i965: Assume flexible hardware primitive restart exists in the future.
[mesa.git] / src / mesa / drivers / dri / i915 / i915_fragprog.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "main/glheader.h"
29 #include "main/macros.h"
30 #include "main/enums.h"
31
32 #include "program/prog_instruction.h"
33 #include "program/prog_parameter.h"
34 #include "program/program.h"
35 #include "program/programopt.h"
36 #include "program/prog_print.h"
37
38 #include "tnl/tnl.h"
39 #include "tnl/t_context.h"
40
41 #include "intel_batchbuffer.h"
42
43 #include "i915_reg.h"
44 #include "i915_context.h"
45 #include "i915_program.h"
46
47 static const GLfloat sin_quad_constants[2][4] = {
48 {
49 2.0,
50 -1.0,
51 .5,
52 .75
53 },
54 {
55 4.0,
56 -4.0,
57 1.0 / (2.0 * M_PI),
58 .2225
59 }
60 };
61
62 static const GLfloat sin_constants[4] = { 1.0,
63 -1.0 / (3 * 2 * 1),
64 1.0 / (5 * 4 * 3 * 2 * 1),
65 -1.0 / (7 * 6 * 5 * 4 * 3 * 2 * 1)
66 };
67
68 /* 1, -1/2!, 1/4!, -1/6! */
69 static const GLfloat cos_constants[4] = { 1.0,
70 -1.0 / (2 * 1),
71 1.0 / (4 * 3 * 2 * 1),
72 -1.0 / (6 * 5 * 4 * 3 * 2 * 1)
73 };
74
75 /**
76 * Retrieve a ureg for the given source register. Will emit
77 * constants, apply swizzling and negation as needed.
78 */
79 static GLuint
80 src_vector(struct i915_fragment_program *p,
81 const struct prog_src_register *source,
82 const struct gl_fragment_program *program)
83 {
84 GLuint src;
85
86 switch (source->File) {
87
88 /* Registers:
89 */
90 case PROGRAM_TEMPORARY:
91 if (source->Index >= I915_MAX_TEMPORARY) {
92 i915_program_error(p, "Exceeded max temporary reg: %d/%d",
93 source->Index, I915_MAX_TEMPORARY);
94 return 0;
95 }
96 src = UREG(REG_TYPE_R, source->Index);
97 break;
98 case PROGRAM_INPUT:
99 switch (source->Index) {
100 case VARYING_SLOT_POS:
101 src = i915_emit_decl(p, REG_TYPE_T, p->wpos_tex, D0_CHANNEL_ALL);
102 break;
103 case VARYING_SLOT_COL0:
104 src = i915_emit_decl(p, REG_TYPE_T, T_DIFFUSE, D0_CHANNEL_ALL);
105 break;
106 case VARYING_SLOT_COL1:
107 src = i915_emit_decl(p, REG_TYPE_T, T_SPECULAR, D0_CHANNEL_XYZ);
108 src = swizzle(src, X, Y, Z, ONE);
109 break;
110 case VARYING_SLOT_FOGC:
111 src = i915_emit_decl(p, REG_TYPE_T, T_FOG_W, D0_CHANNEL_W);
112 src = swizzle(src, W, ZERO, ZERO, ONE);
113 break;
114 case VARYING_SLOT_TEX0:
115 case VARYING_SLOT_TEX1:
116 case VARYING_SLOT_TEX2:
117 case VARYING_SLOT_TEX3:
118 case VARYING_SLOT_TEX4:
119 case VARYING_SLOT_TEX5:
120 case VARYING_SLOT_TEX6:
121 case VARYING_SLOT_TEX7:
122 src = i915_emit_decl(p, REG_TYPE_T,
123 T_TEX0 + (source->Index - VARYING_SLOT_TEX0),
124 D0_CHANNEL_ALL);
125 break;
126
127 case VARYING_SLOT_VAR0:
128 case VARYING_SLOT_VAR0 + 1:
129 case VARYING_SLOT_VAR0 + 2:
130 case VARYING_SLOT_VAR0 + 3:
131 case VARYING_SLOT_VAR0 + 4:
132 case VARYING_SLOT_VAR0 + 5:
133 case VARYING_SLOT_VAR0 + 6:
134 case VARYING_SLOT_VAR0 + 7:
135 src = i915_emit_decl(p, REG_TYPE_T,
136 T_TEX0 + (source->Index - VARYING_SLOT_VAR0),
137 D0_CHANNEL_ALL);
138 break;
139
140 default:
141 i915_program_error(p, "Bad source->Index: %d", source->Index);
142 return 0;
143 }
144 break;
145
146 case PROGRAM_OUTPUT:
147 switch (source->Index) {
148 case FRAG_RESULT_COLOR:
149 src = UREG(REG_TYPE_OC, 0);
150 break;
151 case FRAG_RESULT_DEPTH:
152 src = UREG(REG_TYPE_OD, 0);
153 break;
154 default:
155 i915_program_error(p, "Bad source->Index: %d", source->Index);
156 return 0;
157 }
158 break;
159
160 /* Various paramters and env values. All emitted to
161 * hardware as program constants.
162 */
163 case PROGRAM_LOCAL_PARAM:
164 src = i915_emit_param4fv(p, program->Base.LocalParams[source->Index]);
165 break;
166
167 case PROGRAM_ENV_PARAM:
168 src =
169 i915_emit_param4fv(p,
170 p->ctx->FragmentProgram.Parameters[source->
171 Index]);
172 break;
173
174 case PROGRAM_CONSTANT:
175 case PROGRAM_STATE_VAR:
176 case PROGRAM_UNIFORM:
177 src = i915_emit_param4fv(p,
178 &program->Base.Parameters->ParameterValues[source->Index][0].f);
179 break;
180
181 default:
182 i915_program_error(p, "Bad source->File: %d", source->File);
183 return 0;
184 }
185
186 src = swizzle(src,
187 GET_SWZ(source->Swizzle, 0),
188 GET_SWZ(source->Swizzle, 1),
189 GET_SWZ(source->Swizzle, 2), GET_SWZ(source->Swizzle, 3));
190
191 if (source->Negate)
192 src = negate(src,
193 GET_BIT(source->Negate, 0),
194 GET_BIT(source->Negate, 1),
195 GET_BIT(source->Negate, 2),
196 GET_BIT(source->Negate, 3));
197
198 return src;
199 }
200
201
202 static GLuint
203 get_result_vector(struct i915_fragment_program *p,
204 const struct prog_instruction *inst)
205 {
206 switch (inst->DstReg.File) {
207 case PROGRAM_OUTPUT:
208 switch (inst->DstReg.Index) {
209 case FRAG_RESULT_COLOR:
210 case FRAG_RESULT_DATA0:
211 return UREG(REG_TYPE_OC, 0);
212 case FRAG_RESULT_DEPTH:
213 p->depth_written = 1;
214 return UREG(REG_TYPE_OD, 0);
215 default:
216 i915_program_error(p, "Bad inst->DstReg.Index: %d",
217 inst->DstReg.Index);
218 return 0;
219 }
220 case PROGRAM_TEMPORARY:
221 return UREG(REG_TYPE_R, inst->DstReg.Index);
222 default:
223 i915_program_error(p, "Bad inst->DstReg.File: %d", inst->DstReg.File);
224 return 0;
225 }
226 }
227
228 static GLuint
229 get_result_flags(const struct prog_instruction *inst)
230 {
231 GLuint flags = 0;
232
233 if (inst->SaturateMode == SATURATE_ZERO_ONE)
234 flags |= A0_DEST_SATURATE;
235 if (inst->DstReg.WriteMask & WRITEMASK_X)
236 flags |= A0_DEST_CHANNEL_X;
237 if (inst->DstReg.WriteMask & WRITEMASK_Y)
238 flags |= A0_DEST_CHANNEL_Y;
239 if (inst->DstReg.WriteMask & WRITEMASK_Z)
240 flags |= A0_DEST_CHANNEL_Z;
241 if (inst->DstReg.WriteMask & WRITEMASK_W)
242 flags |= A0_DEST_CHANNEL_W;
243
244 return flags;
245 }
246
247 static GLuint
248 translate_tex_src_target(struct i915_fragment_program *p, GLubyte bit)
249 {
250 switch (bit) {
251 case TEXTURE_1D_INDEX:
252 return D0_SAMPLE_TYPE_2D;
253 case TEXTURE_2D_INDEX:
254 return D0_SAMPLE_TYPE_2D;
255 case TEXTURE_RECT_INDEX:
256 return D0_SAMPLE_TYPE_2D;
257 case TEXTURE_3D_INDEX:
258 return D0_SAMPLE_TYPE_VOLUME;
259 case TEXTURE_CUBE_INDEX:
260 return D0_SAMPLE_TYPE_CUBE;
261 default:
262 i915_program_error(p, "TexSrcBit: %d", bit);
263 return 0;
264 }
265 }
266
267 #define EMIT_TEX( OP ) \
268 do { \
269 GLuint dim = translate_tex_src_target( p, inst->TexSrcTarget ); \
270 const struct gl_fragment_program *program = &p->FragProg; \
271 GLuint unit = program->Base.SamplerUnits[inst->TexSrcUnit]; \
272 GLuint sampler = i915_emit_decl(p, REG_TYPE_S, \
273 unit, dim); \
274 GLuint coord = src_vector( p, &inst->SrcReg[0], program); \
275 /* Texel lookup */ \
276 \
277 i915_emit_texld( p, get_live_regs(p, inst), \
278 get_result_vector( p, inst ), \
279 get_result_flags( inst ), \
280 sampler, \
281 coord, \
282 OP); \
283 } while (0)
284
285 #define EMIT_ARITH( OP, N ) \
286 do { \
287 i915_emit_arith( p, \
288 OP, \
289 get_result_vector( p, inst ), \
290 get_result_flags( inst ), 0, \
291 (N<1)?0:src_vector( p, &inst->SrcReg[0], program), \
292 (N<2)?0:src_vector( p, &inst->SrcReg[1], program), \
293 (N<3)?0:src_vector( p, &inst->SrcReg[2], program)); \
294 } while (0)
295
296 #define EMIT_1ARG_ARITH( OP ) EMIT_ARITH( OP, 1 )
297 #define EMIT_2ARG_ARITH( OP ) EMIT_ARITH( OP, 2 )
298 #define EMIT_3ARG_ARITH( OP ) EMIT_ARITH( OP, 3 )
299
300 /*
301 * TODO: consider moving this into core
302 */
303 static bool calc_live_regs( struct i915_fragment_program *p )
304 {
305 const struct gl_fragment_program *program = &p->FragProg;
306 GLuint regsUsed = ~((1 << I915_MAX_TEMPORARY) - 1);
307 uint8_t live_components[I915_MAX_TEMPORARY] = { 0, };
308 GLint i;
309
310 for (i = program->Base.NumInstructions - 1; i >= 0; i--) {
311 struct prog_instruction *inst = &program->Base.Instructions[i];
312 int opArgs = _mesa_num_inst_src_regs(inst->Opcode);
313 int a;
314
315 /* Register is written to: unmark as live for this and preceeding ops */
316 if (inst->DstReg.File == PROGRAM_TEMPORARY) {
317 if (inst->DstReg.Index >= I915_MAX_TEMPORARY)
318 return false;
319
320 live_components[inst->DstReg.Index] &= ~inst->DstReg.WriteMask;
321 if (live_components[inst->DstReg.Index] == 0)
322 regsUsed &= ~(1 << inst->DstReg.Index);
323 }
324
325 for (a = 0; a < opArgs; a++) {
326 /* Register is read from: mark as live for this and preceeding ops */
327 if (inst->SrcReg[a].File == PROGRAM_TEMPORARY) {
328 unsigned c;
329
330 if (inst->SrcReg[a].Index >= I915_MAX_TEMPORARY)
331 return false;
332
333 regsUsed |= 1 << inst->SrcReg[a].Index;
334
335 for (c = 0; c < 4; c++) {
336 const unsigned field = GET_SWZ(inst->SrcReg[a].Swizzle, c);
337
338 if (field <= SWIZZLE_W)
339 live_components[inst->SrcReg[a].Index] |= (1U << field);
340 }
341 }
342 }
343
344 p->usedRegs[i] = regsUsed;
345 }
346
347 return true;
348 }
349
350 static GLuint get_live_regs( struct i915_fragment_program *p,
351 const struct prog_instruction *inst )
352 {
353 const struct gl_fragment_program *program = &p->FragProg;
354 GLuint nr = inst - program->Base.Instructions;
355
356 return p->usedRegs[nr];
357 }
358
359
360 /* Possible concerns:
361 *
362 * SIN, COS -- could use another taylor step?
363 * LIT -- results seem a little different to sw mesa
364 * LOG -- different to mesa on negative numbers, but this is conformant.
365 *
366 * Parse failures -- Mesa doesn't currently give a good indication
367 * internally whether a particular program string parsed or not. This
368 * can lead to confusion -- hopefully we cope with it ok now.
369 *
370 */
371 static void
372 upload_program(struct i915_fragment_program *p)
373 {
374 const struct gl_fragment_program *program = &p->FragProg;
375 const struct prog_instruction *inst = program->Base.Instructions;
376
377 if (INTEL_DEBUG & DEBUG_WM)
378 _mesa_print_program(&program->Base);
379
380 /* Is this a parse-failed program? Ensure a valid program is
381 * loaded, as the flagging of an error isn't sufficient to stop
382 * this being uploaded to hardware.
383 */
384 if (inst[0].Opcode == OPCODE_END) {
385 GLuint tmp = i915_get_utemp(p);
386 i915_emit_arith(p,
387 A0_MOV,
388 UREG(REG_TYPE_OC, 0),
389 A0_DEST_CHANNEL_ALL, 0,
390 swizzle(tmp, ONE, ZERO, ONE, ONE), 0, 0);
391 return;
392 }
393
394 if (program->Base.NumInstructions > I915_MAX_INSN) {
395 i915_program_error(p, "Exceeded max instructions (%d out of %d)",
396 program->Base.NumInstructions, I915_MAX_INSN);
397 return;
398 }
399
400 /* Not always needed:
401 */
402 if (!calc_live_regs(p)) {
403 i915_program_error(p, "Could not allocate registers");
404 return;
405 }
406
407 while (1) {
408 GLuint src0, src1, src2, flags;
409 GLuint tmp = 0, dst, consts0 = 0, consts1 = 0;
410
411 switch (inst->Opcode) {
412 case OPCODE_ABS:
413 src0 = src_vector(p, &inst->SrcReg[0], program);
414 i915_emit_arith(p,
415 A0_MAX,
416 get_result_vector(p, inst),
417 get_result_flags(inst), 0,
418 src0, negate(src0, 1, 1, 1, 1), 0);
419 break;
420
421 case OPCODE_ADD:
422 EMIT_2ARG_ARITH(A0_ADD);
423 break;
424
425 case OPCODE_CMP:
426 src0 = src_vector(p, &inst->SrcReg[0], program);
427 src1 = src_vector(p, &inst->SrcReg[1], program);
428 src2 = src_vector(p, &inst->SrcReg[2], program);
429 i915_emit_arith(p, A0_CMP, get_result_vector(p, inst), get_result_flags(inst), 0, src0, src2, src1); /* NOTE: order of src2, src1 */
430 break;
431
432 case OPCODE_COS:
433 src0 = src_vector(p, &inst->SrcReg[0], program);
434 tmp = i915_get_utemp(p);
435 consts0 = i915_emit_const4fv(p, sin_quad_constants[0]);
436 consts1 = i915_emit_const4fv(p, sin_quad_constants[1]);
437
438 /* Reduce range from repeating about [-pi,pi] to [-1,1] */
439 i915_emit_arith(p,
440 A0_MAD,
441 tmp, A0_DEST_CHANNEL_X, 0,
442 src0,
443 swizzle(consts1, Z, ZERO, ZERO, ZERO), /* 1/(2pi) */
444 swizzle(consts0, W, ZERO, ZERO, ZERO)); /* .75 */
445
446 i915_emit_arith(p, A0_FRC, tmp, A0_DEST_CHANNEL_X, 0, tmp, 0, 0);
447
448 i915_emit_arith(p,
449 A0_MAD,
450 tmp, A0_DEST_CHANNEL_X, 0,
451 tmp,
452 swizzle(consts0, X, ZERO, ZERO, ZERO), /* 2 */
453 swizzle(consts0, Y, ZERO, ZERO, ZERO)); /* -1 */
454
455 /* Compute COS with the same calculation used for SIN, but a
456 * different source range has been mapped to [-1,1] this time.
457 */
458
459 /* tmp.y = abs(tmp.x); {x, abs(x), 0, 0} */
460 i915_emit_arith(p,
461 A0_MAX,
462 tmp, A0_DEST_CHANNEL_Y, 0,
463 swizzle(tmp, ZERO, X, ZERO, ZERO),
464 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
465 0);
466
467 /* tmp.y = tmp.y * tmp.x; {x, x * abs(x), 0, 0} */
468 i915_emit_arith(p,
469 A0_MUL,
470 tmp, A0_DEST_CHANNEL_Y, 0,
471 swizzle(tmp, ZERO, X, ZERO, ZERO),
472 tmp,
473 0);
474
475 /* tmp.x = tmp.xy DP sin_quad_constants[2].xy */
476 i915_emit_arith(p,
477 A0_DP3,
478 tmp, A0_DEST_CHANNEL_X, 0,
479 tmp,
480 swizzle(consts1, X, Y, ZERO, ZERO),
481 0);
482
483 /* tmp.x now contains a first approximation (y). Now, weight it
484 * against tmp.y**2 to get closer.
485 */
486 i915_emit_arith(p,
487 A0_MAX,
488 tmp, A0_DEST_CHANNEL_Y, 0,
489 swizzle(tmp, ZERO, X, ZERO, ZERO),
490 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
491 0);
492
493 /* tmp.y = tmp.x * tmp.y - tmp.x; {y, y * abs(y) - y, 0, 0} */
494 i915_emit_arith(p,
495 A0_MAD,
496 tmp, A0_DEST_CHANNEL_Y, 0,
497 swizzle(tmp, ZERO, X, ZERO, ZERO),
498 swizzle(tmp, ZERO, Y, ZERO, ZERO),
499 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0));
500
501 /* result = .2225 * tmp.y + tmp.x =.2225(y * abs(y) - y) + y= */
502 i915_emit_arith(p,
503 A0_MAD,
504 get_result_vector(p, inst),
505 get_result_flags(inst), 0,
506 swizzle(consts1, W, W, W, W),
507 swizzle(tmp, Y, Y, Y, Y),
508 swizzle(tmp, X, X, X, X));
509 break;
510
511 case OPCODE_DP2:
512 src0 = src_vector(p, &inst->SrcReg[0], program);
513 src1 = src_vector(p, &inst->SrcReg[1], program);
514 i915_emit_arith(p,
515 A0_DP3,
516 get_result_vector(p, inst),
517 get_result_flags(inst), 0,
518 swizzle(src0, X, Y, ZERO, ZERO),
519 swizzle(src1, X, Y, ZERO, ZERO),
520 0);
521 break;
522
523 case OPCODE_DP3:
524 EMIT_2ARG_ARITH(A0_DP3);
525 break;
526
527 case OPCODE_DP4:
528 EMIT_2ARG_ARITH(A0_DP4);
529 break;
530
531 case OPCODE_DPH:
532 src0 = src_vector(p, &inst->SrcReg[0], program);
533 src1 = src_vector(p, &inst->SrcReg[1], program);
534
535 i915_emit_arith(p,
536 A0_DP4,
537 get_result_vector(p, inst),
538 get_result_flags(inst), 0,
539 swizzle(src0, X, Y, Z, ONE), src1, 0);
540 break;
541
542 case OPCODE_DST:
543 src0 = src_vector(p, &inst->SrcReg[0], program);
544 src1 = src_vector(p, &inst->SrcReg[1], program);
545
546 /* result[0] = 1 * 1;
547 * result[1] = a[1] * b[1];
548 * result[2] = a[2] * 1;
549 * result[3] = 1 * b[3];
550 */
551 i915_emit_arith(p,
552 A0_MUL,
553 get_result_vector(p, inst),
554 get_result_flags(inst), 0,
555 swizzle(src0, ONE, Y, Z, ONE),
556 swizzle(src1, ONE, Y, ONE, W), 0);
557 break;
558
559 case OPCODE_EX2:
560 src0 = src_vector(p, &inst->SrcReg[0], program);
561
562 i915_emit_arith(p,
563 A0_EXP,
564 get_result_vector(p, inst),
565 get_result_flags(inst), 0,
566 swizzle(src0, X, X, X, X), 0, 0);
567 break;
568
569 case OPCODE_FLR:
570 EMIT_1ARG_ARITH(A0_FLR);
571 break;
572
573 case OPCODE_TRUNC:
574 EMIT_1ARG_ARITH(A0_TRC);
575 break;
576
577 case OPCODE_FRC:
578 EMIT_1ARG_ARITH(A0_FRC);
579 break;
580
581 case OPCODE_KIL:
582 src0 = src_vector(p, &inst->SrcReg[0], program);
583 tmp = i915_get_utemp(p);
584
585 i915_emit_texld(p, get_live_regs(p, inst),
586 tmp, A0_DEST_CHANNEL_ALL, /* use a dummy dest reg */
587 0, src0, T0_TEXKILL);
588 break;
589
590 case OPCODE_KIL_NV:
591 if (inst->DstReg.CondMask == COND_TR) {
592 tmp = i915_get_utemp(p);
593
594 /* The KIL instruction discards the fragment if any component of
595 * the source is < 0. Emit an immediate operand of {-1}.xywz.
596 */
597 i915_emit_texld(p, get_live_regs(p, inst),
598 tmp, A0_DEST_CHANNEL_ALL,
599 0, /* use a dummy dest reg */
600 negate(swizzle(tmp, ONE, ONE, ONE, ONE),
601 1, 1, 1, 1),
602 T0_TEXKILL);
603 } else {
604 p->error = 1;
605 i915_program_error(p, "Unsupported KIL_NV condition code: %d",
606 inst->DstReg.CondMask);
607 }
608 break;
609
610 case OPCODE_LG2:
611 src0 = src_vector(p, &inst->SrcReg[0], program);
612
613 i915_emit_arith(p,
614 A0_LOG,
615 get_result_vector(p, inst),
616 get_result_flags(inst), 0,
617 swizzle(src0, X, X, X, X), 0, 0);
618 break;
619
620 case OPCODE_LIT:
621 src0 = src_vector(p, &inst->SrcReg[0], program);
622 tmp = i915_get_utemp(p);
623
624 /* tmp = max( a.xyzw, a.00zw )
625 * XXX: Clamp tmp.w to -128..128
626 * tmp.y = log(tmp.y)
627 * tmp.y = tmp.w * tmp.y
628 * tmp.y = exp(tmp.y)
629 * result = cmp (a.11-x1, a.1x01, a.1xy1 )
630 */
631 i915_emit_arith(p, A0_MAX, tmp, A0_DEST_CHANNEL_ALL, 0,
632 src0, swizzle(src0, ZERO, ZERO, Z, W), 0);
633
634 i915_emit_arith(p, A0_LOG, tmp, A0_DEST_CHANNEL_Y, 0,
635 swizzle(tmp, Y, Y, Y, Y), 0, 0);
636
637 i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_Y, 0,
638 swizzle(tmp, ZERO, Y, ZERO, ZERO),
639 swizzle(tmp, ZERO, W, ZERO, ZERO), 0);
640
641 i915_emit_arith(p, A0_EXP, tmp, A0_DEST_CHANNEL_Y, 0,
642 swizzle(tmp, Y, Y, Y, Y), 0, 0);
643
644 i915_emit_arith(p, A0_CMP,
645 get_result_vector(p, inst),
646 get_result_flags(inst), 0,
647 negate(swizzle(tmp, ONE, ONE, X, ONE), 0, 0, 1, 0),
648 swizzle(tmp, ONE, X, ZERO, ONE),
649 swizzle(tmp, ONE, X, Y, ONE));
650
651 break;
652
653 case OPCODE_LRP:
654 src0 = src_vector(p, &inst->SrcReg[0], program);
655 src1 = src_vector(p, &inst->SrcReg[1], program);
656 src2 = src_vector(p, &inst->SrcReg[2], program);
657 flags = get_result_flags(inst);
658 tmp = i915_get_utemp(p);
659
660 /* b*a + c*(1-a)
661 *
662 * b*a + c - ca
663 *
664 * tmp = b*a + c,
665 * result = (-c)*a + tmp
666 */
667 i915_emit_arith(p, A0_MAD, tmp,
668 flags & A0_DEST_CHANNEL_ALL, 0, src1, src0, src2);
669
670 i915_emit_arith(p, A0_MAD,
671 get_result_vector(p, inst),
672 flags, 0, negate(src2, 1, 1, 1, 1), src0, tmp);
673 break;
674
675 case OPCODE_MAD:
676 EMIT_3ARG_ARITH(A0_MAD);
677 break;
678
679 case OPCODE_MAX:
680 EMIT_2ARG_ARITH(A0_MAX);
681 break;
682
683 case OPCODE_MIN:
684 src0 = src_vector(p, &inst->SrcReg[0], program);
685 src1 = src_vector(p, &inst->SrcReg[1], program);
686 tmp = i915_get_utemp(p);
687 flags = get_result_flags(inst);
688
689 i915_emit_arith(p,
690 A0_MAX,
691 tmp, flags & A0_DEST_CHANNEL_ALL, 0,
692 negate(src0, 1, 1, 1, 1),
693 negate(src1, 1, 1, 1, 1), 0);
694
695 i915_emit_arith(p,
696 A0_MOV,
697 get_result_vector(p, inst),
698 flags, 0, negate(tmp, 1, 1, 1, 1), 0, 0);
699 break;
700
701 case OPCODE_MOV:
702 EMIT_1ARG_ARITH(A0_MOV);
703 break;
704
705 case OPCODE_MUL:
706 EMIT_2ARG_ARITH(A0_MUL);
707 break;
708
709 case OPCODE_POW:
710 src0 = src_vector(p, &inst->SrcReg[0], program);
711 src1 = src_vector(p, &inst->SrcReg[1], program);
712 tmp = i915_get_utemp(p);
713 flags = get_result_flags(inst);
714
715 /* XXX: masking on intermediate values, here and elsewhere.
716 */
717 i915_emit_arith(p,
718 A0_LOG,
719 tmp, A0_DEST_CHANNEL_X, 0,
720 swizzle(src0, X, X, X, X), 0, 0);
721
722 i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_X, 0, tmp, src1, 0);
723
724
725 i915_emit_arith(p,
726 A0_EXP,
727 get_result_vector(p, inst),
728 flags, 0, swizzle(tmp, X, X, X, X), 0, 0);
729
730 break;
731
732 case OPCODE_RCP:
733 src0 = src_vector(p, &inst->SrcReg[0], program);
734
735 i915_emit_arith(p,
736 A0_RCP,
737 get_result_vector(p, inst),
738 get_result_flags(inst), 0,
739 swizzle(src0, X, X, X, X), 0, 0);
740 break;
741
742 case OPCODE_RSQ:
743
744 src0 = src_vector(p, &inst->SrcReg[0], program);
745
746 i915_emit_arith(p,
747 A0_RSQ,
748 get_result_vector(p, inst),
749 get_result_flags(inst), 0,
750 swizzle(src0, X, X, X, X), 0, 0);
751 break;
752
753 case OPCODE_SCS:
754 src0 = src_vector(p, &inst->SrcReg[0], program);
755 tmp = i915_get_utemp(p);
756
757 /*
758 * t0.xy = MUL x.xx11, x.x1111 ; x^2, x, 1, 1
759 * t0 = MUL t0.xyxy t0.xx11 ; x^4, x^3, x^2, x
760 * t1 = MUL t0.xyyw t0.yz11 ; x^7 x^5 x^3 x
761 * scs.x = DP4 t1, sin_constants
762 * t1 = MUL t0.xxz1 t0.z111 ; x^6 x^4 x^2 1
763 * scs.y = DP4 t1, cos_constants
764 */
765 i915_emit_arith(p,
766 A0_MUL,
767 tmp, A0_DEST_CHANNEL_XY, 0,
768 swizzle(src0, X, X, ONE, ONE),
769 swizzle(src0, X, ONE, ONE, ONE), 0);
770
771 i915_emit_arith(p,
772 A0_MUL,
773 tmp, A0_DEST_CHANNEL_ALL, 0,
774 swizzle(tmp, X, Y, X, Y),
775 swizzle(tmp, X, X, ONE, ONE), 0);
776
777 if (inst->DstReg.WriteMask & WRITEMASK_Y) {
778 GLuint tmp1;
779
780 if (inst->DstReg.WriteMask & WRITEMASK_X)
781 tmp1 = i915_get_utemp(p);
782 else
783 tmp1 = tmp;
784
785 i915_emit_arith(p,
786 A0_MUL,
787 tmp1, A0_DEST_CHANNEL_ALL, 0,
788 swizzle(tmp, X, Y, Y, W),
789 swizzle(tmp, X, Z, ONE, ONE), 0);
790
791 i915_emit_arith(p,
792 A0_DP4,
793 get_result_vector(p, inst),
794 A0_DEST_CHANNEL_Y, 0,
795 swizzle(tmp1, W, Z, Y, X),
796 i915_emit_const4fv(p, sin_constants), 0);
797 }
798
799 if (inst->DstReg.WriteMask & WRITEMASK_X) {
800 i915_emit_arith(p,
801 A0_MUL,
802 tmp, A0_DEST_CHANNEL_XYZ, 0,
803 swizzle(tmp, X, X, Z, ONE),
804 swizzle(tmp, Z, ONE, ONE, ONE), 0);
805
806 i915_emit_arith(p,
807 A0_DP4,
808 get_result_vector(p, inst),
809 A0_DEST_CHANNEL_X, 0,
810 swizzle(tmp, ONE, Z, Y, X),
811 i915_emit_const4fv(p, cos_constants), 0);
812 }
813 break;
814
815 case OPCODE_SEQ:
816 tmp = i915_get_utemp(p);
817 flags = get_result_flags(inst);
818 dst = get_result_vector(p, inst);
819
820 /* tmp = src1 >= src2 */
821 i915_emit_arith(p,
822 A0_SGE,
823 tmp,
824 flags, 0,
825 src_vector(p, &inst->SrcReg[0], program),
826 src_vector(p, &inst->SrcReg[1], program),
827 0);
828 /* dst = src1 <= src2 */
829 i915_emit_arith(p,
830 A0_SGE,
831 dst,
832 flags, 0,
833 negate(src_vector(p, &inst->SrcReg[0], program),
834 1, 1, 1, 1),
835 negate(src_vector(p, &inst->SrcReg[1], program),
836 1, 1, 1, 1),
837 0);
838 /* dst = tmp && dst */
839 i915_emit_arith(p,
840 A0_MUL,
841 dst,
842 flags, 0,
843 dst,
844 tmp,
845 0);
846 break;
847
848 case OPCODE_SIN:
849 src0 = src_vector(p, &inst->SrcReg[0], program);
850 tmp = i915_get_utemp(p);
851 consts0 = i915_emit_const4fv(p, sin_quad_constants[0]);
852 consts1 = i915_emit_const4fv(p, sin_quad_constants[1]);
853
854 /* Reduce range from repeating about [-pi,pi] to [-1,1] */
855 i915_emit_arith(p,
856 A0_MAD,
857 tmp, A0_DEST_CHANNEL_X, 0,
858 src0,
859 swizzle(consts1, Z, ZERO, ZERO, ZERO), /* 1/(2pi) */
860 swizzle(consts0, Z, ZERO, ZERO, ZERO)); /* .5 */
861
862 i915_emit_arith(p, A0_FRC, tmp, A0_DEST_CHANNEL_X, 0, tmp, 0, 0);
863
864 i915_emit_arith(p,
865 A0_MAD,
866 tmp, A0_DEST_CHANNEL_X, 0,
867 tmp,
868 swizzle(consts0, X, ZERO, ZERO, ZERO), /* 2 */
869 swizzle(consts0, Y, ZERO, ZERO, ZERO)); /* -1 */
870
871 /* Compute sin using a quadratic and quartic. It gives continuity
872 * that repeating the Taylor series lacks every 2*pi, and has
873 * reduced error.
874 *
875 * The idea was described at:
876 * http://www.devmaster.net/forums/showthread.php?t=5784
877 */
878
879 /* tmp.y = abs(tmp.x); {x, abs(x), 0, 0} */
880 i915_emit_arith(p,
881 A0_MAX,
882 tmp, A0_DEST_CHANNEL_Y, 0,
883 swizzle(tmp, ZERO, X, ZERO, ZERO),
884 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
885 0);
886
887 /* tmp.y = tmp.y * tmp.x; {x, x * abs(x), 0, 0} */
888 i915_emit_arith(p,
889 A0_MUL,
890 tmp, A0_DEST_CHANNEL_Y, 0,
891 swizzle(tmp, ZERO, X, ZERO, ZERO),
892 tmp,
893 0);
894
895 /* tmp.x = tmp.xy DP sin_quad_constants[2].xy */
896 i915_emit_arith(p,
897 A0_DP3,
898 tmp, A0_DEST_CHANNEL_X, 0,
899 tmp,
900 swizzle(consts1, X, Y, ZERO, ZERO),
901 0);
902
903 /* tmp.x now contains a first approximation (y). Now, weight it
904 * against tmp.y**2 to get closer.
905 */
906 i915_emit_arith(p,
907 A0_MAX,
908 tmp, A0_DEST_CHANNEL_Y, 0,
909 swizzle(tmp, ZERO, X, ZERO, ZERO),
910 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
911 0);
912
913 /* tmp.y = tmp.x * tmp.y - tmp.x; {y, y * abs(y) - y, 0, 0} */
914 i915_emit_arith(p,
915 A0_MAD,
916 tmp, A0_DEST_CHANNEL_Y, 0,
917 swizzle(tmp, ZERO, X, ZERO, ZERO),
918 swizzle(tmp, ZERO, Y, ZERO, ZERO),
919 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0));
920
921 /* result = .2225 * tmp.y + tmp.x =.2225(y * abs(y) - y) + y= */
922 i915_emit_arith(p,
923 A0_MAD,
924 get_result_vector(p, inst),
925 get_result_flags(inst), 0,
926 swizzle(consts1, W, W, W, W),
927 swizzle(tmp, Y, Y, Y, Y),
928 swizzle(tmp, X, X, X, X));
929
930 break;
931
932 case OPCODE_SGE:
933 EMIT_2ARG_ARITH(A0_SGE);
934 break;
935
936 case OPCODE_SGT:
937 i915_emit_arith(p,
938 A0_SLT,
939 get_result_vector( p, inst ),
940 get_result_flags( inst ), 0,
941 negate(src_vector( p, &inst->SrcReg[0], program),
942 1, 1, 1, 1),
943 negate(src_vector( p, &inst->SrcReg[1], program),
944 1, 1, 1, 1),
945 0);
946 break;
947
948 case OPCODE_SLE:
949 i915_emit_arith(p,
950 A0_SGE,
951 get_result_vector( p, inst ),
952 get_result_flags( inst ), 0,
953 negate(src_vector( p, &inst->SrcReg[0], program),
954 1, 1, 1, 1),
955 negate(src_vector( p, &inst->SrcReg[1], program),
956 1, 1, 1, 1),
957 0);
958 break;
959
960 case OPCODE_SLT:
961 EMIT_2ARG_ARITH(A0_SLT);
962 break;
963
964 case OPCODE_SNE:
965 tmp = i915_get_utemp(p);
966 flags = get_result_flags(inst);
967 dst = get_result_vector(p, inst);
968
969 /* tmp = src1 < src2 */
970 i915_emit_arith(p,
971 A0_SLT,
972 tmp,
973 flags, 0,
974 src_vector(p, &inst->SrcReg[0], program),
975 src_vector(p, &inst->SrcReg[1], program),
976 0);
977 /* dst = src1 > src2 */
978 i915_emit_arith(p,
979 A0_SLT,
980 dst,
981 flags, 0,
982 negate(src_vector(p, &inst->SrcReg[0], program),
983 1, 1, 1, 1),
984 negate(src_vector(p, &inst->SrcReg[1], program),
985 1, 1, 1, 1),
986 0);
987 /* dst = tmp || dst */
988 i915_emit_arith(p,
989 A0_ADD,
990 dst,
991 flags | A0_DEST_SATURATE, 0,
992 dst,
993 tmp,
994 0);
995 break;
996
997 case OPCODE_SSG:
998 dst = get_result_vector(p, inst);
999 flags = get_result_flags(inst);
1000 src0 = src_vector(p, &inst->SrcReg[0], program);
1001 tmp = i915_get_utemp(p);
1002
1003 /* tmp = (src < 0.0) */
1004 i915_emit_arith(p,
1005 A0_SLT,
1006 tmp,
1007 flags, 0,
1008 src0,
1009 swizzle(src0, ZERO, ZERO, ZERO, ZERO),
1010 0);
1011
1012 /* dst = (0.0 < src) */
1013 i915_emit_arith(p,
1014 A0_SLT,
1015 dst,
1016 flags, 0,
1017 swizzle(src0, ZERO, ZERO, ZERO, ZERO),
1018 src0,
1019 0);
1020
1021 /* dst = (src > 0.0) - (src < 0.0) */
1022 i915_emit_arith(p,
1023 A0_ADD,
1024 dst,
1025 flags, 0,
1026 dst,
1027 negate(tmp, 1, 1, 1, 1),
1028 0);
1029
1030 break;
1031
1032 case OPCODE_SUB:
1033 src0 = src_vector(p, &inst->SrcReg[0], program);
1034 src1 = src_vector(p, &inst->SrcReg[1], program);
1035
1036 i915_emit_arith(p,
1037 A0_ADD,
1038 get_result_vector(p, inst),
1039 get_result_flags(inst), 0,
1040 src0, negate(src1, 1, 1, 1, 1), 0);
1041 break;
1042
1043 case OPCODE_SWZ:
1044 EMIT_1ARG_ARITH(A0_MOV); /* extended swizzle handled natively */
1045 break;
1046
1047 case OPCODE_TEX:
1048 EMIT_TEX(T0_TEXLD);
1049 break;
1050
1051 case OPCODE_TXB:
1052 EMIT_TEX(T0_TEXLDB);
1053 break;
1054
1055 case OPCODE_TXP:
1056 EMIT_TEX(T0_TEXLDP);
1057 break;
1058
1059 case OPCODE_XPD:
1060 /* Cross product:
1061 * result.x = src0.y * src1.z - src0.z * src1.y;
1062 * result.y = src0.z * src1.x - src0.x * src1.z;
1063 * result.z = src0.x * src1.y - src0.y * src1.x;
1064 * result.w = undef;
1065 */
1066 src0 = src_vector(p, &inst->SrcReg[0], program);
1067 src1 = src_vector(p, &inst->SrcReg[1], program);
1068 tmp = i915_get_utemp(p);
1069
1070 i915_emit_arith(p,
1071 A0_MUL,
1072 tmp, A0_DEST_CHANNEL_ALL, 0,
1073 swizzle(src0, Z, X, Y, ONE),
1074 swizzle(src1, Y, Z, X, ONE), 0);
1075
1076 i915_emit_arith(p,
1077 A0_MAD,
1078 get_result_vector(p, inst),
1079 get_result_flags(inst), 0,
1080 swizzle(src0, Y, Z, X, ONE),
1081 swizzle(src1, Z, X, Y, ONE),
1082 negate(tmp, 1, 1, 1, 0));
1083 break;
1084
1085 case OPCODE_END:
1086 return;
1087
1088 case OPCODE_BGNLOOP:
1089 case OPCODE_BGNSUB:
1090 case OPCODE_BRK:
1091 case OPCODE_CAL:
1092 case OPCODE_CONT:
1093 case OPCODE_DDX:
1094 case OPCODE_DDY:
1095 case OPCODE_ELSE:
1096 case OPCODE_ENDIF:
1097 case OPCODE_ENDLOOP:
1098 case OPCODE_ENDSUB:
1099 case OPCODE_IF:
1100 case OPCODE_RET:
1101 p->error = 1;
1102 i915_program_error(p, "Unsupported opcode: %s",
1103 _mesa_opcode_string(inst->Opcode));
1104 return;
1105
1106 case OPCODE_EXP:
1107 case OPCODE_LOG:
1108 /* These opcodes are claimed as GLSL, NV_vp, and ARB_vp in
1109 * prog_instruction.h, but apparently GLSL doesn't ever emit them.
1110 * Instead, it translates to EX2 or LG2.
1111 */
1112 case OPCODE_TXD:
1113 case OPCODE_TXL:
1114 /* These opcodes are claimed by GLSL in prog_instruction.h, but
1115 * only NV_vp/fp appears to emit them.
1116 */
1117 default:
1118 i915_program_error(p, "bad opcode: %s",
1119 _mesa_opcode_string(inst->Opcode));
1120 return;
1121 }
1122
1123 inst++;
1124 i915_release_utemps(p);
1125 }
1126 }
1127
1128 /* Rather than trying to intercept and jiggle depth writes during
1129 * emit, just move the value into its correct position at the end of
1130 * the program:
1131 */
1132 static void
1133 fixup_depth_write(struct i915_fragment_program *p)
1134 {
1135 if (p->depth_written) {
1136 GLuint depth = UREG(REG_TYPE_OD, 0);
1137
1138 i915_emit_arith(p,
1139 A0_MOV,
1140 depth, A0_DEST_CHANNEL_W, 0,
1141 swizzle(depth, X, Y, Z, Z), 0, 0);
1142 }
1143 }
1144
1145
1146 static void
1147 check_wpos(struct i915_fragment_program *p)
1148 {
1149 GLbitfield64 inputs = p->FragProg.Base.InputsRead;
1150 GLint i;
1151
1152 p->wpos_tex = -1;
1153
1154 for (i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) {
1155 if (inputs & (VARYING_BIT_TEX(i) | VARYING_BIT_VAR(i)))
1156 continue;
1157 else if (inputs & VARYING_BIT_POS) {
1158 p->wpos_tex = i;
1159 inputs &= ~VARYING_BIT_POS;
1160 }
1161 }
1162
1163 if (inputs & VARYING_BIT_POS) {
1164 i915_program_error(p, "No free texcoord for wpos value");
1165 }
1166 }
1167
1168
1169 static void
1170 translate_program(struct i915_fragment_program *p)
1171 {
1172 struct i915_context *i915 = I915_CONTEXT(p->ctx);
1173
1174 if (INTEL_DEBUG & DEBUG_WM) {
1175 printf("fp:\n");
1176 _mesa_print_program(&p->FragProg.Base);
1177 printf("\n");
1178 }
1179
1180 i915_init_program(i915, p);
1181 check_wpos(p);
1182 upload_program(p);
1183 fixup_depth_write(p);
1184 i915_fini_program(p);
1185
1186 p->translated = 1;
1187 }
1188
1189
1190 static void
1191 track_params(struct i915_fragment_program *p)
1192 {
1193 GLint i;
1194
1195 if (p->nr_params)
1196 _mesa_load_state_parameters(p->ctx, p->FragProg.Base.Parameters);
1197
1198 for (i = 0; i < p->nr_params; i++) {
1199 GLint reg = p->param[i].reg;
1200 COPY_4V(p->constant[reg], p->param[i].values);
1201 }
1202
1203 p->params_uptodate = 1;
1204 p->on_hardware = 0; /* overkill */
1205 }
1206
1207
1208 static void
1209 i915BindProgram(struct gl_context * ctx, GLenum target, struct gl_program *prog)
1210 {
1211 if (target == GL_FRAGMENT_PROGRAM_ARB) {
1212 struct i915_context *i915 = I915_CONTEXT(ctx);
1213 struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
1214
1215 if (i915->current_program == p)
1216 return;
1217
1218 if (i915->current_program) {
1219 i915->current_program->on_hardware = 0;
1220 i915->current_program->params_uptodate = 0;
1221 }
1222
1223 i915->current_program = p;
1224
1225 assert(p->on_hardware == 0);
1226 assert(p->params_uptodate == 0);
1227
1228 }
1229 }
1230
1231 static struct gl_program *
1232 i915NewProgram(struct gl_context * ctx, GLenum target, GLuint id)
1233 {
1234 switch (target) {
1235 case GL_VERTEX_PROGRAM_ARB:
1236 return _mesa_init_vertex_program(ctx, CALLOC_STRUCT(gl_vertex_program),
1237 target, id);
1238
1239 case GL_FRAGMENT_PROGRAM_ARB:{
1240 struct i915_fragment_program *prog =
1241 CALLOC_STRUCT(i915_fragment_program);
1242 if (prog) {
1243 i915_init_program(I915_CONTEXT(ctx), prog);
1244
1245 return _mesa_init_fragment_program(ctx, &prog->FragProg,
1246 target, id);
1247 }
1248 else
1249 return NULL;
1250 }
1251
1252 default:
1253 /* Just fallback:
1254 */
1255 return _mesa_new_program(ctx, target, id);
1256 }
1257 }
1258
1259 static void
1260 i915DeleteProgram(struct gl_context * ctx, struct gl_program *prog)
1261 {
1262 if (prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1263 struct i915_context *i915 = I915_CONTEXT(ctx);
1264 struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
1265
1266 if (i915->current_program == p)
1267 i915->current_program = 0;
1268 }
1269
1270 _mesa_delete_program(ctx, prog);
1271 }
1272
1273
1274 static GLboolean
1275 i915IsProgramNative(struct gl_context * ctx, GLenum target, struct gl_program *prog)
1276 {
1277 if (target == GL_FRAGMENT_PROGRAM_ARB) {
1278 struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
1279
1280 if (!p->translated)
1281 translate_program(p);
1282
1283 return !p->error;
1284 }
1285 else
1286 return true;
1287 }
1288
1289 static GLboolean
1290 i915ProgramStringNotify(struct gl_context * ctx,
1291 GLenum target, struct gl_program *prog)
1292 {
1293 if (target == GL_FRAGMENT_PROGRAM_ARB) {
1294 struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
1295 p->translated = 0;
1296 }
1297
1298 (void) _tnl_program_string(ctx, target, prog);
1299
1300 /* XXX check if program is legal, within limits */
1301 return true;
1302 }
1303
1304 static void
1305 i915SamplerUniformChange(struct gl_context *ctx,
1306 GLenum target, struct gl_program *prog)
1307 {
1308 i915ProgramStringNotify(ctx, target, prog);
1309 }
1310
1311 void
1312 i915_update_program(struct gl_context *ctx)
1313 {
1314 struct intel_context *intel = intel_context(ctx);
1315 struct i915_context *i915 = i915_context(&intel->ctx);
1316 struct i915_fragment_program *fp =
1317 (struct i915_fragment_program *) ctx->FragmentProgram._Current;
1318
1319 if (i915->current_program != fp) {
1320 if (i915->current_program) {
1321 i915->current_program->on_hardware = 0;
1322 i915->current_program->params_uptodate = 0;
1323 }
1324
1325 i915->current_program = fp;
1326 }
1327
1328 if (!fp->translated)
1329 translate_program(fp);
1330
1331 FALLBACK(&i915->intel, I915_FALLBACK_PROGRAM, fp->error);
1332 }
1333
1334 void
1335 i915ValidateFragmentProgram(struct i915_context *i915)
1336 {
1337 struct gl_context *ctx = &i915->intel.ctx;
1338 struct intel_context *intel = intel_context(ctx);
1339 TNLcontext *tnl = TNL_CONTEXT(ctx);
1340 struct vertex_buffer *VB = &tnl->vb;
1341
1342 struct i915_fragment_program *p =
1343 (struct i915_fragment_program *) ctx->FragmentProgram._Current;
1344
1345 const GLbitfield64 inputsRead = p->FragProg.Base.InputsRead;
1346 GLuint s4 = i915->state.Ctx[I915_CTXREG_LIS4] & ~S4_VFMT_MASK;
1347 GLuint s2 = S2_TEXCOORD_NONE;
1348 int i, offset = 0;
1349
1350 /* Important:
1351 */
1352 VB->AttribPtr[VERT_ATTRIB_POS] = VB->NdcPtr;
1353
1354 if (!p->translated)
1355 translate_program(p);
1356
1357 intel->vertex_attr_count = 0;
1358 intel->wpos_offset = 0;
1359 intel->coloroffset = 0;
1360 intel->specoffset = 0;
1361
1362 if (inputsRead & VARYING_BITS_TEX_ANY || p->wpos_tex != -1) {
1363 EMIT_ATTR(_TNL_ATTRIB_POS, EMIT_4F_VIEWPORT, S4_VFMT_XYZW, 16);
1364 }
1365 else {
1366 EMIT_ATTR(_TNL_ATTRIB_POS, EMIT_3F_VIEWPORT, S4_VFMT_XYZ, 12);
1367 }
1368
1369 /* Handle gl_PointSize builtin var here */
1370 if (ctx->Point._Attenuated || ctx->VertexProgram.PointSizeEnabled)
1371 EMIT_ATTR(_TNL_ATTRIB_POINTSIZE, EMIT_1F, S4_VFMT_POINT_WIDTH, 4);
1372
1373 if (inputsRead & VARYING_BIT_COL0) {
1374 intel->coloroffset = offset / 4;
1375 EMIT_ATTR(_TNL_ATTRIB_COLOR0, EMIT_4UB_4F_BGRA, S4_VFMT_COLOR, 4);
1376 }
1377
1378 if (inputsRead & VARYING_BIT_COL1) {
1379 intel->specoffset = offset / 4;
1380 EMIT_ATTR(_TNL_ATTRIB_COLOR1, EMIT_4UB_4F_BGRA, S4_VFMT_SPEC_FOG, 4);
1381 }
1382
1383 if ((inputsRead & VARYING_BIT_FOGC)) {
1384 EMIT_ATTR(_TNL_ATTRIB_FOG, EMIT_1F, S4_VFMT_FOG_PARAM, 4);
1385 }
1386
1387 for (i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) {
1388 if (inputsRead & VARYING_BIT_TEX(i)) {
1389 int sz = VB->AttribPtr[_TNL_ATTRIB_TEX0 + i]->size;
1390
1391 s2 &= ~S2_TEXCOORD_FMT(i, S2_TEXCOORD_FMT0_MASK);
1392 s2 |= S2_TEXCOORD_FMT(i, SZ_TO_HW(sz));
1393
1394 EMIT_ATTR(_TNL_ATTRIB_TEX0 + i, EMIT_SZ(sz), 0, sz * 4);
1395 }
1396 else if (inputsRead & VARYING_BIT_VAR(i)) {
1397 int sz = VB->AttribPtr[_TNL_ATTRIB_GENERIC0 + i]->size;
1398
1399 s2 &= ~S2_TEXCOORD_FMT(i, S2_TEXCOORD_FMT0_MASK);
1400 s2 |= S2_TEXCOORD_FMT(i, SZ_TO_HW(sz));
1401
1402 EMIT_ATTR(_TNL_ATTRIB_GENERIC0 + i, EMIT_SZ(sz), 0, sz * 4);
1403 }
1404 else if (i == p->wpos_tex) {
1405 int wpos_size = 4 * sizeof(float);
1406 /* If WPOS is required, duplicate the XYZ position data in an
1407 * unused texture coordinate:
1408 */
1409 s2 &= ~S2_TEXCOORD_FMT(i, S2_TEXCOORD_FMT0_MASK);
1410 s2 |= S2_TEXCOORD_FMT(i, SZ_TO_HW(wpos_size));
1411
1412 intel->wpos_offset = offset;
1413 EMIT_PAD(wpos_size);
1414 }
1415 }
1416
1417 if (s2 != i915->state.Ctx[I915_CTXREG_LIS2] ||
1418 s4 != i915->state.Ctx[I915_CTXREG_LIS4]) {
1419 int k;
1420
1421 I915_STATECHANGE(i915, I915_UPLOAD_CTX);
1422
1423 /* Must do this *after* statechange, so as not to affect
1424 * buffered vertices reliant on the old state:
1425 */
1426 intel->vertex_size = _tnl_install_attrs(&intel->ctx,
1427 intel->vertex_attrs,
1428 intel->vertex_attr_count,
1429 intel->ViewportMatrix.m, 0);
1430
1431 assert(intel->prim.current_offset == intel->prim.start_offset);
1432 intel->prim.start_offset = (intel->prim.current_offset + intel->vertex_size-1) / intel->vertex_size * intel->vertex_size;
1433 intel->prim.current_offset = intel->prim.start_offset;
1434
1435 intel->vertex_size >>= 2;
1436
1437 i915->state.Ctx[I915_CTXREG_LIS2] = s2;
1438 i915->state.Ctx[I915_CTXREG_LIS4] = s4;
1439
1440 k = intel->vtbl.check_vertex_size(intel, intel->vertex_size);
1441 assert(k);
1442 }
1443
1444 if (!p->params_uptodate)
1445 track_params(p);
1446
1447 if (!p->on_hardware)
1448 i915_upload_program(i915, p);
1449
1450 if (INTEL_DEBUG & DEBUG_WM) {
1451 printf("i915:\n");
1452 i915_disassemble_program(i915->state.Program, i915->state.ProgramSize);
1453 }
1454 }
1455
1456 void
1457 i915InitFragProgFuncs(struct dd_function_table *functions)
1458 {
1459 functions->BindProgram = i915BindProgram;
1460 functions->NewProgram = i915NewProgram;
1461 functions->DeleteProgram = i915DeleteProgram;
1462 functions->IsProgramNative = i915IsProgramNative;
1463 functions->ProgramStringNotify = i915ProgramStringNotify;
1464 functions->SamplerUniformChange = i915SamplerUniformChange;
1465 }