mesa: Change many Type A MESA_FORMATs to meet naming standard
[mesa.git] / src / mesa / drivers / dri / i915 / intel_blit.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 #include "main/mtypes.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/colormac.h"
33 #include "main/fbobject.h"
34
35 #include "intel_blit.h"
36 #include "intel_buffers.h"
37 #include "intel_context.h"
38 #include "intel_fbo.h"
39 #include "intel_reg.h"
40 #include "intel_regions.h"
41 #include "intel_batchbuffer.h"
42 #include "intel_mipmap_tree.h"
43
44 #define FILE_DEBUG_FLAG DEBUG_BLIT
45
46 static void
47 intel_miptree_set_alpha_to_one(struct intel_context *intel,
48 struct intel_mipmap_tree *mt,
49 int x, int y, int width, int height);
50
51 static GLuint translate_raster_op(GLenum logicop)
52 {
53 switch(logicop) {
54 case GL_CLEAR: return 0x00;
55 case GL_AND: return 0x88;
56 case GL_AND_REVERSE: return 0x44;
57 case GL_COPY: return 0xCC;
58 case GL_AND_INVERTED: return 0x22;
59 case GL_NOOP: return 0xAA;
60 case GL_XOR: return 0x66;
61 case GL_OR: return 0xEE;
62 case GL_NOR: return 0x11;
63 case GL_EQUIV: return 0x99;
64 case GL_INVERT: return 0x55;
65 case GL_OR_REVERSE: return 0xDD;
66 case GL_COPY_INVERTED: return 0x33;
67 case GL_OR_INVERTED: return 0xBB;
68 case GL_NAND: return 0x77;
69 case GL_SET: return 0xFF;
70 default: return 0;
71 }
72 }
73
74 static uint32_t
75 br13_for_cpp(int cpp)
76 {
77 switch (cpp) {
78 case 4:
79 return BR13_8888;
80 break;
81 case 2:
82 return BR13_565;
83 break;
84 case 1:
85 return BR13_8;
86 break;
87 default:
88 assert(0);
89 return 0;
90 }
91 }
92
93 /**
94 * Implements a rectangular block transfer (blit) of pixels between two
95 * miptrees.
96 *
97 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
98 * but limited, pitches and sizes allowed.
99 *
100 * The src/dst coordinates are relative to the given level/slice of the
101 * miptree.
102 *
103 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
104 * will be inverted (including scanline order) when copying. This is common
105 * in GL when copying between window system and user-created
106 * renderbuffers/textures.
107 */
108 bool
109 intel_miptree_blit(struct intel_context *intel,
110 struct intel_mipmap_tree *src_mt,
111 int src_level, int src_slice,
112 uint32_t src_x, uint32_t src_y, bool src_flip,
113 struct intel_mipmap_tree *dst_mt,
114 int dst_level, int dst_slice,
115 uint32_t dst_x, uint32_t dst_y, bool dst_flip,
116 uint32_t width, uint32_t height,
117 GLenum logicop)
118 {
119 /* No sRGB decode or encode is done by the hardware blitter, which is
120 * consistent with what we want in the callers (glCopyTexSubImage(),
121 * glBlitFramebuffer(), texture validation, etc.).
122 */
123 mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
124 mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
125
126 /* The blitter doesn't support doing any format conversions. We do also
127 * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
128 * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
129 * channel to 1.0 at the end.
130 */
131 if (src_format != dst_format &&
132 ((src_format != MESA_FORMAT_B8G8R8A8_UNORM &&
133 src_format != MESA_FORMAT_B8G8R8X8_UNORM) ||
134 (dst_format != MESA_FORMAT_B8G8R8A8_UNORM &&
135 dst_format != MESA_FORMAT_B8G8R8X8_UNORM))) {
136 perf_debug("%s: Can't use hardware blitter from %s to %s, "
137 "falling back.\n", __FUNCTION__,
138 _mesa_get_format_name(src_format),
139 _mesa_get_format_name(dst_format));
140 return false;
141 }
142
143 /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
144 * Data Size Limitations):
145 *
146 * The BLT engine is capable of transferring very large quantities of
147 * graphics data. Any graphics data read from and written to the
148 * destination is permitted to represent a number of pixels that
149 * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
150 * at the destination. The maximum number of pixels that may be
151 * represented per scan line’s worth of graphics data depends on the
152 * color depth.
153 *
154 * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
155 * 16-bit integer to represent buffer pitch, so it can only handle buffer
156 * pitches < 32k.
157 *
158 * As a result of these two limitations, we can only use the blitter to do
159 * this copy when the region's pitch is less than 32k.
160 */
161 if (src_mt->region->pitch > 32768 ||
162 dst_mt->region->pitch > 32768) {
163 perf_debug("Falling back due to >32k pitch\n");
164 return false;
165 }
166
167 if (src_flip)
168 src_y = src_mt->level[src_level].height - src_y - height;
169
170 if (dst_flip)
171 dst_y = dst_mt->level[dst_level].height - dst_y - height;
172
173 int src_pitch = src_mt->region->pitch;
174 if (src_flip != dst_flip)
175 src_pitch = -src_pitch;
176
177 uint32_t src_image_x, src_image_y;
178 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
179 &src_image_x, &src_image_y);
180 src_x += src_image_x;
181 src_y += src_image_y;
182
183 uint32_t dst_image_x, dst_image_y;
184 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
185 &dst_image_x, &dst_image_y);
186 dst_x += dst_image_x;
187 dst_y += dst_image_y;
188
189 if (!intelEmitCopyBlit(intel,
190 src_mt->cpp,
191 src_pitch,
192 src_mt->region->bo, src_mt->offset,
193 src_mt->region->tiling,
194 dst_mt->region->pitch,
195 dst_mt->region->bo, dst_mt->offset,
196 dst_mt->region->tiling,
197 src_x, src_y,
198 dst_x, dst_y,
199 width, height,
200 logicop)) {
201 return false;
202 }
203
204 if (src_mt->format == MESA_FORMAT_B8G8R8X8_UNORM &&
205 dst_mt->format == MESA_FORMAT_B8G8R8A8_UNORM) {
206 intel_miptree_set_alpha_to_one(intel, dst_mt,
207 dst_x, dst_y,
208 width, height);
209 }
210
211 return true;
212 }
213
214 /* Copy BitBlt
215 */
216 bool
217 intelEmitCopyBlit(struct intel_context *intel,
218 GLuint cpp,
219 GLshort src_pitch,
220 drm_intel_bo *src_buffer,
221 GLuint src_offset,
222 uint32_t src_tiling,
223 GLshort dst_pitch,
224 drm_intel_bo *dst_buffer,
225 GLuint dst_offset,
226 uint32_t dst_tiling,
227 GLshort src_x, GLshort src_y,
228 GLshort dst_x, GLshort dst_y,
229 GLshort w, GLshort h,
230 GLenum logic_op)
231 {
232 GLuint CMD, BR13, pass = 0;
233 int dst_y2 = dst_y + h;
234 int dst_x2 = dst_x + w;
235 drm_intel_bo *aper_array[3];
236 bool dst_y_tiled = dst_tiling == I915_TILING_Y;
237 bool src_y_tiled = src_tiling == I915_TILING_Y;
238 BATCH_LOCALS;
239
240 if (dst_tiling != I915_TILING_NONE) {
241 if (dst_offset & 4095)
242 return false;
243 }
244 if (src_tiling != I915_TILING_NONE) {
245 if (src_offset & 4095)
246 return false;
247 }
248 if (dst_y_tiled || src_y_tiled)
249 return false;
250
251 /* do space check before going any further */
252 do {
253 aper_array[0] = intel->batch.bo;
254 aper_array[1] = dst_buffer;
255 aper_array[2] = src_buffer;
256
257 if (dri_bufmgr_check_aperture_space(aper_array, 3) != 0) {
258 intel_batchbuffer_flush(intel);
259 pass++;
260 } else
261 break;
262 } while (pass < 2);
263
264 if (pass >= 2)
265 return false;
266
267 intel_batchbuffer_require_space(intel, 8 * 4);
268 DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
269 __FUNCTION__,
270 src_buffer, src_pitch, src_offset, src_x, src_y,
271 dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
272
273 /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
274 * the low bits.
275 */
276 if (src_pitch % 4 != 0 || dst_pitch % 4 != 0)
277 return false;
278
279 /* For big formats (such as floating point), do the copy using 16 or 32bpp
280 * and multiply the coordinates.
281 */
282 if (cpp > 4) {
283 if (cpp % 4 == 2) {
284 dst_x *= cpp / 2;
285 dst_x2 *= cpp / 2;
286 src_x *= cpp / 2;
287 cpp = 2;
288 } else {
289 assert(cpp % 4 == 0);
290 dst_x *= cpp / 4;
291 dst_x2 *= cpp / 4;
292 src_x *= cpp / 4;
293 cpp = 4;
294 }
295 }
296
297 BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
298
299 switch (cpp) {
300 case 1:
301 case 2:
302 CMD = XY_SRC_COPY_BLT_CMD;
303 break;
304 case 4:
305 CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
306 break;
307 default:
308 return false;
309 }
310
311 if (dst_y2 <= dst_y || dst_x2 <= dst_x) {
312 return true;
313 }
314
315 assert(dst_x < dst_x2);
316 assert(dst_y < dst_y2);
317
318 BEGIN_BATCH(8);
319
320 OUT_BATCH(CMD | (8 - 2));
321 OUT_BATCH(BR13 | (uint16_t)dst_pitch);
322 OUT_BATCH((dst_y << 16) | dst_x);
323 OUT_BATCH((dst_y2 << 16) | dst_x2);
324 OUT_RELOC_FENCED(dst_buffer,
325 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
326 dst_offset);
327 OUT_BATCH((src_y << 16) | src_x);
328 OUT_BATCH((uint16_t)src_pitch);
329 OUT_RELOC_FENCED(src_buffer,
330 I915_GEM_DOMAIN_RENDER, 0,
331 src_offset);
332
333 ADVANCE_BATCH();
334
335 intel_batchbuffer_emit_mi_flush(intel);
336
337 return true;
338 }
339
340
341 /**
342 * Use blitting to clear the renderbuffers named by 'flags'.
343 * Note: we can't use the ctx->DrawBuffer->_ColorDrawBufferIndexes field
344 * since that might include software renderbuffers or renderbuffers
345 * which we're clearing with triangles.
346 * \param mask bitmask of BUFFER_BIT_* values indicating buffers to clear
347 */
348 GLbitfield
349 intelClearWithBlit(struct gl_context *ctx, GLbitfield mask)
350 {
351 struct intel_context *intel = intel_context(ctx);
352 struct gl_framebuffer *fb = ctx->DrawBuffer;
353 GLuint clear_depth_value, clear_depth_mask;
354 GLint cx, cy, cw, ch;
355 GLbitfield fail_mask = 0;
356 BATCH_LOCALS;
357
358 /* Note: we don't use this function on Gen7+ hardware, so we can safely
359 * ignore fast color clear issues.
360 */
361 assert(intel->gen < 7);
362
363 /*
364 * Compute values for clearing the buffers.
365 */
366 clear_depth_value = 0;
367 clear_depth_mask = 0;
368 if (mask & BUFFER_BIT_DEPTH) {
369 clear_depth_value = (GLuint) (fb->_DepthMax * ctx->Depth.Clear);
370 clear_depth_mask = XY_BLT_WRITE_RGB;
371 }
372 if (mask & BUFFER_BIT_STENCIL) {
373 clear_depth_value |= (ctx->Stencil.Clear & 0xff) << 24;
374 clear_depth_mask |= XY_BLT_WRITE_ALPHA;
375 }
376
377 cx = fb->_Xmin;
378 if (_mesa_is_winsys_fbo(fb))
379 cy = ctx->DrawBuffer->Height - fb->_Ymax;
380 else
381 cy = fb->_Ymin;
382 cw = fb->_Xmax - fb->_Xmin;
383 ch = fb->_Ymax - fb->_Ymin;
384
385 if (cw == 0 || ch == 0)
386 return 0;
387
388 /* Loop over all renderbuffers */
389 mask &= (1 << BUFFER_COUNT) - 1;
390 while (mask) {
391 GLuint buf = ffs(mask) - 1;
392 bool is_depth_stencil = buf == BUFFER_DEPTH || buf == BUFFER_STENCIL;
393 struct intel_renderbuffer *irb;
394 int x1, y1, x2, y2;
395 uint32_t clear_val;
396 uint32_t BR13, CMD;
397 struct intel_region *region;
398 int pitch, cpp;
399 drm_intel_bo *aper_array[2];
400
401 mask &= ~(1 << buf);
402
403 irb = intel_get_renderbuffer(fb, buf);
404 if (irb && irb->mt) {
405 region = irb->mt->region;
406 assert(region);
407 assert(region->bo);
408 } else {
409 fail_mask |= 1 << buf;
410 continue;
411 }
412
413 /* OK, clear this renderbuffer */
414 x1 = cx + irb->draw_x;
415 y1 = cy + irb->draw_y;
416 x2 = cx + cw + irb->draw_x;
417 y2 = cy + ch + irb->draw_y;
418
419 pitch = region->pitch;
420 cpp = region->cpp;
421
422 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
423 __FUNCTION__,
424 region->bo, pitch,
425 x1, y1, x2 - x1, y2 - y1);
426
427 BR13 = 0xf0 << 16;
428 CMD = XY_COLOR_BLT_CMD;
429
430 /* Setup the blit command */
431 if (cpp == 4) {
432 if (is_depth_stencil) {
433 CMD |= clear_depth_mask;
434 } else {
435 /* clearing RGBA */
436 CMD |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
437 }
438 }
439
440 assert(region->tiling != I915_TILING_Y);
441
442 BR13 |= pitch;
443
444 if (is_depth_stencil) {
445 clear_val = clear_depth_value;
446 } else {
447 uint8_t clear[4];
448 GLfloat *color = ctx->Color.ClearColor.f;
449
450 _mesa_unclamped_float_rgba_to_ubyte(clear, color);
451
452 switch (intel_rb_format(irb)) {
453 case MESA_FORMAT_B8G8R8A8_UNORM:
454 case MESA_FORMAT_B8G8R8X8_UNORM:
455 clear_val = PACK_COLOR_8888(clear[3], clear[0],
456 clear[1], clear[2]);
457 break;
458 case MESA_FORMAT_RGB565:
459 clear_val = PACK_COLOR_565(clear[0], clear[1], clear[2]);
460 break;
461 case MESA_FORMAT_ARGB4444:
462 clear_val = PACK_COLOR_4444(clear[3], clear[0],
463 clear[1], clear[2]);
464 break;
465 case MESA_FORMAT_ARGB1555:
466 clear_val = PACK_COLOR_1555(clear[3], clear[0],
467 clear[1], clear[2]);
468 break;
469 case MESA_FORMAT_A_UNORM8:
470 clear_val = PACK_COLOR_8888(clear[3], clear[3],
471 clear[3], clear[3]);
472 break;
473 default:
474 fail_mask |= 1 << buf;
475 continue;
476 }
477 }
478
479 BR13 |= br13_for_cpp(cpp);
480
481 assert(x1 < x2);
482 assert(y1 < y2);
483
484 /* do space check before going any further */
485 aper_array[0] = intel->batch.bo;
486 aper_array[1] = region->bo;
487
488 if (drm_intel_bufmgr_check_aperture_space(aper_array,
489 ARRAY_SIZE(aper_array)) != 0) {
490 intel_batchbuffer_flush(intel);
491 }
492
493 BEGIN_BATCH(6);
494 OUT_BATCH(CMD | (6 - 2));
495 OUT_BATCH(BR13);
496 OUT_BATCH((y1 << 16) | x1);
497 OUT_BATCH((y2 << 16) | x2);
498 OUT_RELOC_FENCED(region->bo,
499 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
500 0);
501 OUT_BATCH(clear_val);
502 ADVANCE_BATCH();
503
504 if (intel->always_flush_cache)
505 intel_batchbuffer_emit_mi_flush(intel);
506
507 if (buf == BUFFER_DEPTH || buf == BUFFER_STENCIL)
508 mask &= ~(BUFFER_BIT_DEPTH | BUFFER_BIT_STENCIL);
509 }
510
511 return fail_mask;
512 }
513
514 bool
515 intelEmitImmediateColorExpandBlit(struct intel_context *intel,
516 GLuint cpp,
517 GLubyte *src_bits, GLuint src_size,
518 GLuint fg_color,
519 GLshort dst_pitch,
520 drm_intel_bo *dst_buffer,
521 GLuint dst_offset,
522 uint32_t dst_tiling,
523 GLshort x, GLshort y,
524 GLshort w, GLshort h,
525 GLenum logic_op)
526 {
527 int dwords = ALIGN(src_size, 8) / 4;
528 uint32_t opcode, br13, blit_cmd;
529
530 if (dst_tiling != I915_TILING_NONE) {
531 if (dst_offset & 4095)
532 return false;
533 if (dst_tiling == I915_TILING_Y)
534 return false;
535 }
536
537 assert((logic_op >= GL_CLEAR) && (logic_op <= (GL_CLEAR + 0x0f)));
538 assert(dst_pitch > 0);
539
540 if (w < 0 || h < 0)
541 return true;
542
543 DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
544 __FUNCTION__,
545 dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
546
547 intel_batchbuffer_require_space(intel,
548 (8 * 4) +
549 (3 * 4) +
550 dwords * 4);
551
552 opcode = XY_SETUP_BLT_CMD;
553 if (cpp == 4)
554 opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
555
556 br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
557 br13 |= br13_for_cpp(cpp);
558
559 blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
560 if (dst_tiling != I915_TILING_NONE)
561 blit_cmd |= XY_DST_TILED;
562
563 BEGIN_BATCH(8 + 3);
564 OUT_BATCH(opcode | (8 - 2));
565 OUT_BATCH(br13);
566 OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
567 OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
568 OUT_RELOC_FENCED(dst_buffer,
569 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
570 dst_offset);
571 OUT_BATCH(0); /* bg */
572 OUT_BATCH(fg_color); /* fg */
573 OUT_BATCH(0); /* pattern base addr */
574
575 OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
576 OUT_BATCH((y << 16) | x);
577 OUT_BATCH(((y + h) << 16) | (x + w));
578 ADVANCE_BATCH();
579
580 intel_batchbuffer_data(intel, src_bits, dwords * 4);
581
582 intel_batchbuffer_emit_mi_flush(intel);
583
584 return true;
585 }
586
587 /* We don't have a memmove-type blit like some other hardware, so we'll do a
588 * rectangular blit covering a large space, then emit 1-scanline blit at the
589 * end to cover the last if we need.
590 */
591 void
592 intel_emit_linear_blit(struct intel_context *intel,
593 drm_intel_bo *dst_bo,
594 unsigned int dst_offset,
595 drm_intel_bo *src_bo,
596 unsigned int src_offset,
597 unsigned int size)
598 {
599 struct gl_context *ctx = &intel->ctx;
600 GLuint pitch, height;
601 bool ok;
602
603 /* The pitch given to the GPU must be DWORD aligned, and
604 * we want width to match pitch. Max width is (1 << 15 - 1),
605 * rounding that down to the nearest DWORD is 1 << 15 - 4
606 */
607 pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 1), 4);
608 height = (pitch == 0) ? 1 : size / pitch;
609 ok = intelEmitCopyBlit(intel, 1,
610 pitch, src_bo, src_offset, I915_TILING_NONE,
611 pitch, dst_bo, dst_offset, I915_TILING_NONE,
612 0, 0, /* src x/y */
613 0, 0, /* dst x/y */
614 pitch, height, /* w, h */
615 GL_COPY);
616 if (!ok)
617 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", pitch, height);
618
619 src_offset += pitch * height;
620 dst_offset += pitch * height;
621 size -= pitch * height;
622 assert (size < (1 << 15));
623 pitch = ALIGN(size, 4);
624 if (size != 0) {
625 ok = intelEmitCopyBlit(intel, 1,
626 pitch, src_bo, src_offset, I915_TILING_NONE,
627 pitch, dst_bo, dst_offset, I915_TILING_NONE,
628 0, 0, /* src x/y */
629 0, 0, /* dst x/y */
630 size, 1, /* w, h */
631 GL_COPY);
632 if (!ok)
633 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", size, 1);
634 }
635 }
636
637 /**
638 * Used to initialize the alpha value of an ARGB8888 miptree after copying
639 * into it from an XRGB8888 source.
640 *
641 * This is very common with glCopyTexImage2D(). Note that the coordinates are
642 * relative to the start of the miptree, not relative to a slice within the
643 * miptree.
644 */
645 static void
646 intel_miptree_set_alpha_to_one(struct intel_context *intel,
647 struct intel_mipmap_tree *mt,
648 int x, int y, int width, int height)
649 {
650 struct intel_region *region = mt->region;
651 uint32_t BR13, CMD;
652 int pitch, cpp;
653 drm_intel_bo *aper_array[2];
654 BATCH_LOCALS;
655
656 pitch = region->pitch;
657 cpp = region->cpp;
658
659 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
660 __FUNCTION__, region->bo, pitch, x, y, width, height);
661
662 BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
663 CMD = XY_COLOR_BLT_CMD;
664 CMD |= XY_BLT_WRITE_ALPHA;
665
666 BR13 |= pitch;
667
668 /* do space check before going any further */
669 aper_array[0] = intel->batch.bo;
670 aper_array[1] = region->bo;
671
672 if (drm_intel_bufmgr_check_aperture_space(aper_array,
673 ARRAY_SIZE(aper_array)) != 0) {
674 intel_batchbuffer_flush(intel);
675 }
676
677 BEGIN_BATCH(6);
678 OUT_BATCH(CMD | (6 - 2));
679 OUT_BATCH(BR13);
680 OUT_BATCH((y << 16) | x);
681 OUT_BATCH(((y + height) << 16) | (x + width));
682 OUT_RELOC_FENCED(region->bo,
683 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
684 0);
685 OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
686 ADVANCE_BATCH();
687
688 intel_batchbuffer_emit_mi_flush(intel);
689 }