr Address to find port for.
351 * @return id of port that the packet should be sent out of.
352 */
353 PortID findPort(Addr addr);
354
355 // Cache for the findPort function storing recently used ports from portMap
356 struct PortCache {
357 bool valid;
358 PortID id;
359 AddrRange range;
360 };
361
362 PortCache portCache[3];
363
364 // Checks the cache and returns the id of the port that has the requested
365 // address within its range
366 inline PortID checkPortCache(Addr addr) const {
367 if (portCache[0].valid && portCache[0].range.contains(addr)) {
368 return portCache[0].id;
369 }
370 if (portCache[1].valid && portCache[1].range.contains(addr)) {
371 return portCache[1].id;
372 }
373 if (portCache[2].valid && portCache[2].range.contains(addr)) {
374 return portCache[2].id;
375 }
376
377 return InvalidPortID;
378 }
379
380 // Clears the earliest entry of the cache and inserts a new port entry
381 inline void updatePortCache(short id, const AddrRange& range) {
382 portCache[2].valid = portCache[1].valid;
383 portCache[2].id = portCache[1].id;
384 portCache[2].range = portCache[1].range;
385
386 portCache[1].valid = portCache[0].valid;
387 portCache[1].id = portCache[0].id;
388 portCache[1].range = portCache[0].range;
389
390 portCache[0].valid = true;
391 portCache[0].id = id;
392 portCache[0].range = range;
393 }
394
395 // Clears the cache. Needs to be called in constructor.
396 inline void clearPortCache() {
397 portCache[2].valid = false;
398 portCache[1].valid = false;
399 portCache[0].valid = false;
400 }
401
402 /**
403 * Return the address ranges the crossbar is responsible for.
404 *
405 * @return a list of non-overlapping address ranges
406 */
407 AddrRangeList getAddrRanges() const;
408
409 /**
410 * Calculate the timing parameters for the packet. Updates the
411 * headerDelay and payloadDelay fields of the packet
412 * object with the relative number of ticks required to transmit
413 * the header and the payload, respectively.
414 *
415 * @param pkt Packet to populate with timings
416 * @param header_delay Header delay to be added
417 */
418 void calcPacketTiming(PacketPtr pkt, Tick header_delay);
419
420 /**
421 * Remember for each of the master ports of the crossbar if we got
422 * an address range from the connected slave. For convenience,
423 * also keep track of if we got ranges from all the slave modules
424 * or not.
425 */
426 std::vector<bool> gotAddrRanges;
427 bool gotAllAddrRanges;
428
429 /** The master and slave ports of the crossbar */
430 std::vector<SlavePort*> slavePorts;
431 std::vector<MasterPort*> masterPorts;
432
433 /** Port that handles requests that don't match any of the interfaces.*/
434 PortID defaultPortID;
435
436 /** If true, use address range provided by default device. Any
437 address not handled by another port and not in default device's
438 range will cause a fatal error. If false, just send all
439 addresses not handled by another port to default device. */
440 const bool useDefaultRange;
441
442 BaseXBar(const BaseXBarParams *p);
443
444 virtual ~BaseXBar();
445
446 /**
447 * Stats for transaction distribution and data passing through the
448 * crossbar. The transaction distribution is globally counting
449 * different types of commands. The packet count and total packet
450 * size are two-dimensional vectors that are indexed by the
451 * slave port and master port id (thus the neighbouring master and
452 * neighbouring slave), summing up both directions (request and
453 * response).
454 */
455 Stats::Vector transDist;
456 Stats::Vector2d pktCount;
457 Stats::Vector2d pktSize;
458
459 public:
460
461 virtual void init();
462
463 /** A function used to return the port associated with this object. */
464 BaseMasterPort& getMasterPort(const std::string& if_name,
465 PortID idx = InvalidPortID);
466 BaseSlavePort& getSlavePort(const std::string& if_name,
467 PortID idx = InvalidPortID);
468
469 virtual unsigned int drain(DrainManager *dm) = 0;
470
471 virtual void regStats();
472
473 };
474
475 #endif //__MEM_XBAR_HH__