Big-endian texture fixes from Michel Dänzer.
[mesa.git] / src / mesa / drivers / dri / common / texmem.c
1 /*
2 * Copyright 2000-2001 VA Linux Systems, Inc.
3 * (C) Copyright IBM Corporation 2002, 2003
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * on the rights to use, copy, modify, merge, publish, distribute, sub
10 * license, and/or sell copies of the Software, and to permit persons to whom
11 * the Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
20 * VA LINUX SYSTEM, IBM AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
21 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
22 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
23 * USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 * Authors:
26 * Ian Romanick <idr@us.ibm.com>
27 * Keith Whitwell <keithw@tungstengraphics.com>
28 * Kevin E. Martin <kem@users.sourceforge.net>
29 * Gareth Hughes <gareth@nvidia.com>
30 */
31 /* $XFree86:$ */
32
33 /** \file texmem.c
34 * Implements all of the device-independent texture memory management.
35 *
36 * Currently, only a simple LRU texture memory management policy is
37 * implemented. In the (hopefully very near) future, better policies will be
38 * implemented. The idea is that the DRI should be able to run in one of two
39 * modes. In the default mode the DRI will dynamically attempt to discover
40 * the best texture management policy for the running application. In the
41 * other mode, the user (via some sort of as yet TBD mechanism) will select
42 * a texture management policy that is known to work well with the
43 * application.
44 */
45
46 #include "texmem.h"
47 #include "simple_list.h"
48 #include "imports.h"
49 #include "macros.h"
50 #include "texformat.h"
51
52 #include <assert.h>
53
54
55
56 static unsigned dummy_swap_counter;
57
58
59 /**
60 * Calculate \f$\log_2\f$ of a value. This is a particularly poor
61 * implementation of this function. However, since system performance is in
62 * no way dependent on this function, the slowness of the implementation is
63 * irrelevent.
64 *
65 * \param n Value whose \f$\log_2\f$ is to be calculated
66 */
67
68 static GLuint
69 driLog2( GLuint n )
70 {
71 GLuint log2;
72
73 for ( log2 = 1 ; n > 1 ; log2++ ) {
74 n >>= 1;
75 }
76
77 return log2;
78 }
79
80
81
82
83 /**
84 * Determine if a texture is resident in textureable memory. Depending on
85 * the driver, this may or may not be on-card memory. It could be AGP memory
86 * or anyother type of memory from which the hardware can directly read
87 * texels.
88 *
89 * This function is intended to be used as the \c IsTextureResident function
90 * in the device's \c dd_function_table.
91 *
92 * \param ctx GL context pointer (currently unused)
93 * \param texObj Texture object to be tested
94 */
95
96 GLboolean
97 driIsTextureResident( GLcontext * ctx,
98 struct gl_texture_object * texObj )
99 {
100 driTextureObject * t;
101
102
103 t = (driTextureObject *) texObj->DriverData;
104 return( (t != NULL) && (t->memBlock != NULL) );
105 }
106
107
108
109
110 /**
111 * (Re)initialize the global circular LRU list. The last element
112 * in the array (\a heap->nrRegions) is the sentinal. Keeping it
113 * at the end of the array allows the other elements of the array
114 * to be addressed rationally when looking up objects at a particular
115 * location in texture memory.
116 *
117 * \param heap Texture heap to be reset
118 */
119
120 static void resetGlobalLRU( driTexHeap * heap )
121 {
122 drmTextureRegionPtr list = heap->global_regions;
123 unsigned sz = 1U << heap->logGranularity;
124 unsigned i;
125
126 for (i = 0 ; (i+1) * sz <= heap->size ; i++) {
127 list[i].prev = i-1;
128 list[i].next = i+1;
129 list[i].age = 0;
130 }
131
132 i--;
133 list[0].prev = heap->nrRegions;
134 list[i].prev = i-1;
135 list[i].next = heap->nrRegions;
136 list[heap->nrRegions].prev = i;
137 list[heap->nrRegions].next = 0;
138 heap->global_age[0] = 0;
139 }
140
141 /**
142 * Print out debugging information about the local texture LRU.
143 *
144 * \param heap Texture heap to be printed
145 * \param callername Name of calling function
146 */
147 static void printLocalLRU( driTexHeap * heap, const char *callername )
148 {
149 driTextureObject *t;
150 unsigned sz = 1U << heap->logGranularity;
151
152 fprintf( stderr, "%s in %s:\nLocal LRU, heap %d:\n",
153 __FUNCTION__, callername, heap->heapId );
154
155 foreach ( t, &heap->texture_objects ) {
156 if (!t->memBlock)
157 continue;
158 if (!t->tObj) {
159 fprintf( stderr, "Placeholder (%p) %d at 0x%x sz 0x%x\n",
160 (void *)t,
161 t->memBlock->ofs / sz,
162 t->memBlock->ofs,
163 t->memBlock->size );
164 } else {
165 fprintf( stderr, "Texture (%p) at 0x%x sz 0x%x\n",
166 (void *)t,
167 t->memBlock->ofs,
168 t->memBlock->size );
169 }
170 }
171 foreach ( t, heap->swapped_objects ) {
172 if (!t->tObj) {
173 fprintf( stderr, "Swapped Placeholder (%p)\n", (void *)t );
174 } else {
175 fprintf( stderr, "Swapped Texture (%p)\n", (void *)t );
176 }
177 }
178
179 fprintf( stderr, "\n" );
180 }
181
182 /**
183 * Print out debugging information about the global texture LRU.
184 *
185 * \param heap Texture heap to be printed
186 * \param callername Name of calling function
187 */
188 static void printGlobalLRU( driTexHeap * heap, const char *callername )
189 {
190 drmTextureRegionPtr list = heap->global_regions;
191 int i, j;
192
193 fprintf( stderr, "%s in %s:\nGlobal LRU, heap %d list %p:\n",
194 __FUNCTION__, callername, heap->heapId, (void *)list );
195
196 for ( i = 0, j = heap->nrRegions ; i < heap->nrRegions ; i++ ) {
197 fprintf( stderr, "list[%d] age %d next %d prev %d in_use %d\n",
198 j, list[j].age, list[j].next, list[j].prev, list[j].in_use );
199 j = list[j].next;
200 if ( j == heap->nrRegions ) break;
201 }
202
203 if ( j != heap->nrRegions ) {
204 fprintf( stderr, "Loop detected in global LRU\n" );
205 for ( i = 0 ; i < heap->nrRegions ; i++ ) {
206 fprintf( stderr, "list[%d] age %d next %d prev %d in_use %d\n",
207 i, list[i].age, list[i].next, list[i].prev, list[i].in_use );
208 }
209 }
210
211 fprintf( stderr, "\n" );
212 }
213
214
215 /**
216 * Called by the client whenever it touches a local texture.
217 *
218 * \param t Texture object that the client has accessed
219 */
220
221 void driUpdateTextureLRU( driTextureObject * t )
222 {
223 driTexHeap * heap;
224 drmTextureRegionPtr list;
225 unsigned shift;
226 unsigned start;
227 unsigned end;
228 unsigned i;
229
230
231 heap = t->heap;
232 if ( heap != NULL ) {
233 shift = heap->logGranularity;
234 start = t->memBlock->ofs >> shift;
235 end = (t->memBlock->ofs + t->memBlock->size - 1) >> shift;
236
237
238 heap->local_age = ++heap->global_age[0];
239 list = heap->global_regions;
240
241
242 /* Update the context's local LRU
243 */
244
245 move_to_head( & heap->texture_objects, t );
246
247
248 for (i = start ; i <= end ; i++) {
249 list[i].age = heap->local_age;
250
251 /* remove_from_list(i)
252 */
253 list[(unsigned)list[i].next].prev = list[i].prev;
254 list[(unsigned)list[i].prev].next = list[i].next;
255
256 /* insert_at_head(list, i)
257 */
258 list[i].prev = heap->nrRegions;
259 list[i].next = list[heap->nrRegions].next;
260 list[(unsigned)list[heap->nrRegions].next].prev = i;
261 list[heap->nrRegions].next = i;
262 }
263
264 if ( 0 ) {
265 printGlobalLRU( heap, __FUNCTION__ );
266 printLocalLRU( heap, __FUNCTION__ );
267 }
268 }
269 }
270
271
272
273
274 /**
275 * Keep track of swapped out texture objects.
276 *
277 * \param t Texture object to be "swapped" out of its texture heap
278 */
279
280 void driSwapOutTextureObject( driTextureObject * t )
281 {
282 unsigned face;
283
284
285 if ( t->memBlock != NULL ) {
286 assert( t->heap != NULL );
287 mmFreeMem( t->memBlock );
288 t->memBlock = NULL;
289
290 if (t->timestamp > t->heap->timestamp)
291 t->heap->timestamp = t->timestamp;
292
293 t->heap->texture_swaps[0]++;
294 move_to_tail( t->heap->swapped_objects, t );
295 t->heap = NULL;
296 }
297 else {
298 assert( t->heap == NULL );
299 }
300
301
302 for ( face = 0 ; face < 6 ; face++ ) {
303 t->dirty_images[face] = ~0;
304 }
305 }
306
307
308
309
310 /**
311 * Destroy hardware state associated with texture \a t. Calls the
312 * \a destroy_texture_object method associated with the heap from which
313 * \a t was allocated.
314 *
315 * \param t Texture object to be destroyed
316 */
317
318 void driDestroyTextureObject( driTextureObject * t )
319 {
320 driTexHeap * heap;
321
322
323 if ( 0 ) {
324 fprintf( stderr, "[%s:%d] freeing %p (tObj = %p, DriverData = %p)\n",
325 __FILE__, __LINE__,
326 (void *)t,
327 (void *)((t != NULL) ? t->tObj : NULL),
328 (void *)((t != NULL && t->tObj != NULL) ? t->tObj->DriverData : NULL ));
329 }
330
331 if ( t != NULL ) {
332 if ( t->memBlock ) {
333 heap = t->heap;
334 assert( heap != NULL );
335
336 heap->texture_swaps[0]++;
337
338 mmFreeMem( t->memBlock );
339 t->memBlock = NULL;
340
341 if (t->timestamp > t->heap->timestamp)
342 t->heap->timestamp = t->timestamp;
343
344 heap->destroy_texture_object( heap->driverContext, t );
345 t->heap = NULL;
346 }
347
348 if ( t->tObj != NULL ) {
349 assert( t->tObj->DriverData == t );
350 t->tObj->DriverData = NULL;
351 }
352
353 remove_from_list( t );
354 FREE( t );
355 }
356
357 if ( 0 ) {
358 fprintf( stderr, "[%s:%d] done freeing %p\n", __FILE__, __LINE__, (void *)t );
359 }
360 }
361
362
363
364
365 /**
366 * Update the local heap's representation of texture memory based on
367 * data in the SAREA. This is done each time it is detected that some other
368 * direct rendering client has held the lock. This pertains to both our local
369 * textures and the textures belonging to other clients. Keep track of other
370 * client's textures by pushing a placeholder texture onto the LRU list --
371 * these are denoted by \a tObj being \a NULL.
372 *
373 * \param heap Heap whose state is to be updated
374 * \param offset Byte offset in the heap that has been stolen
375 * \param size Size, in bytes, of the stolen block
376 * \param in_use Non-zero if the block is pinned/reserved by the kernel
377 */
378
379 static void driTexturesGone( driTexHeap * heap, int offset, int size,
380 int in_use )
381 {
382 driTextureObject * t;
383 driTextureObject * tmp;
384
385
386 foreach_s ( t, tmp, & heap->texture_objects ) {
387 if ( (t->memBlock->ofs < (offset + size))
388 && ((t->memBlock->ofs + t->memBlock->size) > offset) ) {
389 /* It overlaps - kick it out. If the texture object is just a
390 * place holder, then destroy it all together. Otherwise, mark
391 * it as being swapped out.
392 */
393
394 if ( t->tObj != NULL ) {
395 driSwapOutTextureObject( t );
396 }
397 else {
398 driDestroyTextureObject( t );
399 }
400 }
401 }
402
403
404 {
405 t = (driTextureObject *) CALLOC( heap->texture_object_size );
406 if ( t == NULL ) return;
407
408 t->memBlock = mmAllocMem( heap->memory_heap, size, 0, offset );
409 if ( t->memBlock == NULL ) {
410 fprintf( stderr, "Couldn't alloc placeholder: heap %u sz %x ofs %x\n", heap->heapId,
411 (int)size, (int)offset );
412 mmDumpMemInfo( heap->memory_heap );
413 return;
414 }
415 t->heap = heap;
416 if (in_use)
417 t->bound = 99;
418 insert_at_head( & heap->texture_objects, t );
419 }
420 }
421
422
423
424
425 /**
426 * Called by the client on lock contention to determine whether textures have
427 * been stolen. If another client has modified a region in which we have
428 * textures, then we need to figure out which of our textures have been
429 * removed and update our global LRU.
430 *
431 * \param heap Texture heap to be updated
432 */
433
434 void driAgeTextures( driTexHeap * heap )
435 {
436 drmTextureRegionPtr list = heap->global_regions;
437 unsigned sz = 1U << (heap->logGranularity);
438 unsigned i, nr = 0;
439
440
441 /* Have to go right round from the back to ensure stuff ends up
442 * LRU in the local list... Fix with a cursor pointer.
443 */
444
445 for (i = list[heap->nrRegions].prev ;
446 i != heap->nrRegions && nr < heap->nrRegions ;
447 i = list[i].prev, nr++) {
448 /* If switching texturing schemes, then the SAREA might not have been
449 * properly cleared, so we need to reset the global texture LRU.
450 */
451
452 if ( (i * sz) > heap->size ) {
453 nr = heap->nrRegions;
454 break;
455 }
456
457 if (list[i].age > heap->local_age)
458 driTexturesGone( heap, i * sz, sz, list[i].in_use);
459 }
460
461 /* Loop or uninitialized heap detected. Reset.
462 */
463
464 if (nr == heap->nrRegions) {
465 driTexturesGone( heap, 0, heap->size, 0);
466 resetGlobalLRU( heap );
467 }
468
469 if ( 0 ) {
470 printGlobalLRU( heap, __FUNCTION__ );
471 printLocalLRU( heap, __FUNCTION__ );
472 }
473
474 heap->local_age = heap->global_age[0];
475 }
476
477
478
479
480 /**
481 * Allocate memory from a texture heap to hold a texture object. This
482 * routine will attempt to allocate memory for the texture from the heaps
483 * specified by \c heap_array in order. That is, first it will try to
484 * allocate from \c heap_array[0], then \c heap_array[1], and so on.
485 *
486 * \param heap_array Array of pointers to texture heaps to use
487 * \param nr_heaps Number of heap pointer in \a heap_array
488 * \param t Texture object for which space is needed
489 * \return The ID of the heap from which memory was allocated, or -1 if
490 * memory could not be allocated.
491 *
492 * \bug The replacement policy implemented by this function is horrible.
493 */
494
495
496 int
497 driAllocateTexture( driTexHeap * const * heap_array, unsigned nr_heaps,
498 driTextureObject * t )
499 {
500 driTexHeap * heap;
501 driTextureObject * temp;
502 driTextureObject * cursor;
503 unsigned id;
504
505
506 /* In case it already has texture space, initialize heap. This also
507 * prevents GCC from issuing a warning that heap might be used
508 * uninitialized.
509 */
510
511 heap = t->heap;
512
513
514 /* Run through each of the existing heaps and try to allocate a buffer
515 * to hold the texture.
516 */
517
518 for ( id = 0 ; (t->memBlock == NULL) && (id < nr_heaps) ; id++ ) {
519 heap = heap_array[ id ];
520 if ( heap != NULL ) {
521 t->memBlock = mmAllocMem( heap->memory_heap, t->totalSize,
522 heap->alignmentShift, 0 );
523 }
524 }
525
526
527 /* Kick textures out until the requested texture fits.
528 */
529
530 if ( t->memBlock == NULL ) {
531 for ( id = 0 ; (t->memBlock == NULL) && (id < nr_heaps) ; id++ ) {
532 heap = heap_array[ id ];
533 if ( t->totalSize <= heap->size ) {
534
535 for ( cursor = heap->texture_objects.prev, temp = cursor->prev;
536 cursor != &heap->texture_objects ;
537 cursor = temp, temp = cursor->prev ) {
538
539 /* The the LRU element. If the texture is bound to one of
540 * the texture units, then we cannot kick it out.
541 */
542 if ( cursor->bound /* || cursor->reserved */ ) {
543 continue;
544 }
545
546 /* If this is a placeholder, there's no need to keep it */
547 if (cursor->tObj)
548 driSwapOutTextureObject( cursor );
549 else
550 driDestroyTextureObject( cursor );
551
552 t->memBlock = mmAllocMem( heap->memory_heap, t->totalSize,
553 heap->alignmentShift, 0 );
554
555 if (t->memBlock)
556 break;
557 }
558 } /* if ( t->totalSize <= heap->size ) ... */
559 }
560 }
561
562
563 if ( t->memBlock != NULL ) {
564 /* id and heap->heapId may or may not be the same value here.
565 */
566
567 assert( heap != NULL );
568 assert( (t->heap == NULL) || (t->heap == heap) );
569
570 t->heap = heap;
571 return heap->heapId;
572 }
573 else {
574 assert( t->heap == NULL );
575
576 fprintf( stderr, "[%s:%d] unable to allocate texture\n",
577 __FUNCTION__, __LINE__ );
578 return -1;
579 }
580 }
581
582
583
584
585
586
587 /**
588 * Set the location where the texture-swap counter is stored.
589 */
590
591 void
592 driSetTextureSwapCounterLocation( driTexHeap * heap, unsigned * counter )
593 {
594 heap->texture_swaps = (counter == NULL) ? & dummy_swap_counter : counter;
595 }
596
597
598
599
600 /**
601 * Create a new heap for texture data.
602 *
603 * \param heap_id Device-dependent heap identifier. This value
604 * will returned by driAllocateTexture when memory
605 * is allocated from this heap.
606 * \param context Device-dependent driver context. This is
607 * supplied as the first parameter to the
608 * \c destroy_tex_obj function.
609 * \param size Size, in bytes, of the texture region
610 * \param alignmentShift Alignment requirement for textures. If textures
611 * must be allocated on a 4096 byte boundry, this
612 * would be 12.
613 * \param nr_regions Number of regions into which this texture space
614 * should be partitioned
615 * \param global_regions Array of \c drmTextureRegion structures in the SAREA
616 * \param global_age Pointer to the global texture age in the SAREA
617 * \param swapped_objects Pointer to the list of texture objects that are
618 * not in texture memory (i.e., have been swapped
619 * out).
620 * \param texture_object_size Size, in bytes, of a device-dependent texture
621 * object
622 * \param destroy_tex_obj Function used to destroy a device-dependent
623 * texture object
624 *
625 * \sa driDestroyTextureHeap
626 */
627
628 driTexHeap *
629 driCreateTextureHeap( unsigned heap_id, void * context, unsigned size,
630 unsigned alignmentShift, unsigned nr_regions,
631 drmTextureRegionPtr global_regions, unsigned * global_age,
632 driTextureObject * swapped_objects,
633 unsigned texture_object_size,
634 destroy_texture_object_t * destroy_tex_obj
635 )
636 {
637 driTexHeap * heap;
638 unsigned l;
639
640
641 if ( 0 )
642 fprintf( stderr, "%s( %u, %p, %u, %u, %u )\n",
643 __FUNCTION__,
644 heap_id, (void *)context, size, alignmentShift, nr_regions );
645
646 heap = (driTexHeap *) CALLOC( sizeof( driTexHeap ) );
647 if ( heap != NULL ) {
648 l = driLog2( (size - 1) / nr_regions );
649 if ( l < alignmentShift )
650 {
651 l = alignmentShift;
652 }
653
654 heap->logGranularity = l;
655 heap->size = size & ~((1L << l) - 1);
656
657 heap->memory_heap = mmInit( 0, heap->size );
658 if ( heap->memory_heap != NULL ) {
659 heap->heapId = heap_id;
660 heap->driverContext = context;
661
662 heap->alignmentShift = alignmentShift;
663 heap->nrRegions = nr_regions;
664 heap->global_regions = global_regions;
665 heap->global_age = global_age;
666 heap->swapped_objects = swapped_objects;
667 heap->texture_object_size = texture_object_size;
668 heap->destroy_texture_object = destroy_tex_obj;
669
670 /* Force global heap init */
671 if (heap->global_age[0] == 0)
672 heap->local_age = ~0;
673 else
674 heap->local_age = 0;
675
676 make_empty_list( & heap->texture_objects );
677 driSetTextureSwapCounterLocation( heap, NULL );
678 }
679 else {
680 FREE( heap );
681 heap = NULL;
682 }
683 }
684
685
686 if ( 0 )
687 fprintf( stderr, "%s returning %p\n", __FUNCTION__, (void *)heap );
688
689 return heap;
690 }
691
692
693
694
695 /** Destroys a texture heap
696 *
697 * \param heap Texture heap to be destroyed
698 */
699
700 void
701 driDestroyTextureHeap( driTexHeap * heap )
702 {
703 driTextureObject * t;
704 driTextureObject * temp;
705
706
707 if ( heap != NULL ) {
708 foreach_s( t, temp, & heap->texture_objects ) {
709 driDestroyTextureObject( t );
710 }
711 foreach_s( t, temp, heap->swapped_objects ) {
712 driDestroyTextureObject( t );
713 }
714
715 mmDestroy( heap->memory_heap );
716 FREE( heap );
717 }
718 }
719
720
721
722
723 /****************************************************************************/
724 /**
725 * Determine how many texels (including all mipmap levels) would be required
726 * for a texture map of size \f$2^^\c base_size_log2\f$ would require.
727 *
728 * \param base_size_log2 \f$log_2\f$ of the size of a side of the texture
729 * \param dimensions Number of dimensions of the texture. Either 2 or 3.
730 * \param faces Number of faces of the texture. Either 1 or 6 (for cube maps).
731 * \return Number of texels
732 */
733
734 static unsigned
735 texels_this_map_size( int base_size_log2, unsigned dimensions, unsigned faces )
736 {
737 unsigned texels;
738
739
740 assert( (faces == 1) || (faces == 6) );
741 assert( (dimensions == 2) || (dimensions == 3) );
742
743 texels = 0;
744 if ( base_size_log2 >= 0 ) {
745 texels = (1U << (dimensions * base_size_log2));
746
747 /* See http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg03636.html
748 * for the complete explaination of why this formulation is used.
749 * Basically, the smaller mipmap levels sum to 0.333 the size of the
750 * level 0 map. The total size is therefore the size of the map
751 * multipled by 1.333. The +2 is there to round up.
752 */
753
754 texels = (texels * 4 * faces + 2) / 3;
755 }
756
757 return texels;
758 }
759
760
761
762
763 struct maps_per_heap {
764 unsigned c[32];
765 };
766
767 static void
768 fill_in_maximums( driTexHeap * const * heaps, unsigned nr_heaps,
769 unsigned max_bytes_per_texel, unsigned max_size,
770 unsigned mipmaps_at_once, unsigned dimensions,
771 unsigned faces, struct maps_per_heap * max_textures )
772 {
773 unsigned heap;
774 unsigned log2_size;
775 unsigned mask;
776
777
778 /* Determine how many textures of each size can be stored in each
779 * texture heap.
780 */
781
782 for ( heap = 0 ; heap < nr_heaps ; heap++ ) {
783 if ( heaps[ heap ] == NULL ) {
784 (void) memset( max_textures[ heap ].c, 0,
785 sizeof( max_textures[ heap ].c ) );
786 continue;
787 }
788
789 mask = (1U << heaps[ heap ]->logGranularity) - 1;
790
791 if ( 0 ) {
792 fprintf( stderr, "[%s:%d] heap[%u] = %u bytes, mask = 0x%08x\n",
793 __FILE__, __LINE__,
794 heap, heaps[ heap ]->size, mask );
795 }
796
797 for ( log2_size = max_size ; log2_size > 0 ; log2_size-- ) {
798 unsigned total;
799
800
801 /* Determine the total number of bytes required by a texture of
802 * size log2_size.
803 */
804
805 total = texels_this_map_size( log2_size, dimensions, faces )
806 - texels_this_map_size( log2_size - mipmaps_at_once,
807 dimensions, faces );
808 total *= max_bytes_per_texel;
809 total = (total + mask) & ~mask;
810
811 /* The number of textures of a given size that will fit in a heap
812 * is equal to the size of the heap divided by the size of the
813 * texture.
814 */
815
816 max_textures[ heap ].c[ log2_size ] = heaps[ heap ]->size / total;
817
818 if ( 0 ) {
819 fprintf( stderr, "[%s:%d] max_textures[%u].c[%02u] "
820 "= 0x%08x / 0x%08x "
821 "= %u (%u)\n",
822 __FILE__, __LINE__,
823 heap, log2_size,
824 heaps[ heap ]->size, total,
825 heaps[ heap ]->size / total,
826 max_textures[ heap ].c[ log2_size ] );
827 }
828 }
829 }
830 }
831
832
833 static unsigned
834 get_max_size( unsigned nr_heaps,
835 unsigned texture_units,
836 unsigned max_size,
837 int all_textures_one_heap,
838 struct maps_per_heap * max_textures )
839 {
840 unsigned heap;
841 unsigned log2_size;
842
843
844 /* Determine the largest texture size such that a texture of that size
845 * can be bound to each texture unit at the same time. Some hardware
846 * may require that all textures be in the same texture heap for
847 * multitexturing.
848 */
849
850 for ( log2_size = max_size ; log2_size > 0 ; log2_size-- ) {
851 unsigned total = 0;
852
853 for ( heap = 0 ; heap < nr_heaps ; heap++ )
854 {
855 total += max_textures[ heap ].c[ log2_size ];
856
857 if ( 0 ) {
858 fprintf( stderr, "[%s:%d] max_textures[%u].c[%02u] = %u, "
859 "total = %u\n", __FILE__, __LINE__, heap, log2_size,
860 max_textures[ heap ].c[ log2_size ], total );
861 }
862
863 if ( (max_textures[ heap ].c[ log2_size ] >= texture_units)
864 || (!all_textures_one_heap && (total >= texture_units)) ) {
865 /* The number of mipmap levels is the log-base-2 of the
866 * maximum texture size plus 1. If the maximum texture size
867 * is 1x1, the log-base-2 is 0 and 1 mipmap level (the base
868 * level) is available.
869 */
870
871 return log2_size + 1;
872 }
873 }
874 }
875
876 /* This should NEVER happen. It should always be possible to have at
877 * *least* a 1x1 texture in memory!
878 */
879 assert( log2_size != 0 );
880 return 0;
881 }
882
883 #define SET_MAX(f,v) \
884 do { if ( max_sizes[v] != 0 ) { limits-> f = max_sizes[v]; } } while( 0 )
885
886 #define SET_MAX_RECT(f,v) \
887 do { if ( max_sizes[v] != 0 ) { limits-> f = 1 << max_sizes[v]; } } while( 0 )
888
889
890 /**
891 * Given the amount of texture memory, the number of texture units, and the
892 * maximum size of a texel, calculate the maximum texture size the driver can
893 * advertise.
894 *
895 * \param heaps Texture heaps for this card
896 * \param nr_heap Number of texture heaps
897 * \param limits OpenGL contants. MaxTextureUnits must be set.
898 * \param max_bytes_per_texel Maximum size of a single texel, in bytes
899 * \param max_2D_size \f$\log_2\f$ of the maximum 2D texture size (i.e.,
900 * 1024x1024 textures, this would be 10)
901 * \param max_3D_size \f$\log_2\f$ of the maximum 3D texture size (i.e.,
902 * 1024x1024x1024 textures, this would be 10)
903 * \param max_cube_size \f$\log_2\f$ of the maximum cube texture size (i.e.,
904 * 1024x1024 textures, this would be 10)
905 * \param max_rect_size \f$\log_2\f$ of the maximum texture rectangle size
906 * (i.e., 1024x1024 textures, this would be 10). This is a power-of-2
907 * even though texture rectangles need not be a power-of-2.
908 * \param mipmaps_at_once Total number of mipmaps that can be used
909 * at one time. For most hardware this will be \f$\c max_size + 1\f$.
910 * For hardware that does not support mipmapping, this will be 1.
911 * \param all_textures_one_heap True if the hardware requires that all
912 * textures be in a single texture heap for multitexturing.
913 */
914
915 void
916 driCalculateMaxTextureLevels( driTexHeap * const * heaps,
917 unsigned nr_heaps,
918 struct gl_constants * limits,
919 unsigned max_bytes_per_texel,
920 unsigned max_2D_size,
921 unsigned max_3D_size,
922 unsigned max_cube_size,
923 unsigned max_rect_size,
924 unsigned mipmaps_at_once,
925 int all_textures_one_heap )
926 {
927 struct maps_per_heap max_textures[8];
928 unsigned i;
929 const unsigned dimensions[4] = { 2, 3, 2, 2 };
930 const unsigned faces[4] = { 1, 1, 6, 1 };
931 unsigned max_sizes[4];
932 unsigned mipmaps[4];
933
934
935 max_sizes[0] = max_2D_size;
936 max_sizes[1] = max_3D_size;
937 max_sizes[2] = max_cube_size;
938 max_sizes[3] = max_rect_size;
939
940 mipmaps[0] = mipmaps_at_once;
941 mipmaps[1] = mipmaps_at_once;
942 mipmaps[2] = 1;
943 mipmaps[3] = mipmaps_at_once;
944
945
946 /* Calculate the maximum number of texture levels in two passes. The
947 * first pass determines how many textures of each power-of-two size
948 * (including all mipmap levels for that size) can fit in each texture
949 * heap. The second pass finds the largest texture size that allows
950 * a texture of that size to be bound to every texture unit.
951 */
952
953 for ( i = 0 ; i < 4 ; i++ ) {
954 if ( max_sizes[ i ] != 0 ) {
955 fill_in_maximums( heaps, nr_heaps, max_bytes_per_texel,
956 max_sizes[ i ], mipmaps[ i ],
957 dimensions[ i ], faces[ i ],
958 max_textures );
959
960 max_sizes[ i ] = get_max_size( nr_heaps,
961 limits->MaxTextureUnits,
962 max_sizes[ i ],
963 all_textures_one_heap,
964 max_textures );
965 }
966 }
967
968 SET_MAX( MaxTextureLevels, 0 );
969 SET_MAX( Max3DTextureLevels, 1 );
970 SET_MAX( MaxCubeTextureLevels, 2 );
971 SET_MAX_RECT( MaxTextureRectSize, 3 );
972 }
973
974
975
976
977 /**
978 * Perform initial binding of default textures objects on a per unit, per
979 * texture target basis.
980 *
981 * \param ctx Current OpenGL context
982 * \param swapped List of swapped-out textures
983 * \param targets Bit-mask of value texture targets
984 */
985
986 void driInitTextureObjects( GLcontext *ctx, driTextureObject * swapped,
987 GLuint targets )
988 {
989 struct gl_texture_object *texObj;
990 GLuint tmp = ctx->Texture.CurrentUnit;
991 unsigned i;
992
993
994 for ( i = 0 ; i < ctx->Const.MaxTextureUnits ; i++ ) {
995 ctx->Texture.CurrentUnit = i;
996
997 if ( (targets & DRI_TEXMGR_DO_TEXTURE_1D) != 0 ) {
998 texObj = ctx->Texture.Unit[i].Current1D;
999 ctx->Driver.BindTexture( ctx, GL_TEXTURE_1D, texObj );
1000 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1001 }
1002
1003 if ( (targets & DRI_TEXMGR_DO_TEXTURE_2D) != 0 ) {
1004 texObj = ctx->Texture.Unit[i].Current2D;
1005 ctx->Driver.BindTexture( ctx, GL_TEXTURE_2D, texObj );
1006 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1007 }
1008
1009 if ( (targets & DRI_TEXMGR_DO_TEXTURE_3D) != 0 ) {
1010 texObj = ctx->Texture.Unit[i].Current3D;
1011 ctx->Driver.BindTexture( ctx, GL_TEXTURE_3D, texObj );
1012 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1013 }
1014
1015 if ( (targets & DRI_TEXMGR_DO_TEXTURE_CUBE) != 0 ) {
1016 texObj = ctx->Texture.Unit[i].CurrentCubeMap;
1017 ctx->Driver.BindTexture( ctx, GL_TEXTURE_CUBE_MAP_ARB, texObj );
1018 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1019 }
1020
1021 if ( (targets & DRI_TEXMGR_DO_TEXTURE_RECT) != 0 ) {
1022 texObj = ctx->Texture.Unit[i].CurrentRect;
1023 ctx->Driver.BindTexture( ctx, GL_TEXTURE_RECTANGLE_NV, texObj );
1024 move_to_tail( swapped, (driTextureObject *) texObj->DriverData );
1025 }
1026 }
1027
1028 ctx->Texture.CurrentUnit = tmp;
1029 }
1030
1031
1032
1033
1034 /**
1035 * Verify that the specified texture is in the specificed heap.
1036 *
1037 * \param tex Texture to be tested.
1038 * \param heap Texture memory heap to be tested.
1039 * \return True if the texture is in the heap, false otherwise.
1040 */
1041
1042 static GLboolean
1043 check_in_heap( const driTextureObject * tex, const driTexHeap * heap )
1044 {
1045 #if 1
1046 return tex->heap == heap;
1047 #else
1048 driTextureObject * curr;
1049
1050 foreach( curr, & heap->texture_objects ) {
1051 if ( curr == tex ) {
1052 break;
1053 }
1054 }
1055
1056 return curr == tex;
1057 #endif
1058 }
1059
1060
1061
1062 /****************************************************************************/
1063 /**
1064 * Validate the consistency of a set of texture heaps.
1065 * Original version by Keith Whitwell in r200/r200_sanity.c.
1066 */
1067
1068 GLboolean
1069 driValidateTextureHeaps( driTexHeap * const * texture_heaps,
1070 unsigned nr_heaps, const driTextureObject * swapped )
1071 {
1072 driTextureObject *t;
1073 unsigned i;
1074
1075 for ( i = 0 ; i < nr_heaps ; i++ ) {
1076 int last_end = 0;
1077 unsigned textures_in_heap = 0;
1078 unsigned blocks_in_mempool = 0;
1079 const driTexHeap * heap = texture_heaps[i];
1080 const memHeap_t * p = heap->memory_heap;
1081
1082 /* Check each texture object has a MemBlock, and is linked into
1083 * the correct heap.
1084 *
1085 * Check the texobj base address corresponds to the MemBlock
1086 * range. Check the texobj size (recalculate?) fits within
1087 * the MemBlock.
1088 *
1089 * Count the number of texobj's using this heap.
1090 */
1091
1092 foreach ( t, &heap->texture_objects ) {
1093 if ( !check_in_heap( t, heap ) ) {
1094 fprintf( stderr, "%s memory block for texture object @ %p not "
1095 "found in heap #%d\n",
1096 __FUNCTION__, (void *)t, i );
1097 return GL_FALSE;
1098 }
1099
1100
1101 if ( t->totalSize > t->memBlock->size ) {
1102 fprintf( stderr, "%s: Memory block for texture object @ %p is "
1103 "only %u bytes, but %u are required\n",
1104 __FUNCTION__, (void *)t, t->totalSize, t->memBlock->size );
1105 return GL_FALSE;
1106 }
1107
1108 textures_in_heap++;
1109 }
1110
1111 /* Validate the contents of the heap:
1112 * - Ordering
1113 * - Overlaps
1114 * - Bounds
1115 */
1116
1117 while ( p != NULL ) {
1118 if (p->reserved) {
1119 fprintf( stderr, "%s: Block (%08x,%x), is reserved?!\n",
1120 __FUNCTION__, p->ofs, p->size );
1121 return GL_FALSE;
1122 }
1123
1124 if (p->ofs != last_end) {
1125 fprintf( stderr, "%s: blocks_in_mempool = %d, last_end = %d, p->ofs = %d\n",
1126 __FUNCTION__, blocks_in_mempool, last_end, p->ofs );
1127 return GL_FALSE;
1128 }
1129
1130 if (!p->reserved && !p->free) {
1131 blocks_in_mempool++;
1132 }
1133
1134 last_end = p->ofs + p->size;
1135 p = p->next;
1136 }
1137
1138 if (textures_in_heap != blocks_in_mempool) {
1139 fprintf( stderr, "%s: Different number of textures objects (%u) and "
1140 "inuse memory blocks (%u)\n",
1141 __FUNCTION__, textures_in_heap, blocks_in_mempool );
1142 return GL_FALSE;
1143 }
1144
1145 #if 0
1146 fprintf( stderr, "%s: textures_in_heap = %u\n",
1147 __FUNCTION__, textures_in_heap );
1148 #endif
1149 }
1150
1151
1152 /* Check swapped texobj's have zero memblocks
1153 */
1154 i = 0;
1155 foreach ( t, swapped ) {
1156 if ( t->memBlock != NULL ) {
1157 fprintf( stderr, "%s: Swapped texobj %p has non-NULL memblock %p\n",
1158 __FUNCTION__, (void *)t, (void *)t->memBlock );
1159 return GL_FALSE;
1160 }
1161 i++;
1162 }
1163
1164 #if 0
1165 fprintf( stderr, "%s: swapped texture count = %u\n", __FUNCTION__, i );
1166 #endif
1167
1168 return GL_TRUE;
1169 }
1170
1171
1172
1173
1174 /****************************************************************************/
1175 /**
1176 * Compute which mipmap levels that really need to be sent to the hardware.
1177 * This depends on the base image size, GL_TEXTURE_MIN_LOD,
1178 * GL_TEXTURE_MAX_LOD, GL_TEXTURE_BASE_LEVEL, and GL_TEXTURE_MAX_LEVEL.
1179 */
1180
1181 void
1182 driCalculateTextureFirstLastLevel( driTextureObject * t )
1183 {
1184 struct gl_texture_object * const tObj = t->tObj;
1185 const struct gl_texture_image * const baseImage =
1186 tObj->Image[0][tObj->BaseLevel];
1187
1188 /* These must be signed values. MinLod and MaxLod can be negative numbers,
1189 * and having firstLevel and lastLevel as signed prevents the need for
1190 * extra sign checks.
1191 */
1192 int firstLevel;
1193 int lastLevel;
1194
1195 /* Yes, this looks overly complicated, but it's all needed.
1196 */
1197
1198 switch (tObj->Target) {
1199 case GL_TEXTURE_1D:
1200 case GL_TEXTURE_2D:
1201 case GL_TEXTURE_3D:
1202 case GL_TEXTURE_CUBE_MAP:
1203 if (tObj->MinFilter == GL_NEAREST || tObj->MinFilter == GL_LINEAR) {
1204 /* GL_NEAREST and GL_LINEAR only care about GL_TEXTURE_BASE_LEVEL.
1205 */
1206
1207 firstLevel = lastLevel = tObj->BaseLevel;
1208 }
1209 else {
1210 firstLevel = tObj->BaseLevel + (GLint)(tObj->MinLod + 0.5);
1211 firstLevel = MAX2(firstLevel, tObj->BaseLevel);
1212 lastLevel = tObj->BaseLevel + (GLint)(tObj->MaxLod + 0.5);
1213 lastLevel = MAX2(lastLevel, t->tObj->BaseLevel);
1214 lastLevel = MIN2(lastLevel, t->tObj->BaseLevel + baseImage->MaxLog2);
1215 lastLevel = MIN2(lastLevel, t->tObj->MaxLevel);
1216 lastLevel = MAX2(firstLevel, lastLevel); /* need at least one level */
1217 }
1218 break;
1219 case GL_TEXTURE_RECTANGLE_NV:
1220 case GL_TEXTURE_4D_SGIS:
1221 firstLevel = lastLevel = 0;
1222 break;
1223 default:
1224 return;
1225 }
1226
1227 /* save these values */
1228 t->firstLevel = firstLevel;
1229 t->lastLevel = lastLevel;
1230 }
1231
1232
1233
1234
1235 /**
1236 * \name DRI texture formats. Pointers initialized to either the big- or
1237 * little-endian Mesa formats.
1238 */
1239 /*@{*/
1240 const struct gl_texture_format *_dri_texformat_rgba8888 = NULL;
1241 const struct gl_texture_format *_dri_texformat_argb8888 = NULL;
1242 const struct gl_texture_format *_dri_texformat_rgb565 = NULL;
1243 const struct gl_texture_format *_dri_texformat_argb4444 = NULL;
1244 const struct gl_texture_format *_dri_texformat_argb1555 = NULL;
1245 const struct gl_texture_format *_dri_texformat_al88 = NULL;
1246 const struct gl_texture_format *_dri_texformat_a8 = &_mesa_texformat_a8;
1247 const struct gl_texture_format *_dri_texformat_ci8 = &_mesa_texformat_ci8;
1248 const struct gl_texture_format *_dri_texformat_i8 = &_mesa_texformat_i8;
1249 const struct gl_texture_format *_dri_texformat_l8 = &_mesa_texformat_l8;
1250 /*@}*/
1251
1252
1253 /**
1254 * Initialize little endian target, host byte order independent texture formats
1255 */
1256 void
1257 driInitTextureFormats(void)
1258 {
1259 const GLuint ui = 1;
1260 const GLubyte littleEndian = *((const GLubyte *) &ui);
1261
1262 if (littleEndian) {
1263 _dri_texformat_rgba8888 = &_mesa_texformat_rgba8888;
1264 _dri_texformat_argb8888 = &_mesa_texformat_argb8888;
1265 _dri_texformat_rgb565 = &_mesa_texformat_rgb565;
1266 _dri_texformat_argb4444 = &_mesa_texformat_argb4444;
1267 _dri_texformat_argb1555 = &_mesa_texformat_argb1555;
1268 _dri_texformat_al88 = &_mesa_texformat_al88;
1269 }
1270 else {
1271 _dri_texformat_rgba8888 = &_mesa_texformat_rgba8888_rev;
1272 _dri_texformat_argb8888 = &_mesa_texformat_argb8888_rev;
1273 _dri_texformat_rgb565 = &_mesa_texformat_rgb565_rev;
1274 _dri_texformat_argb4444 = &_mesa_texformat_argb4444_rev;
1275 _dri_texformat_argb1555 = &_mesa_texformat_argb1555_rev;
1276 _dri_texformat_al88 = &_mesa_texformat_al88_rev;
1277 }
1278 }