279db28b7eba89d8b3697b96ef0781f11a29f457
[mesa.git] / src / mesa / drivers / dri / i915 / intel_blit.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 #include "main/mtypes.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/colormac.h"
33 #include "main/fbobject.h"
34
35 #include "intel_blit.h"
36 #include "intel_buffers.h"
37 #include "intel_context.h"
38 #include "intel_fbo.h"
39 #include "intel_reg.h"
40 #include "intel_regions.h"
41 #include "intel_batchbuffer.h"
42 #include "intel_mipmap_tree.h"
43
44 #define FILE_DEBUG_FLAG DEBUG_BLIT
45
46 static void
47 intel_miptree_set_alpha_to_one(struct intel_context *intel,
48 struct intel_mipmap_tree *mt,
49 int x, int y, int width, int height);
50
51 static GLuint translate_raster_op(GLenum logicop)
52 {
53 switch(logicop) {
54 case GL_CLEAR: return 0x00;
55 case GL_AND: return 0x88;
56 case GL_AND_REVERSE: return 0x44;
57 case GL_COPY: return 0xCC;
58 case GL_AND_INVERTED: return 0x22;
59 case GL_NOOP: return 0xAA;
60 case GL_XOR: return 0x66;
61 case GL_OR: return 0xEE;
62 case GL_NOR: return 0x11;
63 case GL_EQUIV: return 0x99;
64 case GL_INVERT: return 0x55;
65 case GL_OR_REVERSE: return 0xDD;
66 case GL_COPY_INVERTED: return 0x33;
67 case GL_OR_INVERTED: return 0xBB;
68 case GL_NAND: return 0x77;
69 case GL_SET: return 0xFF;
70 default: return 0;
71 }
72 }
73
74 static uint32_t
75 br13_for_cpp(int cpp)
76 {
77 switch (cpp) {
78 case 4:
79 return BR13_8888;
80 break;
81 case 2:
82 return BR13_565;
83 break;
84 case 1:
85 return BR13_8;
86 break;
87 default:
88 assert(0);
89 return 0;
90 }
91 }
92
93 /**
94 * Implements a rectangular block transfer (blit) of pixels between two
95 * miptrees.
96 *
97 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
98 * but limited, pitches and sizes allowed.
99 *
100 * The src/dst coordinates are relative to the given level/slice of the
101 * miptree.
102 *
103 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
104 * will be inverted (including scanline order) when copying. This is common
105 * in GL when copying between window system and user-created
106 * renderbuffers/textures.
107 */
108 bool
109 intel_miptree_blit(struct intel_context *intel,
110 struct intel_mipmap_tree *src_mt,
111 int src_level, int src_slice,
112 uint32_t src_x, uint32_t src_y, bool src_flip,
113 struct intel_mipmap_tree *dst_mt,
114 int dst_level, int dst_slice,
115 uint32_t dst_x, uint32_t dst_y, bool dst_flip,
116 uint32_t width, uint32_t height,
117 GLenum logicop)
118 {
119 /* No sRGB decode or encode is done by the hardware blitter, which is
120 * consistent with what we want in the callers (glCopyTexSubImage(),
121 * glBlitFramebuffer(), texture validation, etc.).
122 */
123 mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
124 mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
125
126 /* The blitter doesn't support doing any format conversions. We do also
127 * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
128 * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
129 * channel to 1.0 at the end.
130 */
131 if (src_format != dst_format &&
132 ((src_format != MESA_FORMAT_B8G8R8A8_UNORM &&
133 src_format != MESA_FORMAT_B8G8R8X8_UNORM) ||
134 (dst_format != MESA_FORMAT_B8G8R8A8_UNORM &&
135 dst_format != MESA_FORMAT_B8G8R8X8_UNORM))) {
136 perf_debug("%s: Can't use hardware blitter from %s to %s, "
137 "falling back.\n", __func__,
138 _mesa_get_format_name(src_format),
139 _mesa_get_format_name(dst_format));
140 return false;
141 }
142
143 /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
144 * Data Size Limitations):
145 *
146 * The BLT engine is capable of transferring very large quantities of
147 * graphics data. Any graphics data read from and written to the
148 * destination is permitted to represent a number of pixels that
149 * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
150 * at the destination. The maximum number of pixels that may be
151 * represented per scan line’s worth of graphics data depends on the
152 * color depth.
153 *
154 * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
155 * 16-bit integer to represent buffer pitch, so it can only handle buffer
156 * pitches < 32k.
157 *
158 * As a result of these two limitations, we can only use the blitter to do
159 * this copy when the region's pitch is less than 32k.
160 */
161 if (src_mt->region->pitch > 32768 ||
162 dst_mt->region->pitch > 32768) {
163 perf_debug("Falling back due to >32k pitch\n");
164 return false;
165 }
166
167 if (src_flip)
168 src_y = src_mt->level[src_level].height - src_y - height;
169
170 if (dst_flip)
171 dst_y = dst_mt->level[dst_level].height - dst_y - height;
172
173 int src_pitch = src_mt->region->pitch;
174 if (src_flip != dst_flip)
175 src_pitch = -src_pitch;
176
177 uint32_t src_image_x, src_image_y;
178 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
179 &src_image_x, &src_image_y);
180 src_x += src_image_x;
181 src_y += src_image_y;
182
183 uint32_t dst_image_x, dst_image_y;
184 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
185 &dst_image_x, &dst_image_y);
186 dst_x += dst_image_x;
187 dst_y += dst_image_y;
188
189 if (!intelEmitCopyBlit(intel,
190 src_mt->cpp,
191 src_pitch,
192 src_mt->region->bo, src_mt->offset,
193 src_mt->region->tiling,
194 dst_mt->region->pitch,
195 dst_mt->region->bo, dst_mt->offset,
196 dst_mt->region->tiling,
197 src_x, src_y,
198 dst_x, dst_y,
199 width, height,
200 logicop)) {
201 return false;
202 }
203
204 if (src_mt->format == MESA_FORMAT_B8G8R8X8_UNORM &&
205 dst_mt->format == MESA_FORMAT_B8G8R8A8_UNORM) {
206 intel_miptree_set_alpha_to_one(intel, dst_mt,
207 dst_x, dst_y,
208 width, height);
209 }
210
211 return true;
212 }
213
214 /* Copy BitBlt
215 */
216 bool
217 intelEmitCopyBlit(struct intel_context *intel,
218 GLuint cpp,
219 GLshort src_pitch,
220 drm_intel_bo *src_buffer,
221 GLuint src_offset,
222 uint32_t src_tiling,
223 GLshort dst_pitch,
224 drm_intel_bo *dst_buffer,
225 GLuint dst_offset,
226 uint32_t dst_tiling,
227 GLshort src_x, GLshort src_y,
228 GLshort dst_x, GLshort dst_y,
229 GLshort w, GLshort h,
230 GLenum logic_op)
231 {
232 GLuint CMD, BR13, pass = 0;
233 int dst_y2 = dst_y + h;
234 int dst_x2 = dst_x + w;
235 drm_intel_bo *aper_array[3];
236 bool dst_y_tiled = dst_tiling == I915_TILING_Y;
237 bool src_y_tiled = src_tiling == I915_TILING_Y;
238 BATCH_LOCALS;
239
240 if (dst_tiling != I915_TILING_NONE) {
241 if (dst_offset & 4095)
242 return false;
243 }
244 if (src_tiling != I915_TILING_NONE) {
245 if (src_offset & 4095)
246 return false;
247 }
248 if (dst_y_tiled || src_y_tiled)
249 return false;
250
251 /* do space check before going any further */
252 do {
253 aper_array[0] = intel->batch.bo;
254 aper_array[1] = dst_buffer;
255 aper_array[2] = src_buffer;
256
257 if (dri_bufmgr_check_aperture_space(aper_array, 3) != 0) {
258 intel_batchbuffer_flush(intel);
259 pass++;
260 } else
261 break;
262 } while (pass < 2);
263
264 if (pass >= 2)
265 return false;
266
267 intel_batchbuffer_require_space(intel, 8 * 4);
268 DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
269 __func__,
270 src_buffer, src_pitch, src_offset, src_x, src_y,
271 dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
272
273 /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
274 * the low bits. Offsets must be naturally aligned.
275 */
276 if (src_pitch % 4 != 0 || src_offset % cpp != 0 ||
277 dst_pitch % 4 != 0 || dst_offset % cpp != 0)
278 return false;
279
280 /* For big formats (such as floating point), do the copy using 16 or 32bpp
281 * and multiply the coordinates.
282 */
283 if (cpp > 4) {
284 if (cpp % 4 == 2) {
285 dst_x *= cpp / 2;
286 dst_x2 *= cpp / 2;
287 src_x *= cpp / 2;
288 cpp = 2;
289 } else {
290 assert(cpp % 4 == 0);
291 dst_x *= cpp / 4;
292 dst_x2 *= cpp / 4;
293 src_x *= cpp / 4;
294 cpp = 4;
295 }
296 }
297
298 BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
299
300 switch (cpp) {
301 case 1:
302 case 2:
303 CMD = XY_SRC_COPY_BLT_CMD;
304 break;
305 case 4:
306 CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
307 break;
308 default:
309 return false;
310 }
311
312 if (dst_y2 <= dst_y || dst_x2 <= dst_x) {
313 return true;
314 }
315
316 assert(dst_x < dst_x2);
317 assert(dst_y < dst_y2);
318
319 BEGIN_BATCH(8);
320
321 OUT_BATCH(CMD | (8 - 2));
322 OUT_BATCH(BR13 | (uint16_t)dst_pitch);
323 OUT_BATCH((dst_y << 16) | dst_x);
324 OUT_BATCH((dst_y2 << 16) | dst_x2);
325 OUT_RELOC_FENCED(dst_buffer,
326 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
327 dst_offset);
328 OUT_BATCH((src_y << 16) | src_x);
329 OUT_BATCH((uint16_t)src_pitch);
330 OUT_RELOC_FENCED(src_buffer,
331 I915_GEM_DOMAIN_RENDER, 0,
332 src_offset);
333
334 ADVANCE_BATCH();
335
336 intel_batchbuffer_emit_mi_flush(intel);
337
338 return true;
339 }
340
341
342 /**
343 * Use blitting to clear the renderbuffers named by 'flags'.
344 * Note: we can't use the ctx->DrawBuffer->_ColorDrawBufferIndexes field
345 * since that might include software renderbuffers or renderbuffers
346 * which we're clearing with triangles.
347 * \param mask bitmask of BUFFER_BIT_* values indicating buffers to clear
348 */
349 GLbitfield
350 intelClearWithBlit(struct gl_context *ctx, GLbitfield mask)
351 {
352 struct intel_context *intel = intel_context(ctx);
353 struct gl_framebuffer *fb = ctx->DrawBuffer;
354 GLuint clear_depth_value, clear_depth_mask;
355 GLint cx, cy, cw, ch;
356 GLbitfield fail_mask = 0;
357 BATCH_LOCALS;
358
359 /* Note: we don't use this function on Gen7+ hardware, so we can safely
360 * ignore fast color clear issues.
361 */
362 assert(intel->gen < 7);
363
364 /*
365 * Compute values for clearing the buffers.
366 */
367 clear_depth_value = 0;
368 clear_depth_mask = 0;
369 if (mask & BUFFER_BIT_DEPTH) {
370 clear_depth_value = (GLuint) (fb->_DepthMax * ctx->Depth.Clear);
371 clear_depth_mask = XY_BLT_WRITE_RGB;
372 }
373 if (mask & BUFFER_BIT_STENCIL) {
374 clear_depth_value |= (ctx->Stencil.Clear & 0xff) << 24;
375 clear_depth_mask |= XY_BLT_WRITE_ALPHA;
376 }
377
378 cx = fb->_Xmin;
379 if (_mesa_is_winsys_fbo(fb))
380 cy = ctx->DrawBuffer->Height - fb->_Ymax;
381 else
382 cy = fb->_Ymin;
383 cw = fb->_Xmax - fb->_Xmin;
384 ch = fb->_Ymax - fb->_Ymin;
385
386 if (cw == 0 || ch == 0)
387 return 0;
388
389 /* Loop over all renderbuffers */
390 mask &= (1 << BUFFER_COUNT) - 1;
391 while (mask) {
392 GLuint buf = ffs(mask) - 1;
393 bool is_depth_stencil = buf == BUFFER_DEPTH || buf == BUFFER_STENCIL;
394 struct intel_renderbuffer *irb;
395 int x1, y1, x2, y2;
396 uint32_t clear_val;
397 uint32_t BR13, CMD;
398 struct intel_region *region;
399 int pitch, cpp;
400 drm_intel_bo *aper_array[2];
401
402 mask &= ~(1 << buf);
403
404 irb = intel_get_renderbuffer(fb, buf);
405 if (irb && irb->mt) {
406 region = irb->mt->region;
407 assert(region);
408 assert(region->bo);
409 } else {
410 fail_mask |= 1 << buf;
411 continue;
412 }
413
414 /* OK, clear this renderbuffer */
415 x1 = cx + irb->draw_x;
416 y1 = cy + irb->draw_y;
417 x2 = cx + cw + irb->draw_x;
418 y2 = cy + ch + irb->draw_y;
419
420 pitch = region->pitch;
421 cpp = region->cpp;
422
423 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
424 __func__,
425 region->bo, pitch,
426 x1, y1, x2 - x1, y2 - y1);
427
428 BR13 = 0xf0 << 16;
429 CMD = XY_COLOR_BLT_CMD;
430
431 /* Setup the blit command */
432 if (cpp == 4) {
433 if (is_depth_stencil) {
434 CMD |= clear_depth_mask;
435 } else {
436 /* clearing RGBA */
437 CMD |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
438 }
439 }
440
441 assert(region->tiling != I915_TILING_Y);
442
443 BR13 |= pitch;
444
445 if (is_depth_stencil) {
446 clear_val = clear_depth_value;
447 } else {
448 uint8_t clear[4];
449 GLfloat *color = ctx->Color.ClearColor.f;
450
451 _mesa_unclamped_float_rgba_to_ubyte(clear, color);
452
453 switch (intel_rb_format(irb)) {
454 case MESA_FORMAT_B8G8R8A8_UNORM:
455 case MESA_FORMAT_B8G8R8X8_UNORM:
456 clear_val = PACK_COLOR_8888(clear[3], clear[0],
457 clear[1], clear[2]);
458 break;
459 case MESA_FORMAT_B5G6R5_UNORM:
460 clear_val = PACK_COLOR_565(clear[0], clear[1], clear[2]);
461 break;
462 case MESA_FORMAT_B4G4R4A4_UNORM:
463 clear_val = PACK_COLOR_4444(clear[3], clear[0],
464 clear[1], clear[2]);
465 break;
466 case MESA_FORMAT_B5G5R5A1_UNORM:
467 clear_val = PACK_COLOR_1555(clear[3], clear[0],
468 clear[1], clear[2]);
469 break;
470 case MESA_FORMAT_A_UNORM8:
471 clear_val = PACK_COLOR_8888(clear[3], clear[3],
472 clear[3], clear[3]);
473 break;
474 default:
475 fail_mask |= 1 << buf;
476 continue;
477 }
478 }
479
480 BR13 |= br13_for_cpp(cpp);
481
482 assert(x1 < x2);
483 assert(y1 < y2);
484
485 /* do space check before going any further */
486 aper_array[0] = intel->batch.bo;
487 aper_array[1] = region->bo;
488
489 if (drm_intel_bufmgr_check_aperture_space(aper_array,
490 ARRAY_SIZE(aper_array)) != 0) {
491 intel_batchbuffer_flush(intel);
492 }
493
494 BEGIN_BATCH(6);
495 OUT_BATCH(CMD | (6 - 2));
496 OUT_BATCH(BR13);
497 OUT_BATCH((y1 << 16) | x1);
498 OUT_BATCH((y2 << 16) | x2);
499 OUT_RELOC_FENCED(region->bo,
500 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
501 0);
502 OUT_BATCH(clear_val);
503 ADVANCE_BATCH();
504
505 if (intel->always_flush_cache)
506 intel_batchbuffer_emit_mi_flush(intel);
507
508 if (buf == BUFFER_DEPTH || buf == BUFFER_STENCIL)
509 mask &= ~(BUFFER_BIT_DEPTH | BUFFER_BIT_STENCIL);
510 }
511
512 return fail_mask;
513 }
514
515 bool
516 intelEmitImmediateColorExpandBlit(struct intel_context *intel,
517 GLuint cpp,
518 GLubyte *src_bits, GLuint src_size,
519 GLuint fg_color,
520 GLshort dst_pitch,
521 drm_intel_bo *dst_buffer,
522 GLuint dst_offset,
523 uint32_t dst_tiling,
524 GLshort x, GLshort y,
525 GLshort w, GLshort h,
526 GLenum logic_op)
527 {
528 int dwords = ALIGN(src_size, 8) / 4;
529 uint32_t opcode, br13, blit_cmd;
530
531 if (dst_tiling != I915_TILING_NONE) {
532 if (dst_offset & 4095)
533 return false;
534 if (dst_tiling == I915_TILING_Y)
535 return false;
536 }
537
538 assert((logic_op >= GL_CLEAR) && (logic_op <= (GL_CLEAR + 0x0f)));
539 assert(dst_pitch > 0);
540
541 if (w < 0 || h < 0)
542 return true;
543
544 DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
545 __func__,
546 dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
547
548 intel_batchbuffer_require_space(intel,
549 (8 * 4) +
550 (3 * 4) +
551 dwords * 4);
552
553 opcode = XY_SETUP_BLT_CMD;
554 if (cpp == 4)
555 opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
556
557 br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
558 br13 |= br13_for_cpp(cpp);
559
560 blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
561 if (dst_tiling != I915_TILING_NONE)
562 blit_cmd |= XY_DST_TILED;
563
564 BEGIN_BATCH(8 + 3);
565 OUT_BATCH(opcode | (8 - 2));
566 OUT_BATCH(br13);
567 OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
568 OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
569 OUT_RELOC_FENCED(dst_buffer,
570 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
571 dst_offset);
572 OUT_BATCH(0); /* bg */
573 OUT_BATCH(fg_color); /* fg */
574 OUT_BATCH(0); /* pattern base addr */
575
576 OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
577 OUT_BATCH((y << 16) | x);
578 OUT_BATCH(((y + h) << 16) | (x + w));
579 ADVANCE_BATCH();
580
581 intel_batchbuffer_data(intel, src_bits, dwords * 4);
582
583 intel_batchbuffer_emit_mi_flush(intel);
584
585 return true;
586 }
587
588 /* We don't have a memmove-type blit like some other hardware, so we'll do a
589 * rectangular blit covering a large space, then emit 1-scanline blit at the
590 * end to cover the last if we need.
591 */
592 void
593 intel_emit_linear_blit(struct intel_context *intel,
594 drm_intel_bo *dst_bo,
595 unsigned int dst_offset,
596 drm_intel_bo *src_bo,
597 unsigned int src_offset,
598 unsigned int size)
599 {
600 struct gl_context *ctx = &intel->ctx;
601 GLuint pitch, height;
602 bool ok;
603
604 /* The pitch given to the GPU must be DWORD aligned, and
605 * we want width to match pitch. Max width is (1 << 15 - 1),
606 * rounding that down to the nearest DWORD is 1 << 15 - 4
607 */
608 pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 1), 4);
609 height = (pitch == 0) ? 1 : size / pitch;
610 ok = intelEmitCopyBlit(intel, 1,
611 pitch, src_bo, src_offset, I915_TILING_NONE,
612 pitch, dst_bo, dst_offset, I915_TILING_NONE,
613 0, 0, /* src x/y */
614 0, 0, /* dst x/y */
615 pitch, height, /* w, h */
616 GL_COPY);
617 if (!ok)
618 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", pitch, height);
619
620 src_offset += pitch * height;
621 dst_offset += pitch * height;
622 size -= pitch * height;
623 assert (size < (1 << 15));
624 pitch = ALIGN(size, 4);
625 if (size != 0) {
626 ok = intelEmitCopyBlit(intel, 1,
627 pitch, src_bo, src_offset, I915_TILING_NONE,
628 pitch, dst_bo, dst_offset, I915_TILING_NONE,
629 0, 0, /* src x/y */
630 0, 0, /* dst x/y */
631 size, 1, /* w, h */
632 GL_COPY);
633 if (!ok)
634 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", size, 1);
635 }
636 }
637
638 /**
639 * Used to initialize the alpha value of an ARGB8888 miptree after copying
640 * into it from an XRGB8888 source.
641 *
642 * This is very common with glCopyTexImage2D(). Note that the coordinates are
643 * relative to the start of the miptree, not relative to a slice within the
644 * miptree.
645 */
646 static void
647 intel_miptree_set_alpha_to_one(struct intel_context *intel,
648 struct intel_mipmap_tree *mt,
649 int x, int y, int width, int height)
650 {
651 struct intel_region *region = mt->region;
652 uint32_t BR13, CMD;
653 int pitch, cpp;
654 drm_intel_bo *aper_array[2];
655 BATCH_LOCALS;
656
657 pitch = region->pitch;
658 cpp = region->cpp;
659
660 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
661 __func__, region->bo, pitch, x, y, width, height);
662
663 BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
664 CMD = XY_COLOR_BLT_CMD;
665 CMD |= XY_BLT_WRITE_ALPHA;
666
667 BR13 |= pitch;
668
669 /* do space check before going any further */
670 aper_array[0] = intel->batch.bo;
671 aper_array[1] = region->bo;
672
673 if (drm_intel_bufmgr_check_aperture_space(aper_array,
674 ARRAY_SIZE(aper_array)) != 0) {
675 intel_batchbuffer_flush(intel);
676 }
677
678 BEGIN_BATCH(6);
679 OUT_BATCH(CMD | (6 - 2));
680 OUT_BATCH(BR13);
681 OUT_BATCH((y << 16) | x);
682 OUT_BATCH(((y + height) << 16) | (x + width));
683 OUT_RELOC_FENCED(region->bo,
684 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
685 0);
686 OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
687 ADVANCE_BATCH();
688
689 intel_batchbuffer_emit_mi_flush(intel);
690 }