cf9291cdfca14775704d3e3c3db9ac15c7662be4
[mesa.git] / src / mesa / drivers / dri / i915 / intel_tris.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /** @file intel_tris.c
29 *
30 * This file contains functions for managing the vertex buffer and emitting
31 * primitives into it.
32 */
33
34 #include "main/glheader.h"
35 #include "main/context.h"
36 #include "main/macros.h"
37 #include "main/enums.h"
38 #include "main/texobj.h"
39 #include "main/state.h"
40 #include "main/dd.h"
41
42 #include "swrast/swrast.h"
43 #include "swrast_setup/swrast_setup.h"
44 #include "tnl/t_context.h"
45 #include "tnl/t_pipeline.h"
46 #include "tnl/t_vertex.h"
47
48 #include "intel_screen.h"
49 #include "intel_context.h"
50 #include "intel_tris.h"
51 #include "intel_batchbuffer.h"
52 #include "intel_buffers.h"
53 #include "intel_reg.h"
54 #include "intel_span.h"
55 #include "i830_context.h"
56 #include "i830_reg.h"
57 #include "i915_context.h"
58
59 static void intelRenderPrimitive(struct gl_context * ctx, GLenum prim);
60 static void intelRasterPrimitive(struct gl_context * ctx, GLenum rprim,
61 GLuint hwprim);
62
63 static void
64 intel_flush_inline_primitive(struct intel_context *intel)
65 {
66 GLuint used = intel->batch.used - intel->prim.start_ptr;
67
68 assert(intel->prim.primitive != ~0);
69
70 /* printf("/\n"); */
71
72 if (used < 2)
73 goto do_discard;
74
75 intel->batch.map[intel->prim.start_ptr] =
76 _3DPRIMITIVE | intel->prim.primitive | (used - 2);
77
78 goto finished;
79
80 do_discard:
81 intel->batch.used = intel->prim.start_ptr;
82
83 finished:
84 intel->prim.primitive = ~0;
85 intel->prim.start_ptr = 0;
86 intel->prim.flush = 0;
87 }
88
89 static void intel_start_inline(struct intel_context *intel, uint32_t prim)
90 {
91 BATCH_LOCALS;
92
93 intel->vtbl.emit_state(intel);
94
95 intel->no_batch_wrap = GL_TRUE;
96
97 /*printf("%s *", __progname);*/
98
99 /* Emit a slot which will be filled with the inline primitive
100 * command later.
101 */
102 BEGIN_BATCH(1);
103
104 intel->prim.start_ptr = intel->batch.used;
105 intel->prim.primitive = prim;
106 intel->prim.flush = intel_flush_inline_primitive;
107
108 OUT_BATCH(0);
109 ADVANCE_BATCH();
110
111 intel->no_batch_wrap = GL_FALSE;
112 /* printf(">"); */
113 }
114
115 static void intel_wrap_inline(struct intel_context *intel)
116 {
117 GLuint prim = intel->prim.primitive;
118
119 intel_flush_inline_primitive(intel);
120 intel_batchbuffer_flush(intel);
121 intel_start_inline(intel, prim); /* ??? */
122 }
123
124 static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
125 {
126 GLuint *ptr;
127
128 assert(intel->prim.flush == intel_flush_inline_primitive);
129
130 if (intel_batchbuffer_space(intel) < dwords * sizeof(GLuint))
131 intel_wrap_inline(intel);
132
133 /* printf("."); */
134
135 intel->vtbl.assert_not_dirty(intel);
136
137 ptr = intel->batch.map + intel->batch.used;
138 intel->batch.used += dwords;
139
140 return ptr;
141 }
142
143 /** Sets the primitive type for a primitive sequence, flushing as needed. */
144 void intel_set_prim(struct intel_context *intel, uint32_t prim)
145 {
146 /* if we have no VBOs */
147
148 if (intel->intelScreen->no_vbo) {
149 intel_start_inline(intel, prim);
150 return;
151 }
152 if (prim != intel->prim.primitive) {
153 INTEL_FIREVERTICES(intel);
154 intel->prim.primitive = prim;
155 }
156 }
157
158 /** Returns mapped VB space for the given number of vertices */
159 uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
160 {
161 uint32_t *addr;
162
163 if (intel->intelScreen->no_vbo) {
164 return intel_extend_inline(intel, count * intel->vertex_size);
165 }
166
167 /* Check for space in the existing VB */
168 if (intel->prim.vb_bo == NULL ||
169 (intel->prim.current_offset +
170 count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
171 (intel->prim.count + count) >= (1 << 16)) {
172 /* Flush existing prim if any */
173 INTEL_FIREVERTICES(intel);
174
175 intel_finish_vb(intel);
176
177 /* Start a new VB */
178 if (intel->prim.vb == NULL)
179 intel->prim.vb = malloc(INTEL_VB_SIZE);
180 intel->prim.vb_bo = drm_intel_bo_alloc(intel->bufmgr, "vb",
181 INTEL_VB_SIZE, 4);
182 intel->prim.start_offset = 0;
183 intel->prim.current_offset = 0;
184 }
185
186 intel->prim.flush = intel_flush_prim;
187
188 addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
189 intel->prim.current_offset += intel->vertex_size * 4 * count;
190 intel->prim.count += count;
191
192 return addr;
193 }
194
195 /** Dispatches the accumulated primitive to the batchbuffer. */
196 void intel_flush_prim(struct intel_context *intel)
197 {
198 drm_intel_bo *aper_array[2];
199 drm_intel_bo *vb_bo;
200 unsigned int offset, count;
201 BATCH_LOCALS;
202
203 /* Must be called after an intel_start_prim. */
204 assert(intel->prim.primitive != ~0);
205
206 if (intel->prim.count == 0)
207 return;
208
209 /* Clear the current prims out of the context state so that a batch flush
210 * flush triggered by emit_state doesn't loop back to flush_prim again.
211 */
212 vb_bo = intel->prim.vb_bo;
213 drm_intel_bo_reference(vb_bo);
214 count = intel->prim.count;
215 intel->prim.count = 0;
216 offset = intel->prim.start_offset;
217 intel->prim.start_offset = intel->prim.current_offset;
218 if (intel->gen < 3)
219 intel->prim.current_offset = intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
220 intel->prim.flush = NULL;
221
222 intel->vtbl.emit_state(intel);
223
224 aper_array[0] = intel->batch.bo;
225 aper_array[1] = vb_bo;
226 if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
227 intel_batchbuffer_flush(intel);
228 intel->vtbl.emit_state(intel);
229 }
230
231 /* Ensure that we don't start a new batch for the following emit, which
232 * depends on the state just emitted. emit_state should be making sure we
233 * have the space for this.
234 */
235 intel->no_batch_wrap = GL_TRUE;
236
237 #if 0
238 printf("emitting %d..%d=%d vertices size %d\n", offset,
239 intel->prim.current_offset, count,
240 intel->vertex_size * 4);
241 #endif
242
243 if (intel->gen >= 3) {
244 struct i915_context *i915 = i915_context(&intel->ctx);
245 unsigned int cmd = 0, len = 0;
246
247 if (vb_bo != i915->current_vb_bo) {
248 cmd |= I1_LOAD_S(0);
249 len++;
250 }
251
252 if (intel->vertex_size != i915->current_vertex_size) {
253 cmd |= I1_LOAD_S(1);
254 len++;
255 }
256 if (len)
257 len++;
258
259 BEGIN_BATCH(2+len);
260 if (cmd)
261 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | cmd | (len - 2));
262 if (vb_bo != i915->current_vb_bo) {
263 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, 0);
264 i915->current_vb_bo = vb_bo;
265 }
266 if (intel->vertex_size != i915->current_vertex_size) {
267 OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
268 (intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
269 i915->current_vertex_size = intel->vertex_size;
270 }
271 OUT_BATCH(_3DPRIMITIVE |
272 PRIM_INDIRECT |
273 PRIM_INDIRECT_SEQUENTIAL |
274 intel->prim.primitive |
275 count);
276 OUT_BATCH(offset / (intel->vertex_size * 4));
277 ADVANCE_BATCH();
278 } else {
279 struct i830_context *i830 = i830_context(&intel->ctx);
280
281 BEGIN_BATCH(5);
282 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
283 I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
284 /* S0 */
285 assert((offset & ~S0_VB_OFFSET_MASK_830) == 0);
286 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
287 offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
288 S0_VB_ENABLE_830);
289 /* S2
290 * This is somewhat unfortunate -- VB width is tied up with
291 * vertex format data that we've already uploaded through
292 * _3DSTATE_VFT[01]_CMD. We may want to replace emits of VFT state with
293 * STATE_IMMEDIATE_1 like this to avoid duplication.
294 */
295 OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
296 VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
297 (i830->state.Ctx[I830_CTXREG_VF2] << 16) |
298 intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
299
300 OUT_BATCH(_3DPRIMITIVE |
301 PRIM_INDIRECT |
302 PRIM_INDIRECT_SEQUENTIAL |
303 intel->prim.primitive |
304 count);
305 OUT_BATCH(0); /* Beginning vertex index */
306 ADVANCE_BATCH();
307 }
308
309 intel->no_batch_wrap = GL_FALSE;
310
311 drm_intel_bo_unreference(vb_bo);
312 }
313
314 /**
315 * Uploads the locally-accumulated VB into the buffer object.
316 *
317 * This avoids us thrashing the cachelines in and out as the buffer gets
318 * filled, dispatched, then reused as the hardware completes rendering from it,
319 * and also lets us clflush less if we dispatch with a partially-filled VB.
320 *
321 * This is called normally from get_space when we're finishing a BO, but also
322 * at batch flush time so that we don't try accessing the contents of a
323 * just-dispatched buffer.
324 */
325 void intel_finish_vb(struct intel_context *intel)
326 {
327 if (intel->prim.vb_bo == NULL)
328 return;
329
330 drm_intel_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
331 intel->prim.vb);
332 drm_intel_bo_unreference(intel->prim.vb_bo);
333 intel->prim.vb_bo = NULL;
334 }
335
336 /***********************************************************************
337 * Emit primitives as inline vertices *
338 ***********************************************************************/
339
340 #ifdef __i386__
341 #define COPY_DWORDS( j, vb, vertsize, v ) \
342 do { \
343 int __tmp; \
344 __asm__ __volatile__( "rep ; movsl" \
345 : "=%c" (j), "=D" (vb), "=S" (__tmp) \
346 : "0" (vertsize), \
347 "D" ((long)vb), \
348 "S" ((long)v) ); \
349 } while (0)
350 #else
351 #define COPY_DWORDS( j, vb, vertsize, v ) \
352 do { \
353 for ( j = 0 ; j < vertsize ; j++ ) { \
354 vb[j] = ((GLuint *)v)[j]; \
355 } \
356 vb += vertsize; \
357 } while (0)
358 #endif
359
360 static void
361 intel_draw_quad(struct intel_context *intel,
362 intelVertexPtr v0,
363 intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
364 {
365 GLuint vertsize = intel->vertex_size;
366 GLuint *vb = intel_get_prim_space(intel, 6);
367 int j;
368
369 COPY_DWORDS(j, vb, vertsize, v0);
370 COPY_DWORDS(j, vb, vertsize, v1);
371
372 /* If smooth shading, draw like a trifan which gives better
373 * rasterization. Otherwise draw as two triangles with provoking
374 * vertex in third position as required for flat shading.
375 */
376 if (intel->ctx.Light.ShadeModel == GL_FLAT) {
377 COPY_DWORDS(j, vb, vertsize, v3);
378 COPY_DWORDS(j, vb, vertsize, v1);
379 }
380 else {
381 COPY_DWORDS(j, vb, vertsize, v2);
382 COPY_DWORDS(j, vb, vertsize, v0);
383 }
384
385 COPY_DWORDS(j, vb, vertsize, v2);
386 COPY_DWORDS(j, vb, vertsize, v3);
387 }
388
389 static void
390 intel_draw_triangle(struct intel_context *intel,
391 intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
392 {
393 GLuint vertsize = intel->vertex_size;
394 GLuint *vb = intel_get_prim_space(intel, 3);
395 int j;
396
397 COPY_DWORDS(j, vb, vertsize, v0);
398 COPY_DWORDS(j, vb, vertsize, v1);
399 COPY_DWORDS(j, vb, vertsize, v2);
400 }
401
402
403 static void
404 intel_draw_line(struct intel_context *intel,
405 intelVertexPtr v0, intelVertexPtr v1)
406 {
407 GLuint vertsize = intel->vertex_size;
408 GLuint *vb = intel_get_prim_space(intel, 2);
409 int j;
410
411 COPY_DWORDS(j, vb, vertsize, v0);
412 COPY_DWORDS(j, vb, vertsize, v1);
413 }
414
415
416 static void
417 intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
418 {
419 GLuint vertsize = intel->vertex_size;
420 GLuint *vb = intel_get_prim_space(intel, 1);
421 int j;
422
423 /* Adjust for sub pixel position -- still required for conform. */
424 *(float *) &vb[0] = v0->v.x;
425 *(float *) &vb[1] = v0->v.y;
426 for (j = 2; j < vertsize; j++)
427 vb[j] = v0->ui[j];
428 }
429
430
431
432 /***********************************************************************
433 * Fixup for ARB_point_parameters *
434 ***********************************************************************/
435
436 /* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
437 * represented in the fragment program InputsRead field.
438 */
439 static void
440 intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
441 {
442 struct gl_context *ctx = &intel->ctx;
443 GLfloat psz[4], col[4], restore_psz, restore_alpha;
444
445 _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
446 _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
447
448 restore_psz = psz[0];
449 restore_alpha = col[3];
450
451 if (psz[0] >= ctx->Point.Threshold) {
452 psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
453 }
454 else {
455 GLfloat dsize = psz[0] / ctx->Point.Threshold;
456 psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
457 col[3] *= dsize * dsize;
458 }
459
460 if (psz[0] < 1.0)
461 psz[0] = 1.0;
462
463 if (restore_psz != psz[0] || restore_alpha != col[3]) {
464 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
465 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
466
467 intel_draw_point(intel, v0);
468
469 psz[0] = restore_psz;
470 col[3] = restore_alpha;
471
472 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
473 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
474 }
475 else
476 intel_draw_point(intel, v0);
477 }
478
479
480
481
482
483 /***********************************************************************
484 * Fixup for I915 WPOS texture coordinate *
485 ***********************************************************************/
486
487
488
489 static void
490 intel_wpos_triangle(struct intel_context *intel,
491 intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
492 {
493 GLuint offset = intel->wpos_offset;
494 GLuint size = intel->wpos_size;
495 GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
496 GLfloat *v1_wpos = (GLfloat *)((char *)v1 + offset);
497 GLfloat *v2_wpos = (GLfloat *)((char *)v2 + offset);
498
499 __memcpy(v0_wpos, v0, size);
500 __memcpy(v1_wpos, v1, size);
501 __memcpy(v2_wpos, v2, size);
502
503 v0_wpos[1] = -v0_wpos[1] + intel->ctx.DrawBuffer->Height;
504 v1_wpos[1] = -v1_wpos[1] + intel->ctx.DrawBuffer->Height;
505 v2_wpos[1] = -v2_wpos[1] + intel->ctx.DrawBuffer->Height;
506
507
508 intel_draw_triangle(intel, v0, v1, v2);
509 }
510
511
512 static void
513 intel_wpos_line(struct intel_context *intel,
514 intelVertexPtr v0, intelVertexPtr v1)
515 {
516 GLuint offset = intel->wpos_offset;
517 GLuint size = intel->wpos_size;
518 GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
519 GLfloat *v1_wpos = (GLfloat *)((char *)v1 + offset);
520
521 __memcpy(v0_wpos, v0, size);
522 __memcpy(v1_wpos, v1, size);
523
524 v0_wpos[1] = -v0_wpos[1] + intel->ctx.DrawBuffer->Height;
525 v1_wpos[1] = -v1_wpos[1] + intel->ctx.DrawBuffer->Height;
526
527 intel_draw_line(intel, v0, v1);
528 }
529
530
531 static void
532 intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
533 {
534 GLuint offset = intel->wpos_offset;
535 GLuint size = intel->wpos_size;
536 GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
537
538 __memcpy(v0_wpos, v0, size);
539 v0_wpos[1] = -v0_wpos[1] + intel->ctx.DrawBuffer->Height;
540
541 intel_draw_point(intel, v0);
542 }
543
544
545
546
547
548
549 /***********************************************************************
550 * Macros for t_dd_tritmp.h to draw basic primitives *
551 ***********************************************************************/
552
553 #define TRI( a, b, c ) \
554 do { \
555 if (DO_FALLBACK) \
556 intel->draw_tri( intel, a, b, c ); \
557 else \
558 intel_draw_triangle( intel, a, b, c ); \
559 } while (0)
560
561 #define QUAD( a, b, c, d ) \
562 do { \
563 if (DO_FALLBACK) { \
564 intel->draw_tri( intel, a, b, d ); \
565 intel->draw_tri( intel, b, c, d ); \
566 } else \
567 intel_draw_quad( intel, a, b, c, d ); \
568 } while (0)
569
570 #define LINE( v0, v1 ) \
571 do { \
572 if (DO_FALLBACK) \
573 intel->draw_line( intel, v0, v1 ); \
574 else \
575 intel_draw_line( intel, v0, v1 ); \
576 } while (0)
577
578 #define POINT( v0 ) \
579 do { \
580 if (DO_FALLBACK) \
581 intel->draw_point( intel, v0 ); \
582 else \
583 intel_draw_point( intel, v0 ); \
584 } while (0)
585
586
587 /***********************************************************************
588 * Build render functions from dd templates *
589 ***********************************************************************/
590
591 #define INTEL_OFFSET_BIT 0x01
592 #define INTEL_TWOSIDE_BIT 0x02
593 #define INTEL_UNFILLED_BIT 0x04
594 #define INTEL_FALLBACK_BIT 0x08
595 #define INTEL_MAX_TRIFUNC 0x10
596
597
598 static struct
599 {
600 tnl_points_func points;
601 tnl_line_func line;
602 tnl_triangle_func triangle;
603 tnl_quad_func quad;
604 } rast_tab[INTEL_MAX_TRIFUNC];
605
606
607 #define DO_FALLBACK (IND & INTEL_FALLBACK_BIT)
608 #define DO_OFFSET (IND & INTEL_OFFSET_BIT)
609 #define DO_UNFILLED (IND & INTEL_UNFILLED_BIT)
610 #define DO_TWOSIDE (IND & INTEL_TWOSIDE_BIT)
611 #define DO_FLAT 0
612 #define DO_TRI 1
613 #define DO_QUAD 1
614 #define DO_LINE 1
615 #define DO_POINTS 1
616 #define DO_FULL_QUAD 1
617
618 #define HAVE_SPEC 1
619 #define HAVE_BACK_COLORS 0
620 #define HAVE_HW_FLATSHADE 1
621 #define VERTEX intelVertex
622 #define TAB rast_tab
623
624 /* Only used to pull back colors into vertices (ie, we know color is
625 * floating point).
626 */
627 #define INTEL_COLOR( dst, src ) \
628 do { \
629 UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \
630 UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \
631 UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \
632 UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]); \
633 } while (0)
634
635 #define INTEL_SPEC( dst, src ) \
636 do { \
637 UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \
638 UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \
639 UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \
640 } while (0)
641
642
643 #define DEPTH_SCALE intel->polygon_offset_scale
644 #define UNFILLED_TRI unfilled_tri
645 #define UNFILLED_QUAD unfilled_quad
646 #define VERT_X(_v) _v->v.x
647 #define VERT_Y(_v) _v->v.y
648 #define VERT_Z(_v) _v->v.z
649 #define AREA_IS_CCW( a ) (a > 0)
650 #define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
651
652 #define VERT_SET_RGBA( v, c ) if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
653 #define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
654 #define VERT_SAVE_RGBA( idx ) if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
655 #define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
656
657 #define VERT_SET_SPEC( v, c ) if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
658 #define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
659 #define VERT_SAVE_SPEC( idx ) if (specoffset) spec[idx] = v[idx]->ui[specoffset]
660 #define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
661
662 #define LOCAL_VARS(n) \
663 struct intel_context *intel = intel_context(ctx); \
664 GLuint color[n] = { 0, }, spec[n] = { 0, }; \
665 GLuint coloroffset = intel->coloroffset; \
666 GLboolean specoffset = intel->specoffset; \
667 (void) color; (void) spec; (void) coloroffset; (void) specoffset;
668
669
670 /***********************************************************************
671 * Helpers for rendering unfilled primitives *
672 ***********************************************************************/
673
674 static const GLuint hw_prim[GL_POLYGON + 1] = {
675 PRIM3D_POINTLIST,
676 PRIM3D_LINELIST,
677 PRIM3D_LINELIST,
678 PRIM3D_LINELIST,
679 PRIM3D_TRILIST,
680 PRIM3D_TRILIST,
681 PRIM3D_TRILIST,
682 PRIM3D_TRILIST,
683 PRIM3D_TRILIST,
684 PRIM3D_TRILIST
685 };
686
687 #define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
688 #define RENDER_PRIMITIVE intel->render_primitive
689 #define TAG(x) x
690 #define IND INTEL_FALLBACK_BIT
691 #include "tnl_dd/t_dd_unfilled.h"
692 #undef IND
693
694 /***********************************************************************
695 * Generate GL render functions *
696 ***********************************************************************/
697
698 #define IND (0)
699 #define TAG(x) x
700 #include "tnl_dd/t_dd_tritmp.h"
701
702 #define IND (INTEL_OFFSET_BIT)
703 #define TAG(x) x##_offset
704 #include "tnl_dd/t_dd_tritmp.h"
705
706 #define IND (INTEL_TWOSIDE_BIT)
707 #define TAG(x) x##_twoside
708 #include "tnl_dd/t_dd_tritmp.h"
709
710 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
711 #define TAG(x) x##_twoside_offset
712 #include "tnl_dd/t_dd_tritmp.h"
713
714 #define IND (INTEL_UNFILLED_BIT)
715 #define TAG(x) x##_unfilled
716 #include "tnl_dd/t_dd_tritmp.h"
717
718 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
719 #define TAG(x) x##_offset_unfilled
720 #include "tnl_dd/t_dd_tritmp.h"
721
722 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
723 #define TAG(x) x##_twoside_unfilled
724 #include "tnl_dd/t_dd_tritmp.h"
725
726 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
727 #define TAG(x) x##_twoside_offset_unfilled
728 #include "tnl_dd/t_dd_tritmp.h"
729
730 #define IND (INTEL_FALLBACK_BIT)
731 #define TAG(x) x##_fallback
732 #include "tnl_dd/t_dd_tritmp.h"
733
734 #define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
735 #define TAG(x) x##_offset_fallback
736 #include "tnl_dd/t_dd_tritmp.h"
737
738 #define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
739 #define TAG(x) x##_twoside_fallback
740 #include "tnl_dd/t_dd_tritmp.h"
741
742 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
743 #define TAG(x) x##_twoside_offset_fallback
744 #include "tnl_dd/t_dd_tritmp.h"
745
746 #define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
747 #define TAG(x) x##_unfilled_fallback
748 #include "tnl_dd/t_dd_tritmp.h"
749
750 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
751 #define TAG(x) x##_offset_unfilled_fallback
752 #include "tnl_dd/t_dd_tritmp.h"
753
754 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
755 #define TAG(x) x##_twoside_unfilled_fallback
756 #include "tnl_dd/t_dd_tritmp.h"
757
758 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
759 INTEL_FALLBACK_BIT)
760 #define TAG(x) x##_twoside_offset_unfilled_fallback
761 #include "tnl_dd/t_dd_tritmp.h"
762
763
764 static void
765 init_rast_tab(void)
766 {
767 init();
768 init_offset();
769 init_twoside();
770 init_twoside_offset();
771 init_unfilled();
772 init_offset_unfilled();
773 init_twoside_unfilled();
774 init_twoside_offset_unfilled();
775 init_fallback();
776 init_offset_fallback();
777 init_twoside_fallback();
778 init_twoside_offset_fallback();
779 init_unfilled_fallback();
780 init_offset_unfilled_fallback();
781 init_twoside_unfilled_fallback();
782 init_twoside_offset_unfilled_fallback();
783 }
784
785
786 /***********************************************************************
787 * Rasterization fallback helpers *
788 ***********************************************************************/
789
790
791 /* This code is hit only when a mix of accelerated and unaccelerated
792 * primitives are being drawn, and only for the unaccelerated
793 * primitives.
794 */
795 static void
796 intel_fallback_tri(struct intel_context *intel,
797 intelVertex * v0, intelVertex * v1, intelVertex * v2)
798 {
799 struct gl_context *ctx = &intel->ctx;
800 SWvertex v[3];
801
802 if (0)
803 fprintf(stderr, "\n%s\n", __FUNCTION__);
804
805 INTEL_FIREVERTICES(intel);
806
807 _swsetup_Translate(ctx, v0, &v[0]);
808 _swsetup_Translate(ctx, v1, &v[1]);
809 _swsetup_Translate(ctx, v2, &v[2]);
810 intelSpanRenderStart(ctx);
811 _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
812 intelSpanRenderFinish(ctx);
813 }
814
815
816 static void
817 intel_fallback_line(struct intel_context *intel,
818 intelVertex * v0, intelVertex * v1)
819 {
820 struct gl_context *ctx = &intel->ctx;
821 SWvertex v[2];
822
823 if (0)
824 fprintf(stderr, "\n%s\n", __FUNCTION__);
825
826 INTEL_FIREVERTICES(intel);
827
828 _swsetup_Translate(ctx, v0, &v[0]);
829 _swsetup_Translate(ctx, v1, &v[1]);
830 intelSpanRenderStart(ctx);
831 _swrast_Line(ctx, &v[0], &v[1]);
832 intelSpanRenderFinish(ctx);
833 }
834
835 static void
836 intel_fallback_point(struct intel_context *intel,
837 intelVertex * v0)
838 {
839 struct gl_context *ctx = &intel->ctx;
840 SWvertex v[1];
841
842 if (0)
843 fprintf(stderr, "\n%s\n", __FUNCTION__);
844
845 INTEL_FIREVERTICES(intel);
846
847 _swsetup_Translate(ctx, v0, &v[0]);
848 intelSpanRenderStart(ctx);
849 _swrast_Point(ctx, &v[0]);
850 intelSpanRenderFinish(ctx);
851 }
852
853
854 /**********************************************************************/
855 /* Render unclipped begin/end objects */
856 /**********************************************************************/
857
858 #define IND 0
859 #define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
860 #define RENDER_POINTS( start, count ) \
861 for ( ; start < count ; start++) POINT( V(ELT(start)) );
862 #define RENDER_LINE( v0, v1 ) LINE( V(v0), V(v1) )
863 #define RENDER_TRI( v0, v1, v2 ) TRI( V(v0), V(v1), V(v2) )
864 #define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
865 #define INIT(x) intelRenderPrimitive( ctx, x )
866 #undef LOCAL_VARS
867 #define LOCAL_VARS \
868 struct intel_context *intel = intel_context(ctx); \
869 GLubyte *vertptr = (GLubyte *)intel->verts; \
870 const GLuint vertsize = intel->vertex_size; \
871 const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts; \
872 (void) elt;
873 #define RESET_STIPPLE
874 #define RESET_OCCLUSION
875 #define PRESERVE_VB_DEFS
876 #define ELT(x) x
877 #define TAG(x) intel_##x##_verts
878 #include "tnl/t_vb_rendertmp.h"
879 #undef ELT
880 #undef TAG
881 #define TAG(x) intel_##x##_elts
882 #define ELT(x) elt[x]
883 #include "tnl/t_vb_rendertmp.h"
884
885 /**********************************************************************/
886 /* Render clipped primitives */
887 /**********************************************************************/
888
889
890
891 static void
892 intelRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
893 {
894 struct intel_context *intel = intel_context(ctx);
895 TNLcontext *tnl = TNL_CONTEXT(ctx);
896 struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
897 GLuint prim = intel->render_primitive;
898
899 /* Render the new vertices as an unclipped polygon.
900 */
901 {
902 GLuint *tmp = VB->Elts;
903 VB->Elts = (GLuint *) elts;
904 tnl->Driver.Render.PrimTabElts[GL_POLYGON] (ctx, 0, n,
905 PRIM_BEGIN | PRIM_END);
906 VB->Elts = tmp;
907 }
908
909 /* Restore the render primitive
910 */
911 if (prim != GL_POLYGON)
912 tnl->Driver.Render.PrimitiveNotify(ctx, prim);
913 }
914
915 static void
916 intelRenderClippedLine(struct gl_context * ctx, GLuint ii, GLuint jj)
917 {
918 TNLcontext *tnl = TNL_CONTEXT(ctx);
919
920 tnl->Driver.Render.Line(ctx, ii, jj);
921 }
922
923 static void
924 intelFastRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
925 {
926 struct intel_context *intel = intel_context(ctx);
927 const GLuint vertsize = intel->vertex_size;
928 GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
929 GLubyte *vertptr = (GLubyte *) intel->verts;
930 const GLuint *start = (const GLuint *) V(elts[0]);
931 int i, j;
932
933 for (i = 2; i < n; i++) {
934 COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
935 COPY_DWORDS(j, vb, vertsize, V(elts[i]));
936 COPY_DWORDS(j, vb, vertsize, start);
937 }
938 }
939
940 /**********************************************************************/
941 /* Choose render functions */
942 /**********************************************************************/
943
944
945
946
947 #define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN | DD_POINT_SMOOTH | DD_TRI_SMOOTH)
948 #define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
949
950 void
951 intelChooseRenderState(struct gl_context * ctx)
952 {
953 TNLcontext *tnl = TNL_CONTEXT(ctx);
954 struct intel_context *intel = intel_context(ctx);
955 GLuint flags = ctx->_TriangleCaps;
956 const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current;
957 GLboolean have_wpos = (fprog && (fprog->Base.InputsRead & FRAG_BIT_WPOS));
958 GLuint index = 0;
959
960 if (INTEL_DEBUG & DEBUG_STATE)
961 fprintf(stderr, "\n%s\n", __FUNCTION__);
962
963 if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
964
965 if (flags & ANY_RASTER_FLAGS) {
966 if (flags & DD_TRI_LIGHT_TWOSIDE)
967 index |= INTEL_TWOSIDE_BIT;
968 if (flags & DD_TRI_OFFSET)
969 index |= INTEL_OFFSET_BIT;
970 if (flags & DD_TRI_UNFILLED)
971 index |= INTEL_UNFILLED_BIT;
972 }
973
974 if (have_wpos) {
975 intel->draw_point = intel_wpos_point;
976 intel->draw_line = intel_wpos_line;
977 intel->draw_tri = intel_wpos_triangle;
978
979 /* Make sure these get called:
980 */
981 index |= INTEL_FALLBACK_BIT;
982 }
983 else {
984 intel->draw_point = intel_draw_point;
985 intel->draw_line = intel_draw_line;
986 intel->draw_tri = intel_draw_triangle;
987 }
988
989 /* Hook in fallbacks for specific primitives.
990 */
991 if (flags & ANY_FALLBACK_FLAGS) {
992 if (flags & DD_LINE_STIPPLE)
993 intel->draw_line = intel_fallback_line;
994
995 if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
996 intel->draw_tri = intel_fallback_tri;
997
998 if (flags & DD_TRI_SMOOTH) {
999 if (intel->conformance_mode > 0)
1000 intel->draw_tri = intel_fallback_tri;
1001 }
1002
1003 if (flags & DD_POINT_ATTEN) {
1004 if (0)
1005 intel->draw_point = intel_atten_point;
1006 else
1007 intel->draw_point = intel_fallback_point;
1008 }
1009
1010 if (flags & DD_POINT_SMOOTH) {
1011 if (intel->conformance_mode > 0)
1012 intel->draw_point = intel_fallback_point;
1013 }
1014
1015 index |= INTEL_FALLBACK_BIT;
1016 }
1017 }
1018
1019 if (intel->RenderIndex != index) {
1020 intel->RenderIndex = index;
1021
1022 tnl->Driver.Render.Points = rast_tab[index].points;
1023 tnl->Driver.Render.Line = rast_tab[index].line;
1024 tnl->Driver.Render.Triangle = rast_tab[index].triangle;
1025 tnl->Driver.Render.Quad = rast_tab[index].quad;
1026
1027 if (index == 0) {
1028 tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
1029 tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
1030 tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
1031 tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
1032 }
1033 else {
1034 tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
1035 tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
1036 tnl->Driver.Render.ClippedLine = intelRenderClippedLine;
1037 tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
1038 }
1039 }
1040 }
1041
1042 static const GLenum reduced_prim[GL_POLYGON + 1] = {
1043 GL_POINTS,
1044 GL_LINES,
1045 GL_LINES,
1046 GL_LINES,
1047 GL_TRIANGLES,
1048 GL_TRIANGLES,
1049 GL_TRIANGLES,
1050 GL_TRIANGLES,
1051 GL_TRIANGLES,
1052 GL_TRIANGLES
1053 };
1054
1055
1056 /**********************************************************************/
1057 /* High level hooks for t_vb_render.c */
1058 /**********************************************************************/
1059
1060
1061
1062
1063 static void
1064 intelRunPipeline(struct gl_context * ctx)
1065 {
1066 struct intel_context *intel = intel_context(ctx);
1067
1068 _mesa_lock_context_textures(ctx);
1069
1070 if (ctx->NewState)
1071 _mesa_update_state_locked(ctx);
1072
1073 if (intel->NewGLState) {
1074 if (intel->NewGLState & _NEW_TEXTURE) {
1075 intel->vtbl.update_texture_state(intel);
1076 }
1077
1078 if (!intel->Fallback) {
1079 if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
1080 intelChooseRenderState(ctx);
1081 }
1082
1083 intel->NewGLState = 0;
1084 }
1085
1086 intel_map_vertex_shader_textures(ctx);
1087 _tnl_run_pipeline(ctx);
1088 intel_unmap_vertex_shader_textures(ctx);
1089
1090 _mesa_unlock_context_textures(ctx);
1091 }
1092
1093 static void
1094 intelRenderStart(struct gl_context * ctx)
1095 {
1096 struct intel_context *intel = intel_context(ctx);
1097
1098 intel_check_front_buffer_rendering(intel);
1099 intel->vtbl.render_start(intel_context(ctx));
1100 intel->vtbl.emit_state(intel);
1101 }
1102
1103 static void
1104 intelRenderFinish(struct gl_context * ctx)
1105 {
1106 struct intel_context *intel = intel_context(ctx);
1107
1108 if (intel->RenderIndex & INTEL_FALLBACK_BIT)
1109 _swrast_flush(ctx);
1110
1111 INTEL_FIREVERTICES(intel);
1112 }
1113
1114
1115
1116
1117 /* System to flush dma and emit state changes based on the rasterized
1118 * primitive.
1119 */
1120 static void
1121 intelRasterPrimitive(struct gl_context * ctx, GLenum rprim, GLuint hwprim)
1122 {
1123 struct intel_context *intel = intel_context(ctx);
1124
1125 if (0)
1126 fprintf(stderr, "%s %s %x\n", __FUNCTION__,
1127 _mesa_lookup_enum_by_nr(rprim), hwprim);
1128
1129 intel->vtbl.reduced_primitive_state(intel, rprim);
1130
1131 /* Start a new primitive. Arrange to have it flushed later on.
1132 */
1133 if (hwprim != intel->prim.primitive) {
1134 INTEL_FIREVERTICES(intel);
1135
1136 intel_set_prim(intel, hwprim);
1137 }
1138 }
1139
1140
1141 /*
1142 */
1143 static void
1144 intelRenderPrimitive(struct gl_context * ctx, GLenum prim)
1145 {
1146 struct intel_context *intel = intel_context(ctx);
1147
1148 if (0)
1149 fprintf(stderr, "%s %s\n", __FUNCTION__, _mesa_lookup_enum_by_nr(prim));
1150
1151 /* Let some clipping routines know which primitive they're dealing
1152 * with.
1153 */
1154 intel->render_primitive = prim;
1155
1156 /* Shortcircuit this when called from t_dd_rendertmp.h for unfilled
1157 * triangles. The rasterized primitive will always be reset by
1158 * lower level functions in that case, potentially pingponging the
1159 * state:
1160 */
1161 if (reduced_prim[prim] == GL_TRIANGLES &&
1162 (ctx->_TriangleCaps & DD_TRI_UNFILLED))
1163 return;
1164
1165 /* Set some primitive-dependent state and Start? a new primitive.
1166 */
1167 intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
1168 }
1169
1170
1171 /**********************************************************************/
1172 /* Transition to/from hardware rasterization. */
1173 /**********************************************************************/
1174
1175 static char *fallbackStrings[] = {
1176 [0] = "Draw buffer",
1177 [1] = "Read buffer",
1178 [2] = "Depth buffer",
1179 [3] = "Stencil buffer",
1180 [4] = "User disable",
1181 [5] = "Render mode",
1182
1183 [12] = "Texture",
1184 [13] = "Color mask",
1185 [14] = "Stencil",
1186 [15] = "Stipple",
1187 [16] = "Program",
1188 [17] = "Logic op",
1189 [18] = "Smooth polygon",
1190 [19] = "Smooth point",
1191 [20] = "point sprite coord origin",
1192 [21] = "depth/color drawing offset",
1193 };
1194
1195
1196 static char *
1197 getFallbackString(GLuint bit)
1198 {
1199 int i = 0;
1200 while (bit > 1) {
1201 i++;
1202 bit >>= 1;
1203 }
1204 return fallbackStrings[i];
1205 }
1206
1207
1208
1209 /**
1210 * Enable/disable a fallback flag.
1211 * \param bit one of INTEL_FALLBACK_x flags.
1212 */
1213 void
1214 intelFallback(struct intel_context *intel, GLbitfield bit, GLboolean mode)
1215 {
1216 struct gl_context *ctx = &intel->ctx;
1217 TNLcontext *tnl = TNL_CONTEXT(ctx);
1218 const GLbitfield oldfallback = intel->Fallback;
1219
1220 if (mode) {
1221 intel->Fallback |= bit;
1222 if (oldfallback == 0) {
1223 intel_flush(ctx);
1224 if (INTEL_DEBUG & DEBUG_FALLBACKS)
1225 fprintf(stderr, "ENTER FALLBACK %x: %s\n",
1226 bit, getFallbackString(bit));
1227 _swsetup_Wakeup(ctx);
1228 intel->RenderIndex = ~0;
1229 }
1230 }
1231 else {
1232 intel->Fallback &= ~bit;
1233 if (oldfallback == bit) {
1234 _swrast_flush(ctx);
1235 if (INTEL_DEBUG & DEBUG_FALLBACKS)
1236 fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
1237 tnl->Driver.Render.Start = intelRenderStart;
1238 tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1239 tnl->Driver.Render.Finish = intelRenderFinish;
1240 tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1241 tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1242 tnl->Driver.Render.Interp = _tnl_interp;
1243
1244 _tnl_invalidate_vertex_state(ctx, ~0);
1245 _tnl_invalidate_vertices(ctx, ~0);
1246 _tnl_install_attrs(ctx,
1247 intel->vertex_attrs,
1248 intel->vertex_attr_count,
1249 intel->ViewportMatrix.m, 0);
1250
1251 intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
1252 }
1253 }
1254 }
1255
1256 union fi
1257 {
1258 GLfloat f;
1259 GLint i;
1260 };
1261
1262 /**********************************************************************/
1263 /* Initialization. */
1264 /**********************************************************************/
1265
1266
1267 void
1268 intelInitTriFuncs(struct gl_context * ctx)
1269 {
1270 TNLcontext *tnl = TNL_CONTEXT(ctx);
1271 static int firsttime = 1;
1272
1273 if (firsttime) {
1274 init_rast_tab();
1275 firsttime = 0;
1276 }
1277
1278 tnl->Driver.RunPipeline = intelRunPipeline;
1279 tnl->Driver.Render.Start = intelRenderStart;
1280 tnl->Driver.Render.Finish = intelRenderFinish;
1281 tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1282 tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
1283 tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1284 tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1285 tnl->Driver.Render.Interp = _tnl_interp;
1286 }