95a60d1cce0552c13cc94c3de41736a979a2db5b
[mesa.git] / src / mesa / drivers / dri / i915 / i915_fragprog.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "main/glheader.h"
29 #include "main/macros.h"
30 #include "main/enums.h"
31
32 #include "program/prog_instruction.h"
33 #include "program/prog_parameter.h"
34 #include "program/program.h"
35 #include "program/programopt.h"
36 #include "program/prog_print.h"
37
38 #include "tnl/tnl.h"
39 #include "tnl/t_context.h"
40
41 #include "intel_batchbuffer.h"
42
43 #include "i915_reg.h"
44 #include "i915_context.h"
45 #include "i915_program.h"
46
47 static const GLfloat sin_quad_constants[2][4] = {
48 {
49 2.0,
50 -1.0,
51 .5,
52 .75
53 },
54 {
55 4.0,
56 -4.0,
57 1.0 / (2.0 * M_PI),
58 .2225
59 }
60 };
61
62 static const GLfloat sin_constants[4] = { 1.0,
63 -1.0 / (3 * 2 * 1),
64 1.0 / (5 * 4 * 3 * 2 * 1),
65 -1.0 / (7 * 6 * 5 * 4 * 3 * 2 * 1)
66 };
67
68 /* 1, -1/2!, 1/4!, -1/6! */
69 static const GLfloat cos_constants[4] = { 1.0,
70 -1.0 / (2 * 1),
71 1.0 / (4 * 3 * 2 * 1),
72 -1.0 / (6 * 5 * 4 * 3 * 2 * 1)
73 };
74
75 /* texcoord_mapping[unit] = index | TEXCOORD_{TEX,VAR} */
76 #define TEXCOORD_TEX (0<<7)
77 #define TEXCOORD_VAR (1<<7)
78
79 static unsigned
80 get_texcoord_mapping(struct i915_fragment_program *p, uint8_t texcoord)
81 {
82 for (unsigned i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) {
83 if (p->texcoord_mapping[i] == texcoord)
84 return i;
85 }
86
87 /* blah */
88 return p->ctx->Const.MaxTextureCoordUnits - 1;
89 }
90
91 /**
92 * Retrieve a ureg for the given source register. Will emit
93 * constants, apply swizzling and negation as needed.
94 */
95 static GLuint
96 src_vector(struct i915_fragment_program *p,
97 const struct prog_src_register *source,
98 const struct gl_program *program)
99 {
100 GLuint src;
101 unsigned unit;
102
103 switch (source->File) {
104
105 /* Registers:
106 */
107 case PROGRAM_TEMPORARY:
108 if (source->Index >= I915_MAX_TEMPORARY) {
109 i915_program_error(p, "Exceeded max temporary reg: %d/%d",
110 source->Index, I915_MAX_TEMPORARY);
111 return 0;
112 }
113 src = UREG(REG_TYPE_R, source->Index);
114 break;
115 case PROGRAM_INPUT:
116 switch (source->Index) {
117 case VARYING_SLOT_POS:
118 src = i915_emit_decl(p, REG_TYPE_T, p->wpos_tex, D0_CHANNEL_ALL);
119 break;
120 case VARYING_SLOT_COL0:
121 src = i915_emit_decl(p, REG_TYPE_T, T_DIFFUSE, D0_CHANNEL_ALL);
122 break;
123 case VARYING_SLOT_COL1:
124 src = i915_emit_decl(p, REG_TYPE_T, T_SPECULAR, D0_CHANNEL_XYZ);
125 src = swizzle(src, X, Y, Z, ONE);
126 break;
127 case VARYING_SLOT_FOGC:
128 src = i915_emit_decl(p, REG_TYPE_T, T_FOG_W, D0_CHANNEL_W);
129 src = swizzle(src, W, ZERO, ZERO, ONE);
130 break;
131 case VARYING_SLOT_TEX0:
132 case VARYING_SLOT_TEX1:
133 case VARYING_SLOT_TEX2:
134 case VARYING_SLOT_TEX3:
135 case VARYING_SLOT_TEX4:
136 case VARYING_SLOT_TEX5:
137 case VARYING_SLOT_TEX6:
138 case VARYING_SLOT_TEX7:
139 unit = get_texcoord_mapping(p, (source->Index -
140 VARYING_SLOT_TEX0) | TEXCOORD_TEX);
141 src = i915_emit_decl(p, REG_TYPE_T,
142 T_TEX0 + unit,
143 D0_CHANNEL_ALL);
144 break;
145
146 case VARYING_SLOT_VAR0:
147 case VARYING_SLOT_VAR0 + 1:
148 case VARYING_SLOT_VAR0 + 2:
149 case VARYING_SLOT_VAR0 + 3:
150 case VARYING_SLOT_VAR0 + 4:
151 case VARYING_SLOT_VAR0 + 5:
152 case VARYING_SLOT_VAR0 + 6:
153 case VARYING_SLOT_VAR0 + 7:
154 unit = get_texcoord_mapping(p, (source->Index -
155 VARYING_SLOT_VAR0) | TEXCOORD_VAR);
156 src = i915_emit_decl(p, REG_TYPE_T,
157 T_TEX0 + unit,
158 D0_CHANNEL_ALL);
159 break;
160
161 default:
162 i915_program_error(p, "Bad source->Index: %d", source->Index);
163 return 0;
164 }
165 break;
166
167 case PROGRAM_OUTPUT:
168 switch (source->Index) {
169 case FRAG_RESULT_COLOR:
170 case FRAG_RESULT_DATA0:
171 src = UREG(REG_TYPE_OC, 0);
172 break;
173 case FRAG_RESULT_DEPTH:
174 src = UREG(REG_TYPE_OD, 0);
175 break;
176 default:
177 i915_program_error(p, "Bad source->Index: %d", source->Index);
178 return 0;
179 }
180 break;
181
182 /* Various paramters and env values. All emitted to
183 * hardware as program constants.
184 */
185 case PROGRAM_CONSTANT:
186 case PROGRAM_STATE_VAR:
187 case PROGRAM_UNIFORM: {
188 struct gl_program_parameter_list *params = program->Parameters;
189 unsigned offset = params->ParameterValueOffset[source->Index];
190 src = i915_emit_param4fv(p, &params->ParameterValues[offset].f);
191 break;
192 }
193 default:
194 i915_program_error(p, "Bad source->File: %d", source->File);
195 return 0;
196 }
197
198 src = swizzle(src,
199 GET_SWZ(source->Swizzle, 0),
200 GET_SWZ(source->Swizzle, 1),
201 GET_SWZ(source->Swizzle, 2), GET_SWZ(source->Swizzle, 3));
202
203 if (source->Negate)
204 src = negate(src,
205 GET_BIT(source->Negate, 0),
206 GET_BIT(source->Negate, 1),
207 GET_BIT(source->Negate, 2),
208 GET_BIT(source->Negate, 3));
209
210 return src;
211 }
212
213
214 static GLuint
215 get_result_vector(struct i915_fragment_program *p,
216 const struct prog_instruction *inst)
217 {
218 switch (inst->DstReg.File) {
219 case PROGRAM_OUTPUT:
220 switch (inst->DstReg.Index) {
221 case FRAG_RESULT_COLOR:
222 case FRAG_RESULT_DATA0:
223 return UREG(REG_TYPE_OC, 0);
224 case FRAG_RESULT_DEPTH:
225 p->depth_written = 1;
226 return UREG(REG_TYPE_OD, 0);
227 default:
228 i915_program_error(p, "Bad inst->DstReg.Index: %d",
229 inst->DstReg.Index);
230 return 0;
231 }
232 case PROGRAM_TEMPORARY:
233 return UREG(REG_TYPE_R, inst->DstReg.Index);
234 default:
235 i915_program_error(p, "Bad inst->DstReg.File: %d", inst->DstReg.File);
236 return 0;
237 }
238 }
239
240 static GLuint
241 get_result_flags(const struct prog_instruction *inst)
242 {
243 GLuint flags = 0;
244
245 if (inst->Saturate)
246 flags |= A0_DEST_SATURATE;
247 if (inst->DstReg.WriteMask & WRITEMASK_X)
248 flags |= A0_DEST_CHANNEL_X;
249 if (inst->DstReg.WriteMask & WRITEMASK_Y)
250 flags |= A0_DEST_CHANNEL_Y;
251 if (inst->DstReg.WriteMask & WRITEMASK_Z)
252 flags |= A0_DEST_CHANNEL_Z;
253 if (inst->DstReg.WriteMask & WRITEMASK_W)
254 flags |= A0_DEST_CHANNEL_W;
255
256 return flags;
257 }
258
259 static GLuint
260 translate_tex_src_target(struct i915_fragment_program *p, GLubyte bit)
261 {
262 switch (bit) {
263 case TEXTURE_1D_INDEX:
264 return D0_SAMPLE_TYPE_2D;
265 case TEXTURE_2D_INDEX:
266 return D0_SAMPLE_TYPE_2D;
267 case TEXTURE_RECT_INDEX:
268 return D0_SAMPLE_TYPE_2D;
269 case TEXTURE_3D_INDEX:
270 return D0_SAMPLE_TYPE_VOLUME;
271 case TEXTURE_CUBE_INDEX:
272 return D0_SAMPLE_TYPE_CUBE;
273 default:
274 i915_program_error(p, "TexSrcBit: %d", bit);
275 return 0;
276 }
277 }
278
279 #define EMIT_TEX( OP ) \
280 do { \
281 GLuint dim = translate_tex_src_target( p, inst->TexSrcTarget ); \
282 const struct gl_program *program = &p->FragProg; \
283 GLuint unit = program->SamplerUnits[inst->TexSrcUnit]; \
284 GLuint sampler = i915_emit_decl(p, REG_TYPE_S, \
285 unit, dim); \
286 GLuint coord = src_vector( p, &inst->SrcReg[0], program); \
287 /* Texel lookup */ \
288 \
289 i915_emit_texld( p, get_live_regs(p, inst), \
290 get_result_vector( p, inst ), \
291 get_result_flags( inst ), \
292 sampler, \
293 coord, \
294 OP); \
295 } while (0)
296
297 #define EMIT_ARITH( OP, N ) \
298 do { \
299 i915_emit_arith( p, \
300 OP, \
301 get_result_vector( p, inst ), \
302 get_result_flags( inst ), 0, \
303 (N<1)?0:src_vector( p, &inst->SrcReg[0], program), \
304 (N<2)?0:src_vector( p, &inst->SrcReg[1], program), \
305 (N<3)?0:src_vector( p, &inst->SrcReg[2], program)); \
306 } while (0)
307
308 #define EMIT_1ARG_ARITH( OP ) EMIT_ARITH( OP, 1 )
309 #define EMIT_2ARG_ARITH( OP ) EMIT_ARITH( OP, 2 )
310 #define EMIT_3ARG_ARITH( OP ) EMIT_ARITH( OP, 3 )
311
312 /*
313 * TODO: consider moving this into core
314 */
315 static bool calc_live_regs( struct i915_fragment_program *p )
316 {
317 const struct gl_program *program = &p->FragProg;
318 GLuint regsUsed = ~((1 << I915_MAX_TEMPORARY) - 1);
319 uint8_t live_components[I915_MAX_TEMPORARY] = { 0, };
320 GLint i;
321
322 for (i = program->arb.NumInstructions - 1; i >= 0; i--) {
323 struct prog_instruction *inst = &program->arb.Instructions[i];
324 int opArgs = _mesa_num_inst_src_regs(inst->Opcode);
325 int a;
326
327 /* Register is written to: unmark as live for this and preceeding ops */
328 if (inst->DstReg.File == PROGRAM_TEMPORARY) {
329 if (inst->DstReg.Index >= I915_MAX_TEMPORARY)
330 return false;
331
332 live_components[inst->DstReg.Index] &= ~inst->DstReg.WriteMask;
333 if (live_components[inst->DstReg.Index] == 0)
334 regsUsed &= ~(1 << inst->DstReg.Index);
335 }
336
337 for (a = 0; a < opArgs; a++) {
338 /* Register is read from: mark as live for this and preceeding ops */
339 if (inst->SrcReg[a].File == PROGRAM_TEMPORARY) {
340 unsigned c;
341
342 if (inst->SrcReg[a].Index >= I915_MAX_TEMPORARY)
343 return false;
344
345 regsUsed |= 1 << inst->SrcReg[a].Index;
346
347 for (c = 0; c < 4; c++) {
348 const unsigned field = GET_SWZ(inst->SrcReg[a].Swizzle, c);
349
350 if (field <= SWIZZLE_W)
351 live_components[inst->SrcReg[a].Index] |= (1U << field);
352 }
353 }
354 }
355
356 p->usedRegs[i] = regsUsed;
357 }
358
359 return true;
360 }
361
362 static GLuint get_live_regs( struct i915_fragment_program *p,
363 const struct prog_instruction *inst )
364 {
365 const struct gl_program *program = &p->FragProg;
366 GLuint nr = inst - program->arb.Instructions;
367
368 return p->usedRegs[nr];
369 }
370
371
372 /* Possible concerns:
373 *
374 * SIN, COS -- could use another taylor step?
375 * LIT -- results seem a little different to sw mesa
376 * LOG -- different to mesa on negative numbers, but this is conformant.
377 *
378 * Parse failures -- Mesa doesn't currently give a good indication
379 * internally whether a particular program string parsed or not. This
380 * can lead to confusion -- hopefully we cope with it ok now.
381 *
382 */
383 static void
384 upload_program(struct i915_fragment_program *p)
385 {
386 const struct gl_program *program = &p->FragProg;
387 const struct prog_instruction *inst = program->arb.Instructions;
388
389 if (INTEL_DEBUG & DEBUG_WM)
390 _mesa_print_program(program);
391
392 /* Is this a parse-failed program? Ensure a valid program is
393 * loaded, as the flagging of an error isn't sufficient to stop
394 * this being uploaded to hardware.
395 */
396 if (inst[0].Opcode == OPCODE_END) {
397 GLuint tmp = i915_get_utemp(p);
398 i915_emit_arith(p,
399 A0_MOV,
400 UREG(REG_TYPE_OC, 0),
401 A0_DEST_CHANNEL_ALL, 0,
402 swizzle(tmp, ONE, ZERO, ONE, ONE), 0, 0);
403 return;
404 }
405
406 if (program->arb.NumInstructions > I915_MAX_INSN) {
407 i915_program_error(p, "Exceeded max instructions (%d out of %d)",
408 program->arb.NumInstructions, I915_MAX_INSN);
409 return;
410 }
411
412 /* Not always needed:
413 */
414 if (!calc_live_regs(p)) {
415 i915_program_error(p, "Could not allocate registers");
416 return;
417 }
418
419 while (1) {
420 GLuint src0, src1, src2, flags;
421 GLuint tmp = 0, dst, consts0 = 0, consts1 = 0;
422
423 switch (inst->Opcode) {
424 case OPCODE_ABS:
425 src0 = src_vector(p, &inst->SrcReg[0], program);
426 i915_emit_arith(p,
427 A0_MAX,
428 get_result_vector(p, inst),
429 get_result_flags(inst), 0,
430 src0, negate(src0, 1, 1, 1, 1), 0);
431 break;
432
433 case OPCODE_ADD:
434 EMIT_2ARG_ARITH(A0_ADD);
435 break;
436
437 case OPCODE_CMP:
438 src0 = src_vector(p, &inst->SrcReg[0], program);
439 src1 = src_vector(p, &inst->SrcReg[1], program);
440 src2 = src_vector(p, &inst->SrcReg[2], program);
441 i915_emit_arith(p, A0_CMP, get_result_vector(p, inst), get_result_flags(inst), 0, src0, src2, src1); /* NOTE: order of src2, src1 */
442 break;
443
444 case OPCODE_COS:
445 src0 = src_vector(p, &inst->SrcReg[0], program);
446 tmp = i915_get_utemp(p);
447 consts0 = i915_emit_const4fv(p, sin_quad_constants[0]);
448 consts1 = i915_emit_const4fv(p, sin_quad_constants[1]);
449
450 /* Reduce range from repeating about [-pi,pi] to [-1,1] */
451 i915_emit_arith(p,
452 A0_MAD,
453 tmp, A0_DEST_CHANNEL_X, 0,
454 src0,
455 swizzle(consts1, Z, ZERO, ZERO, ZERO), /* 1/(2pi) */
456 swizzle(consts0, W, ZERO, ZERO, ZERO)); /* .75 */
457
458 i915_emit_arith(p, A0_FRC, tmp, A0_DEST_CHANNEL_X, 0, tmp, 0, 0);
459
460 i915_emit_arith(p,
461 A0_MAD,
462 tmp, A0_DEST_CHANNEL_X, 0,
463 tmp,
464 swizzle(consts0, X, ZERO, ZERO, ZERO), /* 2 */
465 swizzle(consts0, Y, ZERO, ZERO, ZERO)); /* -1 */
466
467 /* Compute COS with the same calculation used for SIN, but a
468 * different source range has been mapped to [-1,1] this time.
469 */
470
471 /* tmp.y = abs(tmp.x); {x, abs(x), 0, 0} */
472 i915_emit_arith(p,
473 A0_MAX,
474 tmp, A0_DEST_CHANNEL_Y, 0,
475 swizzle(tmp, ZERO, X, ZERO, ZERO),
476 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
477 0);
478
479 /* tmp.y = tmp.y * tmp.x; {x, x * abs(x), 0, 0} */
480 i915_emit_arith(p,
481 A0_MUL,
482 tmp, A0_DEST_CHANNEL_Y, 0,
483 swizzle(tmp, ZERO, X, ZERO, ZERO),
484 tmp,
485 0);
486
487 /* tmp.x = tmp.xy DP sin_quad_constants[2].xy */
488 i915_emit_arith(p,
489 A0_DP3,
490 tmp, A0_DEST_CHANNEL_X, 0,
491 tmp,
492 swizzle(consts1, X, Y, ZERO, ZERO),
493 0);
494
495 /* tmp.x now contains a first approximation (y). Now, weight it
496 * against tmp.y**2 to get closer.
497 */
498 i915_emit_arith(p,
499 A0_MAX,
500 tmp, A0_DEST_CHANNEL_Y, 0,
501 swizzle(tmp, ZERO, X, ZERO, ZERO),
502 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
503 0);
504
505 /* tmp.y = tmp.x * tmp.y - tmp.x; {y, y * abs(y) - y, 0, 0} */
506 i915_emit_arith(p,
507 A0_MAD,
508 tmp, A0_DEST_CHANNEL_Y, 0,
509 swizzle(tmp, ZERO, X, ZERO, ZERO),
510 swizzle(tmp, ZERO, Y, ZERO, ZERO),
511 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0));
512
513 /* result = .2225 * tmp.y + tmp.x =.2225(y * abs(y) - y) + y= */
514 i915_emit_arith(p,
515 A0_MAD,
516 get_result_vector(p, inst),
517 get_result_flags(inst), 0,
518 swizzle(consts1, W, W, W, W),
519 swizzle(tmp, Y, Y, Y, Y),
520 swizzle(tmp, X, X, X, X));
521 break;
522
523 case OPCODE_DP2:
524 src0 = src_vector(p, &inst->SrcReg[0], program);
525 src1 = src_vector(p, &inst->SrcReg[1], program);
526 i915_emit_arith(p,
527 A0_DP3,
528 get_result_vector(p, inst),
529 get_result_flags(inst), 0,
530 swizzle(src0, X, Y, ZERO, ZERO),
531 swizzle(src1, X, Y, ZERO, ZERO),
532 0);
533 break;
534
535 case OPCODE_DP3:
536 EMIT_2ARG_ARITH(A0_DP3);
537 break;
538
539 case OPCODE_DP4:
540 EMIT_2ARG_ARITH(A0_DP4);
541 break;
542
543 case OPCODE_DPH:
544 src0 = src_vector(p, &inst->SrcReg[0], program);
545 src1 = src_vector(p, &inst->SrcReg[1], program);
546
547 i915_emit_arith(p,
548 A0_DP4,
549 get_result_vector(p, inst),
550 get_result_flags(inst), 0,
551 swizzle(src0, X, Y, Z, ONE), src1, 0);
552 break;
553
554 case OPCODE_DST:
555 src0 = src_vector(p, &inst->SrcReg[0], program);
556 src1 = src_vector(p, &inst->SrcReg[1], program);
557
558 /* result[0] = 1 * 1;
559 * result[1] = a[1] * b[1];
560 * result[2] = a[2] * 1;
561 * result[3] = 1 * b[3];
562 */
563 i915_emit_arith(p,
564 A0_MUL,
565 get_result_vector(p, inst),
566 get_result_flags(inst), 0,
567 swizzle(src0, ONE, Y, Z, ONE),
568 swizzle(src1, ONE, Y, ONE, W), 0);
569 break;
570
571 case OPCODE_EX2:
572 src0 = src_vector(p, &inst->SrcReg[0], program);
573
574 i915_emit_arith(p,
575 A0_EXP,
576 get_result_vector(p, inst),
577 get_result_flags(inst), 0,
578 swizzle(src0, X, X, X, X), 0, 0);
579 break;
580
581 case OPCODE_FLR:
582 EMIT_1ARG_ARITH(A0_FLR);
583 break;
584
585 case OPCODE_TRUNC:
586 EMIT_1ARG_ARITH(A0_TRC);
587 break;
588
589 case OPCODE_FRC:
590 EMIT_1ARG_ARITH(A0_FRC);
591 break;
592
593 case OPCODE_KIL:
594 src0 = src_vector(p, &inst->SrcReg[0], program);
595 tmp = i915_get_utemp(p);
596
597 i915_emit_texld(p, get_live_regs(p, inst),
598 tmp, A0_DEST_CHANNEL_ALL, /* use a dummy dest reg */
599 0, src0, T0_TEXKILL);
600 break;
601
602 case OPCODE_LG2:
603 src0 = src_vector(p, &inst->SrcReg[0], program);
604
605 i915_emit_arith(p,
606 A0_LOG,
607 get_result_vector(p, inst),
608 get_result_flags(inst), 0,
609 swizzle(src0, X, X, X, X), 0, 0);
610 break;
611
612 case OPCODE_LIT:
613 src0 = src_vector(p, &inst->SrcReg[0], program);
614 tmp = i915_get_utemp(p);
615
616 /* tmp = max( a.xyzw, a.00zw )
617 * XXX: Clamp tmp.w to -128..128
618 * tmp.y = log(tmp.y)
619 * tmp.y = tmp.w * tmp.y
620 * tmp.y = exp(tmp.y)
621 * result = cmp (a.11-x1, a.1x01, a.1xy1 )
622 */
623 i915_emit_arith(p, A0_MAX, tmp, A0_DEST_CHANNEL_ALL, 0,
624 src0, swizzle(src0, ZERO, ZERO, Z, W), 0);
625
626 i915_emit_arith(p, A0_LOG, tmp, A0_DEST_CHANNEL_Y, 0,
627 swizzle(tmp, Y, Y, Y, Y), 0, 0);
628
629 i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_Y, 0,
630 swizzle(tmp, ZERO, Y, ZERO, ZERO),
631 swizzle(tmp, ZERO, W, ZERO, ZERO), 0);
632
633 i915_emit_arith(p, A0_EXP, tmp, A0_DEST_CHANNEL_Y, 0,
634 swizzle(tmp, Y, Y, Y, Y), 0, 0);
635
636 i915_emit_arith(p, A0_CMP,
637 get_result_vector(p, inst),
638 get_result_flags(inst), 0,
639 negate(swizzle(tmp, ONE, ONE, X, ONE), 0, 0, 1, 0),
640 swizzle(tmp, ONE, X, ZERO, ONE),
641 swizzle(tmp, ONE, X, Y, ONE));
642
643 break;
644
645 case OPCODE_LRP:
646 src0 = src_vector(p, &inst->SrcReg[0], program);
647 src1 = src_vector(p, &inst->SrcReg[1], program);
648 src2 = src_vector(p, &inst->SrcReg[2], program);
649 flags = get_result_flags(inst);
650 tmp = i915_get_utemp(p);
651
652 /* b*a + c*(1-a)
653 *
654 * b*a + c - ca
655 *
656 * tmp = b*a + c,
657 * result = (-c)*a + tmp
658 */
659 i915_emit_arith(p, A0_MAD, tmp,
660 flags & A0_DEST_CHANNEL_ALL, 0, src1, src0, src2);
661
662 i915_emit_arith(p, A0_MAD,
663 get_result_vector(p, inst),
664 flags, 0, negate(src2, 1, 1, 1, 1), src0, tmp);
665 break;
666
667 case OPCODE_MAD:
668 EMIT_3ARG_ARITH(A0_MAD);
669 break;
670
671 case OPCODE_MAX:
672 EMIT_2ARG_ARITH(A0_MAX);
673 break;
674
675 case OPCODE_MIN:
676 EMIT_2ARG_ARITH(A0_MIN);
677 break;
678
679 case OPCODE_MOV:
680 EMIT_1ARG_ARITH(A0_MOV);
681 break;
682
683 case OPCODE_MUL:
684 EMIT_2ARG_ARITH(A0_MUL);
685 break;
686
687 case OPCODE_POW:
688 src0 = src_vector(p, &inst->SrcReg[0], program);
689 src1 = src_vector(p, &inst->SrcReg[1], program);
690 tmp = i915_get_utemp(p);
691 flags = get_result_flags(inst);
692
693 /* XXX: masking on intermediate values, here and elsewhere.
694 */
695 i915_emit_arith(p,
696 A0_LOG,
697 tmp, A0_DEST_CHANNEL_X, 0,
698 swizzle(src0, X, X, X, X), 0, 0);
699
700 i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_X, 0, tmp, src1, 0);
701
702
703 i915_emit_arith(p,
704 A0_EXP,
705 get_result_vector(p, inst),
706 flags, 0, swizzle(tmp, X, X, X, X), 0, 0);
707
708 break;
709
710 case OPCODE_RCP:
711 src0 = src_vector(p, &inst->SrcReg[0], program);
712
713 i915_emit_arith(p,
714 A0_RCP,
715 get_result_vector(p, inst),
716 get_result_flags(inst), 0,
717 swizzle(src0, X, X, X, X), 0, 0);
718 break;
719
720 case OPCODE_RSQ:
721
722 src0 = src_vector(p, &inst->SrcReg[0], program);
723
724 i915_emit_arith(p,
725 A0_RSQ,
726 get_result_vector(p, inst),
727 get_result_flags(inst), 0,
728 swizzle(src0, X, X, X, X), 0, 0);
729 break;
730
731 case OPCODE_SCS:
732 src0 = src_vector(p, &inst->SrcReg[0], program);
733 tmp = i915_get_utemp(p);
734
735 /*
736 * t0.xy = MUL x.xx11, x.x1111 ; x^2, x, 1, 1
737 * t0 = MUL t0.xyxy t0.xx11 ; x^4, x^3, x^2, x
738 * t1 = MUL t0.xyyw t0.yz11 ; x^7 x^5 x^3 x
739 * scs.x = DP4 t1, sin_constants
740 * t1 = MUL t0.xxz1 t0.z111 ; x^6 x^4 x^2 1
741 * scs.y = DP4 t1, cos_constants
742 */
743 i915_emit_arith(p,
744 A0_MUL,
745 tmp, A0_DEST_CHANNEL_XY, 0,
746 swizzle(src0, X, X, ONE, ONE),
747 swizzle(src0, X, ONE, ONE, ONE), 0);
748
749 i915_emit_arith(p,
750 A0_MUL,
751 tmp, A0_DEST_CHANNEL_ALL, 0,
752 swizzle(tmp, X, Y, X, Y),
753 swizzle(tmp, X, X, ONE, ONE), 0);
754
755 if (inst->DstReg.WriteMask & WRITEMASK_Y) {
756 GLuint tmp1;
757
758 if (inst->DstReg.WriteMask & WRITEMASK_X)
759 tmp1 = i915_get_utemp(p);
760 else
761 tmp1 = tmp;
762
763 i915_emit_arith(p,
764 A0_MUL,
765 tmp1, A0_DEST_CHANNEL_ALL, 0,
766 swizzle(tmp, X, Y, Y, W),
767 swizzle(tmp, X, Z, ONE, ONE), 0);
768
769 i915_emit_arith(p,
770 A0_DP4,
771 get_result_vector(p, inst),
772 A0_DEST_CHANNEL_Y, 0,
773 swizzle(tmp1, W, Z, Y, X),
774 i915_emit_const4fv(p, sin_constants), 0);
775 }
776
777 if (inst->DstReg.WriteMask & WRITEMASK_X) {
778 i915_emit_arith(p,
779 A0_MUL,
780 tmp, A0_DEST_CHANNEL_XYZ, 0,
781 swizzle(tmp, X, X, Z, ONE),
782 swizzle(tmp, Z, ONE, ONE, ONE), 0);
783
784 i915_emit_arith(p,
785 A0_DP4,
786 get_result_vector(p, inst),
787 A0_DEST_CHANNEL_X, 0,
788 swizzle(tmp, ONE, Z, Y, X),
789 i915_emit_const4fv(p, cos_constants), 0);
790 }
791 break;
792
793 case OPCODE_SIN:
794 src0 = src_vector(p, &inst->SrcReg[0], program);
795 tmp = i915_get_utemp(p);
796 consts0 = i915_emit_const4fv(p, sin_quad_constants[0]);
797 consts1 = i915_emit_const4fv(p, sin_quad_constants[1]);
798
799 /* Reduce range from repeating about [-pi,pi] to [-1,1] */
800 i915_emit_arith(p,
801 A0_MAD,
802 tmp, A0_DEST_CHANNEL_X, 0,
803 src0,
804 swizzle(consts1, Z, ZERO, ZERO, ZERO), /* 1/(2pi) */
805 swizzle(consts0, Z, ZERO, ZERO, ZERO)); /* .5 */
806
807 i915_emit_arith(p, A0_FRC, tmp, A0_DEST_CHANNEL_X, 0, tmp, 0, 0);
808
809 i915_emit_arith(p,
810 A0_MAD,
811 tmp, A0_DEST_CHANNEL_X, 0,
812 tmp,
813 swizzle(consts0, X, ZERO, ZERO, ZERO), /* 2 */
814 swizzle(consts0, Y, ZERO, ZERO, ZERO)); /* -1 */
815
816 /* Compute sin using a quadratic and quartic. It gives continuity
817 * that repeating the Taylor series lacks every 2*pi, and has
818 * reduced error.
819 *
820 * The idea was described at:
821 * http://www.devmaster.net/forums/showthread.php?t=5784
822 */
823
824 /* tmp.y = abs(tmp.x); {x, abs(x), 0, 0} */
825 i915_emit_arith(p,
826 A0_MAX,
827 tmp, A0_DEST_CHANNEL_Y, 0,
828 swizzle(tmp, ZERO, X, ZERO, ZERO),
829 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
830 0);
831
832 /* tmp.y = tmp.y * tmp.x; {x, x * abs(x), 0, 0} */
833 i915_emit_arith(p,
834 A0_MUL,
835 tmp, A0_DEST_CHANNEL_Y, 0,
836 swizzle(tmp, ZERO, X, ZERO, ZERO),
837 tmp,
838 0);
839
840 /* tmp.x = tmp.xy DP sin_quad_constants[2].xy */
841 i915_emit_arith(p,
842 A0_DP3,
843 tmp, A0_DEST_CHANNEL_X, 0,
844 tmp,
845 swizzle(consts1, X, Y, ZERO, ZERO),
846 0);
847
848 /* tmp.x now contains a first approximation (y). Now, weight it
849 * against tmp.y**2 to get closer.
850 */
851 i915_emit_arith(p,
852 A0_MAX,
853 tmp, A0_DEST_CHANNEL_Y, 0,
854 swizzle(tmp, ZERO, X, ZERO, ZERO),
855 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0),
856 0);
857
858 /* tmp.y = tmp.x * tmp.y - tmp.x; {y, y * abs(y) - y, 0, 0} */
859 i915_emit_arith(p,
860 A0_MAD,
861 tmp, A0_DEST_CHANNEL_Y, 0,
862 swizzle(tmp, ZERO, X, ZERO, ZERO),
863 swizzle(tmp, ZERO, Y, ZERO, ZERO),
864 negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0));
865
866 /* result = .2225 * tmp.y + tmp.x =.2225(y * abs(y) - y) + y= */
867 i915_emit_arith(p,
868 A0_MAD,
869 get_result_vector(p, inst),
870 get_result_flags(inst), 0,
871 swizzle(consts1, W, W, W, W),
872 swizzle(tmp, Y, Y, Y, Y),
873 swizzle(tmp, X, X, X, X));
874
875 break;
876
877 case OPCODE_SGE:
878 EMIT_2ARG_ARITH(A0_SGE);
879 break;
880
881 case OPCODE_SLT:
882 EMIT_2ARG_ARITH(A0_SLT);
883 break;
884
885 case OPCODE_SSG:
886 dst = get_result_vector(p, inst);
887 flags = get_result_flags(inst);
888 src0 = src_vector(p, &inst->SrcReg[0], program);
889 tmp = i915_get_utemp(p);
890
891 /* tmp = (src < 0.0) */
892 i915_emit_arith(p,
893 A0_SLT,
894 tmp,
895 flags, 0,
896 src0,
897 swizzle(src0, ZERO, ZERO, ZERO, ZERO),
898 0);
899
900 /* dst = (0.0 < src) */
901 i915_emit_arith(p,
902 A0_SLT,
903 dst,
904 flags, 0,
905 swizzle(src0, ZERO, ZERO, ZERO, ZERO),
906 src0,
907 0);
908
909 /* dst = (src > 0.0) - (src < 0.0) */
910 i915_emit_arith(p,
911 A0_ADD,
912 dst,
913 flags, 0,
914 dst,
915 negate(tmp, 1, 1, 1, 1),
916 0);
917
918 break;
919
920 case OPCODE_SUB:
921 src0 = src_vector(p, &inst->SrcReg[0], program);
922 src1 = src_vector(p, &inst->SrcReg[1], program);
923
924 i915_emit_arith(p,
925 A0_ADD,
926 get_result_vector(p, inst),
927 get_result_flags(inst), 0,
928 src0, negate(src1, 1, 1, 1, 1), 0);
929 break;
930
931 case OPCODE_SWZ:
932 EMIT_1ARG_ARITH(A0_MOV); /* extended swizzle handled natively */
933 break;
934
935 case OPCODE_TEX:
936 EMIT_TEX(T0_TEXLD);
937 break;
938
939 case OPCODE_TXB:
940 EMIT_TEX(T0_TEXLDB);
941 break;
942
943 case OPCODE_TXP:
944 EMIT_TEX(T0_TEXLDP);
945 break;
946
947 case OPCODE_XPD:
948 /* Cross product:
949 * result.x = src0.y * src1.z - src0.z * src1.y;
950 * result.y = src0.z * src1.x - src0.x * src1.z;
951 * result.z = src0.x * src1.y - src0.y * src1.x;
952 * result.w = undef;
953 */
954 src0 = src_vector(p, &inst->SrcReg[0], program);
955 src1 = src_vector(p, &inst->SrcReg[1], program);
956 tmp = i915_get_utemp(p);
957
958 i915_emit_arith(p,
959 A0_MUL,
960 tmp, A0_DEST_CHANNEL_ALL, 0,
961 swizzle(src0, Z, X, Y, ONE),
962 swizzle(src1, Y, Z, X, ONE), 0);
963
964 i915_emit_arith(p,
965 A0_MAD,
966 get_result_vector(p, inst),
967 get_result_flags(inst), 0,
968 swizzle(src0, Y, Z, X, ONE),
969 swizzle(src1, Z, X, Y, ONE),
970 negate(tmp, 1, 1, 1, 0));
971 break;
972
973 case OPCODE_END:
974 return;
975
976 case OPCODE_BGNLOOP:
977 case OPCODE_BGNSUB:
978 case OPCODE_BRK:
979 case OPCODE_CAL:
980 case OPCODE_CONT:
981 case OPCODE_DDX:
982 case OPCODE_DDY:
983 case OPCODE_ELSE:
984 case OPCODE_ENDIF:
985 case OPCODE_ENDLOOP:
986 case OPCODE_ENDSUB:
987 case OPCODE_IF:
988 case OPCODE_RET:
989 p->error = 1;
990 i915_program_error(p, "Unsupported opcode: %s",
991 _mesa_opcode_string(inst->Opcode));
992 return;
993
994 case OPCODE_EXP:
995 case OPCODE_LOG:
996 /* These opcodes are claimed as GLSL, NV_vp, and ARB_vp in
997 * prog_instruction.h, but apparently GLSL doesn't ever emit them.
998 * Instead, it translates to EX2 or LG2.
999 */
1000 case OPCODE_TXD:
1001 case OPCODE_TXL:
1002 /* These opcodes are claimed by GLSL in prog_instruction.h, but
1003 * only NV_vp/fp appears to emit them.
1004 */
1005 default:
1006 i915_program_error(p, "bad opcode: %s",
1007 _mesa_opcode_string(inst->Opcode));
1008 return;
1009 }
1010
1011 inst++;
1012 i915_release_utemps(p);
1013 }
1014 }
1015
1016 /* Rather than trying to intercept and jiggle depth writes during
1017 * emit, just move the value into its correct position at the end of
1018 * the program:
1019 */
1020 static void
1021 fixup_depth_write(struct i915_fragment_program *p)
1022 {
1023 if (p->depth_written) {
1024 GLuint depth = UREG(REG_TYPE_OD, 0);
1025
1026 i915_emit_arith(p,
1027 A0_MOV,
1028 depth, A0_DEST_CHANNEL_W, 0,
1029 swizzle(depth, X, Y, Z, Z), 0, 0);
1030 }
1031 }
1032
1033 static void
1034 check_texcoord_mapping(struct i915_fragment_program *p)
1035 {
1036 GLbitfield64 inputs = p->FragProg.info.inputs_read;
1037 unsigned unit = 0;
1038
1039 for (unsigned i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) {
1040 if (inputs & VARYING_BIT_TEX(i)) {
1041 if (unit >= p->ctx->Const.MaxTextureCoordUnits) {
1042 unit++;
1043 break;
1044 }
1045 p->texcoord_mapping[unit++] = i | TEXCOORD_TEX;
1046 }
1047 if (inputs & VARYING_BIT_VAR(i)) {
1048 if (unit >= p->ctx->Const.MaxTextureCoordUnits) {
1049 unit++;
1050 break;
1051 }
1052 p->texcoord_mapping[unit++] = i | TEXCOORD_VAR;
1053 }
1054 }
1055
1056 if (unit > p->ctx->Const.MaxTextureCoordUnits)
1057 i915_program_error(p, "Too many texcoord units");
1058 }
1059
1060 static void
1061 check_wpos(struct i915_fragment_program *p)
1062 {
1063 GLbitfield64 inputs = p->FragProg.info.inputs_read;
1064 GLint i;
1065 unsigned unit = 0;
1066
1067 p->wpos_tex = I915_WPOS_TEX_INVALID;
1068
1069 if ((inputs & VARYING_BIT_POS) == 0)
1070 return;
1071
1072 for (i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) {
1073 unit += !!(inputs & VARYING_BIT_TEX(i));
1074 unit += !!(inputs & VARYING_BIT_VAR(i));
1075 }
1076
1077 if (unit < p->ctx->Const.MaxTextureCoordUnits)
1078 p->wpos_tex = unit;
1079 else
1080 i915_program_error(p, "No free texcoord for wpos value");
1081 }
1082
1083
1084 static void
1085 translate_program(struct i915_fragment_program *p)
1086 {
1087 struct i915_context *i915 = I915_CONTEXT(p->ctx);
1088
1089 if (INTEL_DEBUG & DEBUG_WM) {
1090 printf("fp:\n");
1091 _mesa_print_program(&p->FragProg);
1092 printf("\n");
1093 }
1094
1095 i915_init_program(i915, p);
1096 check_texcoord_mapping(p);
1097 check_wpos(p);
1098 upload_program(p);
1099 fixup_depth_write(p);
1100 i915_fini_program(p);
1101
1102 p->translated = 1;
1103 }
1104
1105
1106 static void
1107 track_params(struct i915_fragment_program *p)
1108 {
1109 GLint i;
1110
1111 if (p->nr_params)
1112 _mesa_load_state_parameters(p->ctx, p->FragProg.Parameters);
1113
1114 for (i = 0; i < p->nr_params; i++) {
1115 GLint reg = p->param[i].reg;
1116 COPY_4V(p->constant[reg], p->param[i].values);
1117 }
1118
1119 p->params_uptodate = 1;
1120 p->on_hardware = 0; /* overkill */
1121 }
1122
1123 static struct gl_program *
1124 i915NewProgram(struct gl_context * ctx, gl_shader_stage stage, GLuint id,
1125 bool is_arb_asm)
1126 {
1127 switch (stage) {
1128 case MESA_SHADER_VERTEX: {
1129 struct gl_program *prog = rzalloc(NULL, struct gl_program);
1130 return _mesa_init_gl_program(prog, stage, id, is_arb_asm);
1131 }
1132
1133 case MESA_SHADER_FRAGMENT:{
1134 struct i915_fragment_program *prog =
1135 rzalloc(NULL, struct i915_fragment_program);
1136 if (prog) {
1137 i915_init_program(I915_CONTEXT(ctx), prog);
1138
1139 return _mesa_init_gl_program(&prog->FragProg, stage, id,
1140 is_arb_asm);
1141 }
1142 else
1143 return NULL;
1144 }
1145
1146 default:
1147 /* Just fallback:
1148 */
1149 return _mesa_new_program(ctx, stage, id, is_arb_asm);
1150 }
1151 }
1152
1153 static void
1154 i915DeleteProgram(struct gl_context * ctx, struct gl_program *prog)
1155 {
1156 if (prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1157 struct i915_context *i915 = I915_CONTEXT(ctx);
1158 struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
1159
1160 if (i915->current_program == p)
1161 i915->current_program = 0;
1162 }
1163
1164 _mesa_delete_program(ctx, prog);
1165 }
1166
1167
1168 static GLboolean
1169 i915IsProgramNative(struct gl_context * ctx, GLenum target, struct gl_program *prog)
1170 {
1171 if (target == GL_FRAGMENT_PROGRAM_ARB) {
1172 struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
1173
1174 if (!p->translated)
1175 translate_program(p);
1176
1177 return !p->error;
1178 }
1179 else
1180 return true;
1181 }
1182
1183 static GLboolean
1184 i915ProgramStringNotify(struct gl_context * ctx,
1185 GLenum target, struct gl_program *prog)
1186 {
1187 if (target == GL_FRAGMENT_PROGRAM_ARB) {
1188 struct i915_fragment_program *p = (struct i915_fragment_program *) prog;
1189 p->translated = 0;
1190 }
1191
1192 (void) _tnl_program_string(ctx, target, prog);
1193
1194 /* XXX check if program is legal, within limits */
1195 return true;
1196 }
1197
1198 static void
1199 i915SamplerUniformChange(struct gl_context *ctx,
1200 GLenum target, struct gl_program *prog)
1201 {
1202 i915ProgramStringNotify(ctx, target, prog);
1203 }
1204
1205 void
1206 i915_update_program(struct gl_context *ctx)
1207 {
1208 struct intel_context *intel = intel_context(ctx);
1209 struct i915_context *i915 = i915_context(&intel->ctx);
1210 struct i915_fragment_program *fp =
1211 (struct i915_fragment_program *) ctx->FragmentProgram._Current;
1212
1213 if (i915->current_program != fp) {
1214 if (i915->current_program) {
1215 i915->current_program->on_hardware = 0;
1216 i915->current_program->params_uptodate = 0;
1217 }
1218
1219 i915->current_program = fp;
1220 }
1221
1222 if (!fp->translated)
1223 translate_program(fp);
1224
1225 FALLBACK(&i915->intel, I915_FALLBACK_PROGRAM, fp->error);
1226 }
1227
1228 void
1229 i915ValidateFragmentProgram(struct i915_context *i915)
1230 {
1231 struct gl_context *ctx = &i915->intel.ctx;
1232 struct intel_context *intel = intel_context(ctx);
1233 TNLcontext *tnl = TNL_CONTEXT(ctx);
1234 struct vertex_buffer *VB = &tnl->vb;
1235
1236 struct i915_fragment_program *p =
1237 (struct i915_fragment_program *) ctx->FragmentProgram._Current;
1238
1239 const GLbitfield64 inputsRead = p->FragProg.info.inputs_read;
1240 GLuint s4 = i915->state.Ctx[I915_CTXREG_LIS4] & ~S4_VFMT_MASK;
1241 GLuint s2 = S2_TEXCOORD_NONE;
1242 GLuint s3 = 0;
1243 int i, offset = 0;
1244
1245 /* Important:
1246 */
1247 VB->AttribPtr[VERT_ATTRIB_POS] = VB->NdcPtr;
1248
1249 if (!p->translated)
1250 translate_program(p);
1251
1252 intel->vertex_attr_count = 0;
1253 intel->wpos_offset = 0;
1254 intel->coloroffset = 0;
1255 intel->specoffset = 0;
1256
1257 /* Always emit W to get consistent perspective
1258 * correct interpolation of primary/secondary colors.
1259 */
1260 EMIT_ATTR(_TNL_ATTRIB_POS, EMIT_4F_VIEWPORT, S4_VFMT_XYZW, 16);
1261
1262 /* Handle gl_PointSize builtin var here */
1263 if (ctx->Point._Attenuated || ctx->VertexProgram.PointSizeEnabled)
1264 EMIT_ATTR(_TNL_ATTRIB_POINTSIZE, EMIT_1F, S4_VFMT_POINT_WIDTH, 4);
1265
1266 if (inputsRead & VARYING_BIT_COL0) {
1267 intel->coloroffset = offset / 4;
1268 EMIT_ATTR(_TNL_ATTRIB_COLOR0, EMIT_4UB_4F_BGRA, S4_VFMT_COLOR, 4);
1269 }
1270
1271 if (inputsRead & VARYING_BIT_COL1) {
1272 intel->specoffset = offset / 4;
1273 EMIT_ATTR(_TNL_ATTRIB_COLOR1, EMIT_4UB_4F_BGRA, S4_VFMT_SPEC_FOG, 4);
1274 }
1275
1276 if ((inputsRead & VARYING_BIT_FOGC)) {
1277 EMIT_ATTR(_TNL_ATTRIB_FOG, EMIT_1F, S4_VFMT_FOG_PARAM, 4);
1278 }
1279
1280 for (i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) {
1281 if (inputsRead & VARYING_BIT_TEX(i)) {
1282 int unit = get_texcoord_mapping(p, i | TEXCOORD_TEX);
1283 int sz = VB->AttribPtr[_TNL_ATTRIB_TEX0 + i]->size;
1284
1285 s2 &= ~S2_TEXCOORD_FMT(unit, S2_TEXCOORD_FMT0_MASK);
1286 s2 |= S2_TEXCOORD_FMT(unit, SZ_TO_HW(sz));
1287
1288 EMIT_ATTR(_TNL_ATTRIB_TEX0 + i, EMIT_SZ(sz), 0, sz * 4);
1289 }
1290 if (inputsRead & VARYING_BIT_VAR(i)) {
1291 int unit = get_texcoord_mapping(p, i | TEXCOORD_VAR);
1292 int sz = VB->AttribPtr[_TNL_ATTRIB_GENERIC0 + i]->size;
1293
1294 s2 &= ~S2_TEXCOORD_FMT(unit, S2_TEXCOORD_FMT0_MASK);
1295 s2 |= S2_TEXCOORD_FMT(unit, SZ_TO_HW(sz));
1296
1297 EMIT_ATTR(_TNL_ATTRIB_GENERIC0 + i, EMIT_SZ(sz), 0, sz * 4);
1298 }
1299 if (i == p->wpos_tex) {
1300 int wpos_size = 4 * sizeof(float);
1301 /* If WPOS is required, duplicate the XYZ position data in an
1302 * unused texture coordinate:
1303 */
1304 s2 &= ~S2_TEXCOORD_FMT(i, S2_TEXCOORD_FMT0_MASK);
1305 s2 |= S2_TEXCOORD_FMT(i, SZ_TO_HW(wpos_size));
1306 s3 |= S3_TEXCOORD_PERSPECTIVE_DISABLE(i);
1307
1308 intel->wpos_offset = offset;
1309 EMIT_PAD(wpos_size);
1310 }
1311 }
1312
1313 if (s2 != i915->state.Ctx[I915_CTXREG_LIS2] ||
1314 s3 != i915->state.Ctx[I915_CTXREG_LIS3] ||
1315 s4 != i915->state.Ctx[I915_CTXREG_LIS4]) {
1316 I915_STATECHANGE(i915, I915_UPLOAD_CTX);
1317
1318 /* Must do this *after* statechange, so as not to affect
1319 * buffered vertices reliant on the old state:
1320 */
1321 intel->vertex_size = _tnl_install_attrs(&intel->ctx,
1322 intel->vertex_attrs,
1323 intel->vertex_attr_count,
1324 intel->ViewportMatrix.m, 0);
1325
1326 assert(intel->prim.current_offset == intel->prim.start_offset);
1327 intel->prim.start_offset = (intel->prim.current_offset + intel->vertex_size-1) / intel->vertex_size * intel->vertex_size;
1328 intel->prim.current_offset = intel->prim.start_offset;
1329
1330 intel->vertex_size >>= 2;
1331
1332 i915->state.Ctx[I915_CTXREG_LIS2] = s2;
1333 i915->state.Ctx[I915_CTXREG_LIS3] = s3;
1334 i915->state.Ctx[I915_CTXREG_LIS4] = s4;
1335
1336 assert(intel->vtbl.check_vertex_size(intel, intel->vertex_size));
1337 }
1338
1339 if (!p->params_uptodate)
1340 track_params(p);
1341
1342 if (!p->on_hardware)
1343 i915_upload_program(i915, p);
1344
1345 if (INTEL_DEBUG & DEBUG_WM) {
1346 printf("i915:\n");
1347 i915_disassemble_program(i915->state.Program, i915->state.ProgramSize);
1348 }
1349 }
1350
1351 void
1352 i915InitFragProgFuncs(struct dd_function_table *functions)
1353 {
1354 functions->NewProgram = i915NewProgram;
1355 functions->DeleteProgram = i915DeleteProgram;
1356 functions->IsProgramNative = i915IsProgramNative;
1357 functions->ProgramStringNotify = i915ProgramStringNotify;
1358 functions->SamplerUniformChange = i915SamplerUniformChange;
1359 }