Fixed a typo in an assertion. (Don't understand how this ever compiled.)
[mesa.git] / src / mesa / drivers / dri / common / texmem.c
1 /*
2 * Copyright 2000-2001 VA Linux Systems, Inc.
3 * (C) Copyright IBM Corporation 2002, 2003
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * on the rights to use, copy, modify, merge, publish, distribute, sub
10 * license, and/or sell copies of the Software, and to permit persons to whom
11 * the Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
20 * VA LINUX SYSTEM, IBM AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
21 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
22 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
23 * USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 * Authors:
26 * Ian Romanick <idr@us.ibm.com>
27 * Keith Whitwell <keithw@tungstengraphics.com>
28 * Kevin E. Martin <kem@users.sourceforge.net>
29 * Gareth Hughes <gareth@nvidia.com>
30 */
31 /* $XFree86:$ */
32
33 /** \file texmem.c
34 * Implements all of the device-independent texture memory management.
35 *
36 * Currently, only a simple LRU texture memory management policy is
37 * implemented. In the (hopefully very near) future, better policies will be
38 * implemented. The idea is that the DRI should be able to run in one of two
39 * modes. In the default mode the DRI will dynamically attempt to discover
40 * the best texture management policy for the running application. In the
41 * other mode, the user (via some sort of as yet TBD mechanism) will select
42 * a texture management policy that is known to work well with the
43 * application.
44 */
45
46 #include "texmem.h"
47 #include "simple_list.h"
48 #include "imports.h"
49 #include "macros.h"
50 #include "texformat.h"
51
52 #include <assert.h>
53
54
55
56 static unsigned dummy_swap_counter;
57
58
59 /**
60 * Calculate \f$\log_2\f$ of a value. This is a particularly poor
61 * implementation of this function. However, since system performance is in
62 * no way dependent on this function, the slowness of the implementation is
63 * irrelevent.
64 *
65 * \param n Value whose \f$\log_2\f$ is to be calculated
66 */
67
68 static GLuint
69 driLog2( GLuint n )
70 {
71 GLuint log2;
72
73 for ( log2 = 1 ; n > 1 ; log2++ ) {
74 n >>= 1;
75 }
76
77 return log2;
78 }
79
80
81
82
83 /**
84 * Determine if a texture is resident in textureable memory. Depending on
85 * the driver, this may or may not be on-card memory. It could be AGP memory
86 * or anyother type of memory from which the hardware can directly read
87 * texels.
88 *
89 * This function is intended to be used as the \c IsTextureResident function
90 * in the device's \c dd_function_table.
91 *
92 * \param ctx GL context pointer (currently unused)
93 * \param texObj Texture object to be tested
94 */
95
96 GLboolean
97 driIsTextureResident( GLcontext * ctx,
98 struct gl_texture_object * texObj )
99 {
100 driTextureObject * t;
101
102
103 t = (driTextureObject *) texObj->DriverData;
104 return( (t != NULL) && (t->memBlock != NULL) );
105 }
106
107
108
109
110 /**
111 * (Re)initialize the global circular LRU list. The last element
112 * in the array (\a heap->nrRegions) is the sentinal. Keeping it
113 * at the end of the array allows the other elements of the array
114 * to be addressed rationally when looking up objects at a particular
115 * location in texture memory.
116 *
117 * \param heap Texture heap to be reset
118 */
119
120 static void resetGlobalLRU( driTexHeap * heap )
121 {
122 drmTextureRegionPtr list = heap->global_regions;
123 unsigned sz = 1U << heap->logGranularity;
124 unsigned i;
125
126 for (i = 0 ; (i+1) * sz <= heap->size ; i++) {
127 list[i].prev = i-1;
128 list[i].next = i+1;
129 list[i].age = 0;
130 }
131
132 i--;
133 list[0].prev = heap->nrRegions;
134 list[i].prev = i-1;
135 list[i].next = heap->nrRegions;
136 list[heap->nrRegions].prev = i;
137 list[heap->nrRegions].next = 0;
138 heap->global_age[0] = 0;
139 }
140
141 /**
142 * Print out debugging information about the local texture LRU.
143 *
144 * \param heap Texture heap to be printed
145 * \param callername Name of calling function
146 */
147 static void printLocalLRU( driTexHeap * heap, const char *callername )
148 {
149 driTextureObject *t;
150 unsigned sz = 1U << heap->logGranularity;
151
152 fprintf( stderr, "%s in %s:\nLocal LRU, heap %d:\n",
153 __FUNCTION__, callername, heap->heapId );
154
155 foreach ( t, &heap->texture_objects ) {
156 if (!t->memBlock)
157 continue;
158 if (!t->tObj) {
159 fprintf( stderr, "Placeholder (%p) %d at 0x%x sz 0x%x\n",
160 (void *)t,
161 t->memBlock->ofs / sz,
162 t->memBlock->ofs,
163 t->memBlock->size );
164 } else {
165 fprintf( stderr, "Texture (%p) at 0x%x sz 0x%x\n",
166 (void *)t,
167 t->memBlock->ofs,
168 t->memBlock->size );
169 }
170 }
171 foreach ( t, heap->swapped_objects ) {
172 if (!t->tObj) {
173 fprintf( stderr, "Swapped Placeholder (%p)\n", (void *)t );
174 } else {
175 fprintf( stderr, "Swapped Texture (%p)\n", (void *)t );
176 }
177 }
178
179 fprintf( stderr, "\n" );
180 }
181
182 /**
183 * Print out debugging information about the global texture LRU.
184 *
185 * \param heap Texture heap to be printed
186 * \param callername Name of calling function
187 */
188 static void printGlobalLRU( driTexHeap * heap, const char *callername )
189 {
190 drmTextureRegionPtr list = heap->global_regions;
191 int i, j;
192
193 fprintf( stderr, "%s in %s:\nGlobal LRU, heap %d list %p:\n",
194 __FUNCTION__, callername, heap->heapId, (void *)list );
195
196 for ( i = 0, j = heap->nrRegions ; i < heap->nrRegions ; i++ ) {
197 fprintf( stderr, "list[%d] age %d next %d prev %d in_use %d\n",
198 j, list[j].age, list[j].next, list[j].prev, list[j].in_use );
199 j = list[j].next;
200 if ( j == heap->nrRegions ) break;
201 }
202
203 if ( j != heap->nrRegions ) {
204 fprintf( stderr, "Loop detected in global LRU\n" );
205 for ( i = 0 ; i < heap->nrRegions ; i++ ) {
206 fprintf( stderr, "list[%d] age %d next %d prev %d in_use %d\n",
207 i, list[i].age, list[i].next, list[i].prev, list[i].in_use );
208 }
209 }
210
211 fprintf( stderr, "\n" );
212 }
213
214
215 /**
216 * Called by the client whenever it touches a local texture.
217 *
218 * \param t Texture object that the client has accessed
219 */
220
221 void driUpdateTextureLRU( driTextureObject * t )
222 {
223 driTexHeap * heap;
224 drmTextureRegionPtr list;
225 unsigned shift;
226 unsigned start;
227 unsigned end;
228 unsigned i;
229
230
231 heap = t->heap;
232 if ( heap != NULL ) {
233 shift = heap->logGranularity;
234 start = t->memBlock->ofs >> shift;
235 end = (t->memBlock->ofs + t->memBlock->size - 1) >> shift;
236
237
238 heap->local_age = ++heap->global_age[0];
239 list = heap->global_regions;
240
241
242 /* Update the context's local LRU
243 */
244
245 move_to_head( & heap->texture_objects, t );
246
247
248 for (i = start ; i <= end ; i++) {
249 list[i].age = heap->local_age;
250
251 /* remove_from_list(i)
252 */
253 list[(unsigned)list[i].next].prev = list[i].prev;
254 list[(unsigned)list[i].prev].next = list[i].next;
255
256 /* insert_at_head(list, i)
257 */
258 list[i].prev = heap->nrRegions;
259 list[i].next = list[heap->nrRegions].next;
260 list[(unsigned)list[heap->nrRegions].next].prev = i;
261 list[heap->nrRegions].next = i;
262 }
263
264 if ( 0 ) {
265 printGlobalLRU( heap, __FUNCTION__ );
266 printLocalLRU( heap, __FUNCTION__ );
267 }
268 }
269 }
270
271
272
273
274 /**
275 * Keep track of swapped out texture objects.
276 *
277 * \param t Texture object to be "swapped" out of its texture heap
278 */
279
280 void driSwapOutTextureObject( driTextureObject * t )
281 {
282 unsigned face;
283
284
285 if ( t->memBlock != NULL ) {
286 assert( t->heap != NULL );
287 mmFreeMem( t->memBlock );
288 t->memBlock = NULL;
289
290 if (t->timestamp > t->heap->timestamp)
291 t->heap->timestamp = t->timestamp;
292
293 t->heap->texture_swaps[0]++;
294 move_to_tail( t->heap->swapped_objects, t );
295 t->heap = NULL;
296 }
297 else {
298 assert( t->heap == NULL );
299 }
300
301
302 for ( face = 0 ; face < 6 ; face++ ) {
303 t->dirty_images[face] = ~0;
304 }
305 }
306
307
308
309
310 /**
311 * Destroy hardware state associated with texture \a t. Calls the
312 * \a destroy_texture_object method associated with the heap from which
313 * \a t was allocated.
314 *
315 * \param t Texture object to be destroyed
316 */
317
318 void driDestroyTextureObject( driTextureObject * t )
319 {
320 driTexHeap * heap;
321
322
323 if ( 0 ) {
324 fprintf( stderr, "[%s:%d] freeing %p (tObj = %p, DriverData = %p)\n",
325 __FILE__, __LINE__,
326 (void *)t,
327 (void *)((t != NULL) ? t->tObj : NULL),
328 (void *)((t != NULL && t->tObj != NULL) ? t->tObj->DriverData : NULL ));
329 }
330
331 if ( t != NULL ) {
332 if ( t->memBlock ) {
333 heap = t->heap;
334 assert( heap != NULL );
335
336 heap->texture_swaps[0]++;
337
338 mmFreeMem( t->memBlock );
339 t->memBlock = NULL;
340
341 if (t->timestamp > t->heap->timestamp)
342 t->heap->timestamp = t->timestamp;
343
344 heap->destroy_texture_object( heap->driverContext, t );
345 t->heap = NULL;
346 }
347
348 if ( t->tObj != NULL ) {
349 assert( t->tObj->DriverData == t );
350 t->tObj->DriverData = NULL;
351 }
352
353 remove_from_list( t );
354 FREE( t );
355 }
356
357 if ( 0 ) {
358 fprintf( stderr, "[%s:%d] done freeing %p\n", __FILE__, __LINE__, (void *)t );
359 }
360 }
361
362
363
364
365 /**
366 * Update the local heap's representation of texture memory based on
367 * data in the SAREA. This is done each time it is detected that some other
368 * direct rendering client has held the lock. This pertains to both our local
369 * textures and the textures belonging to other clients. Keep track of other
370 * client's textures by pushing a placeholder texture onto the LRU list --
371 * these are denoted by \a tObj being \a NULL.
372 *
373 * \param heap Heap whose state is to be updated
374 * \param offset Byte offset in the heap that has been stolen
375 * \param size Size, in bytes, of the stolen block
376 * \param in_use Non-zero if the block is pinned/reserved by the kernel
377 */
378
379 static void driTexturesGone( driTexHeap * heap, int offset, int size,
380 int in_use )
381 {
382 driTextureObject * t;
383 driTextureObject * tmp;
384
385
386 foreach_s ( t, tmp, & heap->texture_objects ) {
387 if ( (t->memBlock->ofs < (offset + size))
388 && ((t->memBlock->ofs + t->memBlock->size) > offset) ) {
389 /* It overlaps - kick it out. If the texture object is just a
390 * place holder, then destroy it all together. Otherwise, mark
391 * it as being swapped out.
392 */
393
394 if ( t->tObj != NULL ) {
395 driSwapOutTextureObject( t );
396 }
397 else {
398 driDestroyTextureObject( t );
399 }
400 }
401 }
402
403
404 {
405 t = (driTextureObject *) CALLOC( heap->texture_object_size );
406 if ( t == NULL ) return;
407
408 t->memBlock = mmAllocMem( heap->memory_heap, size, 0, offset );
409 if ( t->memBlock == NULL ) {
410 fprintf( stderr, "Couldn't alloc placeholder: heap %u sz %x ofs %x\n", heap->heapId,
411 (int)size, (int)offset );
412 mmDumpMemInfo( heap->memory_heap );
413 return;
414 }
415 t->heap = heap;
416 if (in_use)
417 t->bound = 99;
418 insert_at_head( & heap->texture_objects, t );
419 }
420 }
421
422
423
424
425 /**
426 * Called by the client on lock contention to determine whether textures have
427 * been stolen. If another client has modified a region in which we have
428 * textures, then we need to figure out which of our textures have been
429 * removed and update our global LRU.
430 *
431 * \param heap Texture heap to be updated
432 */
433
434 void driAgeTextures( driTexHeap * heap )
435 {
436 drmTextureRegionPtr list = heap->global_regions;
437 unsigned sz = 1U << (heap->logGranularity);
438 unsigned i, nr = 0;
439
440
441 /* Have to go right round from the back to ensure stuff ends up
442 * LRU in the local list... Fix with a cursor pointer.
443 */
444
445 for (i = list[heap->nrRegions].prev ;
446 i != heap->nrRegions && nr < heap->nrRegions ;
447 i = list[i].prev, nr++) {
448 /* If switching texturing schemes, then the SAREA might not have been
449 * properly cleared, so we need to reset the global texture LRU.
450 */
451
452 if ( (i * sz) > heap->size ) {
453 nr = heap->nrRegions;
454 break;
455 }
456
457 if (list[i].age > heap->local_age)
458 driTexturesGone( heap, i * sz, sz, list[i].in_use);
459 }
460
461 /* Loop or uninitialized heap detected. Reset.
462 */
463
464 if (nr == heap->nrRegions) {
465 driTexturesGone( heap, 0, heap->size, 0);
466 resetGlobalLRU( heap );
467 }
468
469 if ( 0 ) {
470 printGlobalLRU( heap, __FUNCTION__ );
471 printLocalLRU( heap, __FUNCTION__ );
472 }
473
474 heap->local_age = heap->global_age[0];
475 }
476
477
478
479
480 #define INDEX_ARRAY_SIZE 6 /* I'm not aware of driver with more than 2 heaps */
481
482 /**
483 * Allocate memory from a texture heap to hold a texture object. This
484 * routine will attempt to allocate memory for the texture from the heaps
485 * specified by \c heap_array in order. That is, first it will try to
486 * allocate from \c heap_array[0], then \c heap_array[1], and so on.
487 *
488 * \param heap_array Array of pointers to texture heaps to use
489 * \param nr_heaps Number of heap pointer in \a heap_array
490 * \param t Texture object for which space is needed
491 * \return The ID of the heap from which memory was allocated, or -1 if
492 * memory could not be allocated.
493 *
494 * \bug The replacement policy implemented by this function is horrible.
495 */
496
497
498 int
499 driAllocateTexture( driTexHeap * const * heap_array, unsigned nr_heaps,
500 driTextureObject * t )
501 {
502 driTexHeap * heap;
503 driTextureObject * temp;
504 driTextureObject * cursor;
505 unsigned id;
506
507
508 /* In case it already has texture space, initialize heap. This also
509 * prevents GCC from issuing a warning that heap might be used
510 * uninitialized.
511 */
512
513 heap = t->heap;
514
515
516 /* Run through each of the existing heaps and try to allocate a buffer
517 * to hold the texture.
518 */
519
520 for ( id = 0 ; (t->memBlock == NULL) && (id < nr_heaps) ; id++ ) {
521 heap = heap_array[ id ];
522 if ( heap != NULL ) {
523 t->memBlock = mmAllocMem( heap->memory_heap, t->totalSize,
524 heap->alignmentShift, 0 );
525 }
526 }
527
528
529 /* Kick textures out until the requested texture fits.
530 */
531
532 if ( t->memBlock == NULL ) {
533 unsigned index[INDEX_ARRAY_SIZE];
534 unsigned nrGoodHeaps = 0;
535
536 /* Trying to avoid dynamic memory allocation. If you have more
537 * heaps, increase INDEX_ARRAY_SIZE. I'm not aware of any
538 * drivers with more than 2 tex heaps. */
539 assert( nr_heaps < INDEX_ARRAY_SIZE );
540
541 /* Sort large enough heaps by duty. Insertion sort should be
542 * fast enough for such a short array. */
543 for ( id = 0 ; id < nr_heaps ; id++ ) {
544 heap = heap_array[ id ];
545
546 if ( heap != NULL && t->totalSize <= heap->size ) {
547 unsigned j;
548
549 for ( j = 0 ; j < nrGoodHeaps; j++ ) {
550 if ( heap->duty > heap_array[ index[ j ] ]->duty )
551 break;
552 }
553
554 if ( j < nrGoodHeaps ) {
555 memmove( &index[ j+1 ], &index[ j ],
556 sizeof(index[ 0 ]) * (nrGoodHeaps - j) );
557 }
558
559 index[ j ] = id;
560
561 nrGoodHeaps++;
562 }
563 }
564
565 for ( id = 0 ; (t->memBlock == NULL) && (id < nrGoodHeaps) ; id++ ) {
566 heap = heap_array[ index[ id ] ];
567
568 for ( cursor = heap->texture_objects.prev, temp = cursor->prev;
569 cursor != &heap->texture_objects ;
570 cursor = temp, temp = cursor->prev ) {
571
572 /* The the LRU element. If the texture is bound to one of
573 * the texture units, then we cannot kick it out.
574 */
575 if ( cursor->bound /* || cursor->reserved */ ) {
576 continue;
577 }
578
579 if ( cursor->memBlock )
580 heap->duty -= cursor->memBlock->size;
581
582 /* If this is a placeholder, there's no need to keep it */
583 if (cursor->tObj)
584 driSwapOutTextureObject( cursor );
585 else
586 driDestroyTextureObject( cursor );
587
588 t->memBlock = mmAllocMem( heap->memory_heap, t->totalSize,
589 heap->alignmentShift, 0 );
590
591 if (t->memBlock)
592 break;
593 }
594 }
595
596 /* Rebalance duties. If a heap kicked more data than its duty,
597 * then all other heaps get that amount multiplied with their
598 * relative weight added to their duty. The negative duty is
599 * reset to 0. In the end all heaps have a duty >= 0.
600 *
601 * CAUTION: we must not change the heap pointer here, because it
602 * is used below to update the texture object.
603 */
604 for ( id = 0 ; id < nr_heaps ; id++ )
605 if ( heap_array[ id ] != NULL && heap_array[ id ]->duty < 0) {
606 int duty = -heap_array[ id ]->duty;
607 double weight = heap_array[ id ]->weight;
608 unsigned j;
609
610 for ( j = 0 ; j < nr_heaps ; j++ )
611 if ( j != id && heap_array[ j ] != NULL ) {
612 heap_array[ j ]->duty += (double) duty *
613 heap_array[ j ]->weight / weight;
614 }
615
616 heap_array[ id ]->duty = 0;
617 }
618 }
619
620
621 if ( t->memBlock != NULL ) {
622 /* id and heap->heapId may or may not be the same value here.
623 */
624
625 assert( heap != NULL );
626 assert( (t->heap == NULL) || (t->heap == heap) );
627
628 t->heap = heap;
629 return heap->heapId;
630 }
631 else {
632 assert( t->heap == NULL );
633
634 fprintf( stderr, "[%s:%d] unable to allocate texture\n",
635 __FUNCTION__, __LINE__ );
636 return -1;
637 }
638 }
639
640
641
642
643
644
645 /**
646 * Set the location where the texture-swap counter is stored.
647 */
648
649 void
650 driSetTextureSwapCounterLocation( driTexHeap * heap, unsigned * counter )
651 {
652 heap->texture_swaps = (counter == NULL) ? & dummy_swap_counter : counter;
653 }
654
655
656
657
658 /**
659 * Create a new heap for texture data.
660 *
661 * \param heap_id Device-dependent heap identifier. This value
662 * will returned by driAllocateTexture when memory
663 * is allocated from this heap.
664 * \param context Device-dependent driver context. This is
665 * supplied as the first parameter to the
666 * \c destroy_tex_obj function.
667 * \param size Size, in bytes, of the texture region
668 * \param alignmentShift Alignment requirement for textures. If textures
669 * must be allocated on a 4096 byte boundry, this
670 * would be 12.
671 * \param nr_regions Number of regions into which this texture space
672 * should be partitioned
673 * \param global_regions Array of \c drmTextureRegion structures in the SAREA
674 * \param global_age Pointer to the global texture age in the SAREA
675 * \param swapped_objects Pointer to the list of texture objects that are
676 * not in texture memory (i.e., have been swapped
677 * out).
678 * \param texture_object_size Size, in bytes, of a device-dependent texture
679 * object
680 * \param destroy_tex_obj Function used to destroy a device-dependent
681 * texture object
682 *
683 * \sa driDestroyTextureHeap
684 */
685
686 driTexHeap *
687 driCreateTextureHeap( unsigned heap_id, void * context, unsigned size,
688 unsigned alignmentShift, unsigned nr_regions,
689 drmTextureRegionPtr global_regions, unsigned * global_age,
690 driTextureObject * swapped_objects,
691 unsigned texture_object_size,
692 destroy_texture_object_t * destroy_tex_obj
693 )
694 {
695 driTexHeap * heap;
696 unsigned l;
697
698
699 if ( 0 )
700 fprintf( stderr, "%s( %u, %p, %u, %u, %u )\n",
701 __FUNCTION__,
702 heap_id, (void *)context, size, alignmentShift, nr_regions );
703
704 heap = (driTexHeap *) CALLOC( sizeof( driTexHeap ) );
705 if ( heap != NULL ) {
706 l = driLog2( (size - 1) / nr_regions );
707 if ( l < alignmentShift )
708 {
709 l = alignmentShift;
710 }
711
712 heap->logGranularity = l;
713 heap->size = size & ~((1L << l) - 1);
714
715 heap->memory_heap = mmInit( 0, heap->size );
716 if ( heap->memory_heap != NULL ) {
717 heap->heapId = heap_id;
718 heap->driverContext = context;
719
720 heap->alignmentShift = alignmentShift;
721 heap->nrRegions = nr_regions;
722 heap->global_regions = global_regions;
723 heap->global_age = global_age;
724 heap->swapped_objects = swapped_objects;
725 heap->texture_object_size = texture_object_size;
726 heap->destroy_texture_object = destroy_tex_obj;
727
728 /* Force global heap init */
729 if (heap->global_age[0] == 0)
730 heap->local_age = ~0;
731 else
732 heap->local_age = 0;
733
734 make_empty_list( & heap->texture_objects );
735 driSetTextureSwapCounterLocation( heap, NULL );
736
737 heap->weight = heap->size;
738 heap->duty = 0;
739 }
740 else {
741 FREE( heap );
742 heap = NULL;
743 }
744 }
745
746
747 if ( 0 )
748 fprintf( stderr, "%s returning %p\n", __FUNCTION__, (void *)heap );
749
750 return heap;
751 }
752
753
754
755
756 /** Destroys a texture heap
757 *
758 * \param heap Texture heap to be destroyed
759 */
760
761 void
762 driDestroyTextureHeap( driTexHeap * heap )
763 {
764 driTextureObject * t;
765 driTextureObject * temp;
766
767
768 if ( heap != NULL ) {
769 foreach_s( t, temp, & heap->texture_objects ) {
770 driDestroyTextureObject( t );
771 }
772 foreach_s( t, temp, heap->swapped_objects ) {
773 driDestroyTextureObject( t );
774 }
775
776 mmDestroy( heap->memory_heap );
777 FREE( heap );
778 }
779 }
780
781
782
783
784 /****************************************************************************/
785 /**
786 * Determine how many texels (including all mipmap levels) would be required
787 * for a texture map of size \f$2^^\c base_size_log2\f$ would require.
788 *
789 * \param base_size_log2 \f$log_2\f$ of the size of a side of the texture
790 * \param dimensions Number of dimensions of the texture. Either 2 or 3.
791 * \param faces Number of faces of the texture. Either 1 or 6 (for cube maps).
792 * \return Number of texels
793 */
794
795 static unsigned
796 texels_this_map_size( int base_size_log2, unsigned dimensions, unsigned faces )
797 {
798 unsigned texels;
799
800
801 assert( (faces == 1) || (faces == 6) );
802 assert( (dimensions == 2) || (dimensions == 3) );
803
804 texels = 0;
805 if ( base_size_log2 >= 0 ) {
806 texels = (1U << (dimensions * base_size_log2));
807
808 /* See http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg03636.html
809 * for the complete explaination of why this formulation is used.
810 * Basically, the smaller mipmap levels sum to 0.333 the size of the
811 * level 0 map. The total size is therefore the size of the map
812 * multipled by 1.333. The +2 is there to round up.
813 */
814
815 texels = (texels * 4 * faces + 2) / 3;
816 }
817
818 return texels;
819 }
820
821
822
823
824 struct maps_per_heap {
825 unsigned c[32];
826 };
827
828 static void
829 fill_in_maximums( driTexHeap * const * heaps, unsigned nr_heaps,
830 unsigned max_bytes_per_texel, unsigned max_size,
831 unsigned mipmaps_at_once, unsigned dimensions,
832 unsigned faces, struct maps_per_heap * max_textures )
833 {
834 unsigned heap;
835 unsigned log2_size;
836 unsigned mask;
837
838
839 /* Determine how many textures of each size can be stored in each
840 * texture heap.
841 */
842
843 for ( heap = 0 ; heap < nr_heaps ; heap++ ) {
844 if ( heaps[ heap ] == NULL ) {
845 (void) memset( max_textures[ heap ].c, 0,
846 sizeof( max_textures[ heap ].c ) );
847 continue;
848 }
849
850 mask = (1U << heaps[ heap ]->logGranularity) - 1;
851
852 if ( 0 ) {
853 fprintf( stderr, "[%s:%d] heap[%u] = %u bytes, mask = 0x%08x\n",
854 __FILE__, __LINE__,
855 heap, heaps[ heap ]->size, mask );
856 }
857
858 for ( log2_size = max_size ; log2_size > 0 ; log2_size-- ) {
859 unsigned total;
860
861
862 /* Determine the total number of bytes required by a texture of
863 * size log2_size.
864 */
865
866 total = texels_this_map_size( log2_size, dimensions, faces )
867 - texels_this_map_size( log2_size - mipmaps_at_once,
868 dimensions, faces );
869 total *= max_bytes_per_texel;
870 total = (total + mask) & ~mask;
871
872 /* The number of textures of a given size that will fit in a heap
873 * is equal to the size of the heap divided by the size of the
874 * texture.
875 */
876
877 max_textures[ heap ].c[ log2_size ] = heaps[ heap ]->size / total;
878
879 if ( 0 ) {
880 fprintf( stderr, "[%s:%d] max_textures[%u].c[%02u] "
881 "= 0x%08x / 0x%08x "
882 "= %u (%u)\n",
883 __FILE__, __LINE__,
884 heap, log2_size,
885 heaps[ heap ]->size, total,
886 heaps[ heap ]->size / total,
887 max_textures[ heap ].c[ log2_size ] );
888 }
889 }
890 }
891 }
892
893
894 static unsigned
895 get_max_size( unsigned nr_heaps,
896 unsigned texture_units,
897 unsigned max_size,
898 int all_textures_one_heap,
899 struct maps_per_heap * max_textures )
900 {
901 unsigned heap;
902 unsigned log2_size;
903
904
905 /* Determine the largest texture size such that a texture of that size
906 * can be bound to each texture unit at the same time. Some hardware
907 * may require that all textures be in the same texture heap for
908 * multitexturing.
909 */
910
911 for ( log2_size = max_size ; log2_size > 0 ; log2_size-- ) {
912 unsigned total = 0;
913
914 for ( heap = 0 ; heap < nr_heaps ; heap++ )
915 {
916 total += max_textures[ heap ].c[ log2_size ];
917
918 if ( 0 ) {
919 fprintf( stderr, "[%s:%d] max_textures[%u].c[%02u] = %u, "
920 "total = %u\n", __FILE__, __LINE__, heap, log2_size,
921 max_textures[ heap ].c[ log2_size ], total );
922 }
923
924 if ( (max_textures[ heap ].c[ log2_size ] >= texture_units)
925 || (!all_textures_one_heap && (total >= texture_units)) ) {
926 /* The number of mipmap levels is the log-base-2 of the
927 * maximum texture size plus 1. If the maximum texture size
928 * is 1x1, the log-base-2 is 0 and 1 mipmap level (the base
929 * level) is available.
930 */
931
932 return log2_size + 1;
933 }
934 }
935 }
936
937 /* This should NEVER happen. It should always be possible to have at
938 * *least* a 1x1 texture in memory!
939 */
940 assert( log2_size != 0 );
941 return 0;
942 }
943
944 #define SET_MAX(f,v) \
945 do { if ( max_sizes[v] != 0 ) { limits-> f = max_sizes[v]; } } while( 0 )
946
947 #define SET_MAX_RECT(f,v) \
948 do { if ( max_sizes[v] != 0 ) { limits-> f = 1 << max_sizes[v]; } } while( 0 )
949
950
951 /**
952 * Given the amount of texture memory, the number of texture units, and the
953 * maximum size of a texel, calculate the maximum texture size the driver can
954 * advertise.
955 *
956 * \param heaps Texture heaps for this card
957 * \param nr_heap Number of texture heaps
958 * \param limits OpenGL contants. MaxTextureUnits must be set.
959 * \param max_bytes_per_texel Maximum size of a single texel, in bytes
960 * \param max_2D_size \f$\log_2\f$ of the maximum 2D texture size (i.e.,
961 * 1024x1024 textures, this would be 10)
962 * \param max_3D_size \f$\log_2\f$ of the maximum 3D texture size (i.e.,
963 * 1024x1024x1024 textures, this would be 10)
964 * \param max_cube_size \f$\log_2\f$ of the maximum cube texture size (i.e.,
965 * 1024x1024 textures, this would be 10)
966 * \param max_rect_size \f$\log_2\f$ of the maximum texture rectangle size
967 * (i.e., 1024x1024 textures, this would be 10). This is a power-of-2
968 * even though texture rectangles need not be a power-of-2.
969 * \param mipmaps_at_once Total number of mipmaps that can be used
970 * at one time. For most hardware this will be \f$\c max_size + 1\f$.
971 * For hardware that does not support mipmapping, this will be 1.
972 * \param all_textures_one_heap True if the hardware requires that all
973 * textures be in a single texture heap for multitexturing.
974 */
975
976 void
977 driCalculateMaxTextureLevels( driTexHeap * const * heaps,
978 unsigned nr_heaps,
979 struct gl_constants * limits,
980 unsigned max_bytes_per_texel,
981 unsigned max_2D_size,
982 unsigned max_3D_size,
983 unsigned max_cube_size,
984 unsigned max_rect_size,
985 unsigned mipmaps_at_once,
986 int all_textures_one_heap )
987 {
988 struct maps_per_heap max_textures[8];
989 unsigned i;
990 const unsigned dimensions[4] = { 2, 3, 2, 2 };
991 const unsigned faces[4] = { 1, 1, 6, 1 };
992 unsigned max_sizes[4];
993 unsigned mipmaps[4];
994
995
996 max_sizes[0] = max_2D_size;
997 max_sizes[1] = max_3D_size;
998 max_sizes[2] = max_cube_size;
999 max_sizes[3] = max_rect_size;
1000
1001 mipmaps[0] = mipmaps_at_once;
1002 mipmaps[1] = mipmaps_at_once;
1003 mipmaps[2] = 1;
1004 mipmaps[3] = mipmaps_at_once;
1005
1006
1007 /* Calculate the maximum number of texture levels in two passes. The
1008 * first pass determines how many textures of each power-of-two size
1009 * (including all mipmap levels for that size) can fit in each texture
1010 * heap. The second pass finds the largest texture size that allows
1011 * a texture of that size to be bound to every texture unit.
1012 */
1013
1014 for ( i = 0 ; i < 4 ; i++ ) {
1015 if ( max_sizes[ i ] != 0 ) {
1016 fill_in_maximums( heaps, nr_heaps, max_bytes_per_texel,
1017 max_sizes[ i ], mipmaps[ i ],
1018 dimensions[ i ], faces[ i ],
1019 max_textures );
1020
1021 max_sizes[ i ] = get_max_size( nr_heaps,
1022 limits->MaxTextureUnits,
1023 max_sizes[ i ],
1024 all_textures_one_heap,
1025 max_textures );
1026 }
1027 }
1028
1029 SET_MAX( MaxTextureLevels, 0 );
1030 SET_MAX( Max3DTextureLevels, 1 );
1031 SET_MAX( MaxCubeTextureLevels, 2 );
1032 SET_MAX_RECT( MaxTextureRectSize, 3 );
1033 }
1034
1035
1036
1037
1038 /**
1039 * Perform initial binding of default textures objects on a per unit, per
1040 * texture target basis.
1041 *
1042 * \param ctx Current OpenGL context
1043 * \param swapped List of swapped-out textures
1044 * \param targets Bit-mask of value texture targets
1045 */
1046
1047 void driInitTextureObjects( GLcontext *ctx, driTextureObject * swapped,
1048 GLuint targets )
1049 {
1050 struct gl_texture_object *texObj;
1051 GLuint tmp = ctx->Texture.CurrentUnit;
1052 unsigned i;
1053
1054
1055 for ( i = 0 ; i < ctx->Const.MaxTextureUnits ; i++ ) {
1056 ctx->Texture.CurrentUnit = i;
1057
1058 if ( (targets & DRI_TEXMGR_DO_TEXTURE_1D) != 0 ) {
1059 texObj = ctx->Texture.Unit[i].Current1D;
1060 ctx->Driver.BindTexture( ctx, GL_TEXTURE_1D, texObj );
1061 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1062 }
1063
1064 if ( (targets & DRI_TEXMGR_DO_TEXTURE_2D) != 0 ) {
1065 texObj = ctx->Texture.Unit[i].Current2D;
1066 ctx->Driver.BindTexture( ctx, GL_TEXTURE_2D, texObj );
1067 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1068 }
1069
1070 if ( (targets & DRI_TEXMGR_DO_TEXTURE_3D) != 0 ) {
1071 texObj = ctx->Texture.Unit[i].Current3D;
1072 ctx->Driver.BindTexture( ctx, GL_TEXTURE_3D, texObj );
1073 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1074 }
1075
1076 if ( (targets & DRI_TEXMGR_DO_TEXTURE_CUBE) != 0 ) {
1077 texObj = ctx->Texture.Unit[i].CurrentCubeMap;
1078 ctx->Driver.BindTexture( ctx, GL_TEXTURE_CUBE_MAP_ARB, texObj );
1079 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1080 }
1081
1082 if ( (targets & DRI_TEXMGR_DO_TEXTURE_RECT) != 0 ) {
1083 texObj = ctx->Texture.Unit[i].CurrentRect;
1084 ctx->Driver.BindTexture( ctx, GL_TEXTURE_RECTANGLE_NV, texObj );
1085 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1086 }
1087 }
1088
1089 ctx->Texture.CurrentUnit = tmp;
1090 }
1091
1092
1093
1094
1095 /**
1096 * Verify that the specified texture is in the specificed heap.
1097 *
1098 * \param tex Texture to be tested.
1099 * \param heap Texture memory heap to be tested.
1100 * \return True if the texture is in the heap, false otherwise.
1101 */
1102
1103 static GLboolean
1104 check_in_heap( const driTextureObject * tex, const driTexHeap * heap )
1105 {
1106 #if 1
1107 return tex->heap == heap;
1108 #else
1109 driTextureObject * curr;
1110
1111 foreach( curr, & heap->texture_objects ) {
1112 if ( curr == tex ) {
1113 break;
1114 }
1115 }
1116
1117 return curr == tex;
1118 #endif
1119 }
1120
1121
1122
1123 /****************************************************************************/
1124 /**
1125 * Validate the consistency of a set of texture heaps.
1126 * Original version by Keith Whitwell in r200/r200_sanity.c.
1127 */
1128
1129 GLboolean
1130 driValidateTextureHeaps( driTexHeap * const * texture_heaps,
1131 unsigned nr_heaps, const driTextureObject * swapped )
1132 {
1133 driTextureObject *t;
1134 unsigned i;
1135
1136 for ( i = 0 ; i < nr_heaps ; i++ ) {
1137 int last_end = 0;
1138 unsigned textures_in_heap = 0;
1139 unsigned blocks_in_mempool = 0;
1140 const driTexHeap * heap = texture_heaps[i];
1141 const memHeap_t * p = heap->memory_heap;
1142
1143 /* Check each texture object has a MemBlock, and is linked into
1144 * the correct heap.
1145 *
1146 * Check the texobj base address corresponds to the MemBlock
1147 * range. Check the texobj size (recalculate?) fits within
1148 * the MemBlock.
1149 *
1150 * Count the number of texobj's using this heap.
1151 */
1152
1153 foreach ( t, &heap->texture_objects ) {
1154 if ( !check_in_heap( t, heap ) ) {
1155 fprintf( stderr, "%s memory block for texture object @ %p not "
1156 "found in heap #%d\n",
1157 __FUNCTION__, (void *)t, i );
1158 return GL_FALSE;
1159 }
1160
1161
1162 if ( t->totalSize > t->memBlock->size ) {
1163 fprintf( stderr, "%s: Memory block for texture object @ %p is "
1164 "only %u bytes, but %u are required\n",
1165 __FUNCTION__, (void *)t, t->totalSize, t->memBlock->size );
1166 return GL_FALSE;
1167 }
1168
1169 textures_in_heap++;
1170 }
1171
1172 /* Validate the contents of the heap:
1173 * - Ordering
1174 * - Overlaps
1175 * - Bounds
1176 */
1177
1178 while ( p != NULL ) {
1179 if (p->reserved) {
1180 fprintf( stderr, "%s: Block (%08x,%x), is reserved?!\n",
1181 __FUNCTION__, p->ofs, p->size );
1182 return GL_FALSE;
1183 }
1184
1185 if (p->ofs != last_end) {
1186 fprintf( stderr, "%s: blocks_in_mempool = %d, last_end = %d, p->ofs = %d\n",
1187 __FUNCTION__, blocks_in_mempool, last_end, p->ofs );
1188 return GL_FALSE;
1189 }
1190
1191 if (!p->reserved && !p->free) {
1192 blocks_in_mempool++;
1193 }
1194
1195 last_end = p->ofs + p->size;
1196 p = p->next;
1197 }
1198
1199 if (textures_in_heap != blocks_in_mempool) {
1200 fprintf( stderr, "%s: Different number of textures objects (%u) and "
1201 "inuse memory blocks (%u)\n",
1202 __FUNCTION__, textures_in_heap, blocks_in_mempool );
1203 return GL_FALSE;
1204 }
1205
1206 #if 0
1207 fprintf( stderr, "%s: textures_in_heap = %u\n",
1208 __FUNCTION__, textures_in_heap );
1209 #endif
1210 }
1211
1212
1213 /* Check swapped texobj's have zero memblocks
1214 */
1215 i = 0;
1216 foreach ( t, swapped ) {
1217 if ( t->memBlock != NULL ) {
1218 fprintf( stderr, "%s: Swapped texobj %p has non-NULL memblock %p\n",
1219 __FUNCTION__, (void *)t, (void *)t->memBlock );
1220 return GL_FALSE;
1221 }
1222 i++;
1223 }
1224
1225 #if 0
1226 fprintf( stderr, "%s: swapped texture count = %u\n", __FUNCTION__, i );
1227 #endif
1228
1229 return GL_TRUE;
1230 }
1231
1232
1233
1234
1235 /****************************************************************************/
1236 /**
1237 * Compute which mipmap levels that really need to be sent to the hardware.
1238 * This depends on the base image size, GL_TEXTURE_MIN_LOD,
1239 * GL_TEXTURE_MAX_LOD, GL_TEXTURE_BASE_LEVEL, and GL_TEXTURE_MAX_LEVEL.
1240 */
1241
1242 void
1243 driCalculateTextureFirstLastLevel( driTextureObject * t )
1244 {
1245 struct gl_texture_object * const tObj = t->tObj;
1246 const struct gl_texture_image * const baseImage =
1247 tObj->Image[0][tObj->BaseLevel];
1248
1249 /* These must be signed values. MinLod and MaxLod can be negative numbers,
1250 * and having firstLevel and lastLevel as signed prevents the need for
1251 * extra sign checks.
1252 */
1253 int firstLevel;
1254 int lastLevel;
1255
1256 /* Yes, this looks overly complicated, but it's all needed.
1257 */
1258
1259 switch (tObj->Target) {
1260 case GL_TEXTURE_1D:
1261 case GL_TEXTURE_2D:
1262 case GL_TEXTURE_3D:
1263 case GL_TEXTURE_CUBE_MAP:
1264 if (tObj->MinFilter == GL_NEAREST || tObj->MinFilter == GL_LINEAR) {
1265 /* GL_NEAREST and GL_LINEAR only care about GL_TEXTURE_BASE_LEVEL.
1266 */
1267
1268 firstLevel = lastLevel = tObj->BaseLevel;
1269 }
1270 else {
1271 firstLevel = tObj->BaseLevel + (GLint)(tObj->MinLod + 0.5);
1272 firstLevel = MAX2(firstLevel, tObj->BaseLevel);
1273 lastLevel = tObj->BaseLevel + (GLint)(tObj->MaxLod + 0.5);
1274 lastLevel = MAX2(lastLevel, t->tObj->BaseLevel);
1275 lastLevel = MIN2(lastLevel, t->tObj->BaseLevel + baseImage->MaxLog2);
1276 lastLevel = MIN2(lastLevel, t->tObj->MaxLevel);
1277 lastLevel = MAX2(firstLevel, lastLevel); /* need at least one level */
1278 }
1279 break;
1280 case GL_TEXTURE_RECTANGLE_NV:
1281 case GL_TEXTURE_4D_SGIS:
1282 firstLevel = lastLevel = 0;
1283 break;
1284 default:
1285 return;
1286 }
1287
1288 /* save these values */
1289 t->firstLevel = firstLevel;
1290 t->lastLevel = lastLevel;
1291 }
1292
1293
1294
1295
1296 /**
1297 * \name DRI texture formats. Pointers initialized to either the big- or
1298 * little-endian Mesa formats.
1299 */
1300 /*@{*/
1301 const struct gl_texture_format *_dri_texformat_rgba8888 = NULL;
1302 const struct gl_texture_format *_dri_texformat_argb8888 = NULL;
1303 const struct gl_texture_format *_dri_texformat_rgb565 = NULL;
1304 const struct gl_texture_format *_dri_texformat_argb4444 = NULL;
1305 const struct gl_texture_format *_dri_texformat_argb1555 = NULL;
1306 const struct gl_texture_format *_dri_texformat_al88 = NULL;
1307 const struct gl_texture_format *_dri_texformat_a8 = &_mesa_texformat_a8;
1308 const struct gl_texture_format *_dri_texformat_ci8 = &_mesa_texformat_ci8;
1309 const struct gl_texture_format *_dri_texformat_i8 = &_mesa_texformat_i8;
1310 const struct gl_texture_format *_dri_texformat_l8 = &_mesa_texformat_l8;
1311 /*@}*/
1312
1313
1314 /**
1315 * Initialize little endian target, host byte order independent texture formats
1316 */
1317 void
1318 driInitTextureFormats(void)
1319 {
1320 const GLuint ui = 1;
1321 const GLubyte littleEndian = *((const GLubyte *) &ui);
1322
1323 if (littleEndian) {
1324 _dri_texformat_rgba8888 = &_mesa_texformat_rgba8888;
1325 _dri_texformat_argb8888 = &_mesa_texformat_argb8888;
1326 _dri_texformat_rgb565 = &_mesa_texformat_rgb565;
1327 _dri_texformat_argb4444 = &_mesa_texformat_argb4444;
1328 _dri_texformat_argb1555 = &_mesa_texformat_argb1555;
1329 _dri_texformat_al88 = &_mesa_texformat_al88;
1330 }
1331 else {
1332 _dri_texformat_rgba8888 = &_mesa_texformat_rgba8888_rev;
1333 _dri_texformat_argb8888 = &_mesa_texformat_argb8888_rev;
1334 _dri_texformat_rgb565 = &_mesa_texformat_rgb565_rev;
1335 _dri_texformat_argb4444 = &_mesa_texformat_argb4444_rev;
1336 _dri_texformat_argb1555 = &_mesa_texformat_argb1555_rev;
1337 _dri_texformat_al88 = &_mesa_texformat_al88_rev;
1338 }
1339 }