i915: Remove superfluous MI_NOOP from vertex emission
[mesa.git] / src / mesa / drivers / dri / i915 / intel_tris.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /** @file intel_tris.c
29 *
30 * This file contains functions for managing the vertex buffer and emitting
31 * primitives into it.
32 */
33
34 #include "main/glheader.h"
35 #include "main/context.h"
36 #include "main/macros.h"
37 #include "main/enums.h"
38 #include "main/texobj.h"
39 #include "main/state.h"
40 #include "main/dd.h"
41
42 #include "swrast/swrast.h"
43 #include "swrast_setup/swrast_setup.h"
44 #include "tnl/t_context.h"
45 #include "tnl/t_pipeline.h"
46 #include "tnl/t_vertex.h"
47
48 #include "intel_screen.h"
49 #include "intel_context.h"
50 #include "intel_tris.h"
51 #include "intel_batchbuffer.h"
52 #include "intel_buffers.h"
53 #include "intel_reg.h"
54 #include "intel_span.h"
55 #include "i830_context.h"
56 #include "i830_reg.h"
57
58 static void intelRenderPrimitive(GLcontext * ctx, GLenum prim);
59 static void intelRasterPrimitive(GLcontext * ctx, GLenum rprim,
60 GLuint hwprim);
61
62 static void
63 intel_flush_inline_primitive(struct intel_context *intel)
64 {
65 GLuint used = intel->batch->ptr - intel->prim.start_ptr;
66
67 assert(intel->prim.primitive != ~0);
68
69 /* printf("/\n"); */
70
71 if (used < 8)
72 goto do_discard;
73
74 *(int *) intel->prim.start_ptr = (_3DPRIMITIVE |
75 intel->prim.primitive | (used / 4 - 2));
76
77 goto finished;
78
79 do_discard:
80 intel->batch->ptr -= used;
81
82 finished:
83 intel->prim.primitive = ~0;
84 intel->prim.start_ptr = 0;
85 intel->prim.flush = 0;
86 }
87
88 static void intel_start_inline(struct intel_context *intel, uint32_t prim)
89 {
90 BATCH_LOCALS;
91
92 intel->vtbl.emit_state(intel);
93
94 intel->no_batch_wrap = GL_TRUE;
95
96 /*printf("%s *", __progname);*/
97
98 /* Emit a slot which will be filled with the inline primitive
99 * command later.
100 */
101 BEGIN_BATCH(1);
102
103 assert((intel->batch->dirty_state & (1<<1)) == 0);
104
105 intel->prim.start_ptr = intel->batch->ptr;
106 intel->prim.primitive = prim;
107 intel->prim.flush = intel_flush_inline_primitive;
108
109 OUT_BATCH(0);
110 ADVANCE_BATCH();
111
112 intel->no_batch_wrap = GL_FALSE;
113 /* printf(">"); */
114 }
115
116 static void intel_wrap_inline(struct intel_context *intel)
117 {
118 GLuint prim = intel->prim.primitive;
119
120 intel_flush_inline_primitive(intel);
121 intel_batchbuffer_flush(intel->batch);
122 intel_start_inline(intel, prim); /* ??? */
123 }
124
125 static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
126 {
127 GLuint sz = dwords * sizeof(GLuint);
128 GLuint *ptr;
129
130 assert(intel->prim.flush == intel_flush_inline_primitive);
131
132 if (intel_batchbuffer_space(intel->batch) < sz)
133 intel_wrap_inline(intel);
134
135 /* printf("."); */
136
137 intel->vtbl.assert_not_dirty(intel);
138
139 ptr = (GLuint *) intel->batch->ptr;
140 intel->batch->ptr += sz;
141
142 return ptr;
143 }
144
145 /** Sets the primitive type for a primitive sequence, flushing as needed. */
146 void intel_set_prim(struct intel_context *intel, uint32_t prim)
147 {
148 /* if we have no VBOs */
149
150 if (intel->intelScreen->no_vbo) {
151 intel_start_inline(intel, prim);
152 return;
153 }
154 if (prim != intel->prim.primitive) {
155 INTEL_FIREVERTICES(intel);
156 intel->prim.primitive = prim;
157 }
158 }
159
160 /** Returns mapped VB space for the given number of vertices */
161 uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
162 {
163 uint32_t *addr;
164
165 if (intel->intelScreen->no_vbo) {
166 return intel_extend_inline(intel, count * intel->vertex_size);
167 }
168
169 /* Check for space in the existing VB */
170 if (intel->prim.vb_bo == NULL ||
171 (intel->prim.current_offset +
172 count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
173 (intel->prim.count + count) >= (1 << 16)) {
174 /* Flush existing prim if any */
175 INTEL_FIREVERTICES(intel);
176
177 intel_finish_vb(intel);
178
179 /* Start a new VB */
180 if (intel->prim.vb == NULL)
181 intel->prim.vb = malloc(INTEL_VB_SIZE);
182 intel->prim.vb_bo = dri_bo_alloc(intel->bufmgr, "vb",
183 INTEL_VB_SIZE, 4);
184 intel->prim.start_offset = 0;
185 intel->prim.current_offset = 0;
186 }
187
188 intel->prim.flush = intel_flush_prim;
189
190 addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
191 intel->prim.current_offset += intel->vertex_size * 4 * count;
192 intel->prim.count += count;
193
194 return addr;
195 }
196
197 /** Dispatches the accumulated primitive to the batchbuffer. */
198 void intel_flush_prim(struct intel_context *intel)
199 {
200 dri_bo *aper_array[2];
201 dri_bo *vb_bo;
202 unsigned int offset, count;
203 BATCH_LOCALS;
204
205 /* Must be called after an intel_start_prim. */
206 assert(intel->prim.primitive != ~0);
207
208 if (intel->prim.count == 0)
209 return;
210
211 /* Clear the current prims out of the context state so that a batch flush
212 * flush triggered by emit_state doesn't loop back to flush_prim again.
213 */
214 vb_bo = intel->prim.vb_bo;
215 dri_bo_reference(vb_bo);
216 count = intel->prim.count;
217 intel->prim.count = 0;
218 offset = intel->prim.start_offset;
219 intel->prim.start_offset = intel->prim.current_offset;
220 if (!intel->gen >= 3)
221 intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
222 intel->prim.flush = NULL;
223
224 intel->vtbl.emit_state(intel);
225
226 aper_array[0] = intel->batch->buf;
227 aper_array[1] = vb_bo;
228 if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
229 intel_batchbuffer_flush(intel->batch);
230 intel->vtbl.emit_state(intel);
231 }
232
233 /* Ensure that we don't start a new batch for the following emit, which
234 * depends on the state just emitted. emit_state should be making sure we
235 * have the space for this.
236 */
237 intel->no_batch_wrap = GL_TRUE;
238
239 /* Check that we actually emitted the state into this batch, using the
240 * UPLOAD_CTX bit as the signal.
241 */
242 assert((intel->batch->dirty_state & (1<<1)) == 0);
243
244 #if 0
245 printf("emitting %d..%d=%d vertices size %d\n", offset,
246 intel->prim.current_offset, count,
247 intel->vertex_size * 4);
248 #endif
249
250 if (intel->gen >= 3) {
251 BEGIN_BATCH(5);
252 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
253 I1_LOAD_S(0) | I1_LOAD_S(1) | 1);
254 assert((offset & !S0_VB_OFFSET_MASK) == 0);
255 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, offset);
256 OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
257 (intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
258
259 OUT_BATCH(_3DPRIMITIVE |
260 PRIM_INDIRECT |
261 PRIM_INDIRECT_SEQUENTIAL |
262 intel->prim.primitive |
263 count);
264 OUT_BATCH(0); /* Beginning vertex index */
265 ADVANCE_BATCH();
266 } else {
267 struct i830_context *i830 = i830_context(&intel->ctx);
268
269 BEGIN_BATCH(5);
270 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
271 I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
272 /* S0 */
273 assert((offset & !S0_VB_OFFSET_MASK_830) == 0);
274 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
275 offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
276 S0_VB_ENABLE_830);
277 /* S2
278 * This is somewhat unfortunate -- VB width is tied up with
279 * vertex format data that we've already uploaded through
280 * _3DSTATE_VFT[01]_CMD. We may want to replace emits of VFT state with
281 * STATE_IMMEDIATE_1 like this to avoid duplication.
282 */
283 OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
284 VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
285 (i830->state.Ctx[I830_CTXREG_VF2] << 16) |
286 intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
287
288 OUT_BATCH(_3DPRIMITIVE |
289 PRIM_INDIRECT |
290 PRIM_INDIRECT_SEQUENTIAL |
291 intel->prim.primitive |
292 count);
293 OUT_BATCH(0); /* Beginning vertex index */
294 ADVANCE_BATCH();
295 }
296
297 intel->no_batch_wrap = GL_FALSE;
298
299 dri_bo_unreference(vb_bo);
300 }
301
302 /**
303 * Uploads the locally-accumulated VB into the buffer object.
304 *
305 * This avoids us thrashing the cachelines in and out as the buffer gets
306 * filled, dispatched, then reused as the hardware completes rendering from it,
307 * and also lets us clflush less if we dispatch with a partially-filled VB.
308 *
309 * This is called normally from get_space when we're finishing a BO, but also
310 * at batch flush time so that we don't try accessing the contents of a
311 * just-dispatched buffer.
312 */
313 void intel_finish_vb(struct intel_context *intel)
314 {
315 if (intel->prim.vb_bo == NULL)
316 return;
317
318 dri_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
319 intel->prim.vb);
320 dri_bo_unreference(intel->prim.vb_bo);
321 intel->prim.vb_bo = NULL;
322 }
323
324 /***********************************************************************
325 * Emit primitives as inline vertices *
326 ***********************************************************************/
327
328 #ifdef __i386__
329 #define COPY_DWORDS( j, vb, vertsize, v ) \
330 do { \
331 int __tmp; \
332 __asm__ __volatile__( "rep ; movsl" \
333 : "=%c" (j), "=D" (vb), "=S" (__tmp) \
334 : "0" (vertsize), \
335 "D" ((long)vb), \
336 "S" ((long)v) ); \
337 } while (0)
338 #else
339 #define COPY_DWORDS( j, vb, vertsize, v ) \
340 do { \
341 for ( j = 0 ; j < vertsize ; j++ ) { \
342 vb[j] = ((GLuint *)v)[j]; \
343 } \
344 vb += vertsize; \
345 } while (0)
346 #endif
347
348 static void
349 intel_draw_quad(struct intel_context *intel,
350 intelVertexPtr v0,
351 intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
352 {
353 GLuint vertsize = intel->vertex_size;
354 GLuint *vb = intel_get_prim_space(intel, 6);
355 int j;
356
357 COPY_DWORDS(j, vb, vertsize, v0);
358 COPY_DWORDS(j, vb, vertsize, v1);
359
360 /* If smooth shading, draw like a trifan which gives better
361 * rasterization. Otherwise draw as two triangles with provoking
362 * vertex in third position as required for flat shading.
363 */
364 if (intel->ctx.Light.ShadeModel == GL_FLAT) {
365 COPY_DWORDS(j, vb, vertsize, v3);
366 COPY_DWORDS(j, vb, vertsize, v1);
367 }
368 else {
369 COPY_DWORDS(j, vb, vertsize, v2);
370 COPY_DWORDS(j, vb, vertsize, v0);
371 }
372
373 COPY_DWORDS(j, vb, vertsize, v2);
374 COPY_DWORDS(j, vb, vertsize, v3);
375 }
376
377 static void
378 intel_draw_triangle(struct intel_context *intel,
379 intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
380 {
381 GLuint vertsize = intel->vertex_size;
382 GLuint *vb = intel_get_prim_space(intel, 3);
383 int j;
384
385 COPY_DWORDS(j, vb, vertsize, v0);
386 COPY_DWORDS(j, vb, vertsize, v1);
387 COPY_DWORDS(j, vb, vertsize, v2);
388 }
389
390
391 static void
392 intel_draw_line(struct intel_context *intel,
393 intelVertexPtr v0, intelVertexPtr v1)
394 {
395 GLuint vertsize = intel->vertex_size;
396 GLuint *vb = intel_get_prim_space(intel, 2);
397 int j;
398
399 COPY_DWORDS(j, vb, vertsize, v0);
400 COPY_DWORDS(j, vb, vertsize, v1);
401 }
402
403
404 static void
405 intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
406 {
407 GLuint vertsize = intel->vertex_size;
408 GLuint *vb = intel_get_prim_space(intel, 1);
409 int j;
410
411 /* Adjust for sub pixel position -- still required for conform. */
412 *(float *) &vb[0] = v0->v.x;
413 *(float *) &vb[1] = v0->v.y;
414 for (j = 2; j < vertsize; j++)
415 vb[j] = v0->ui[j];
416 }
417
418
419
420 /***********************************************************************
421 * Fixup for ARB_point_parameters *
422 ***********************************************************************/
423
424 /* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
425 * represented in the fragment program InputsRead field.
426 */
427 static void
428 intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
429 {
430 GLcontext *ctx = &intel->ctx;
431 GLfloat psz[4], col[4], restore_psz, restore_alpha;
432
433 _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
434 _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
435
436 restore_psz = psz[0];
437 restore_alpha = col[3];
438
439 if (psz[0] >= ctx->Point.Threshold) {
440 psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
441 }
442 else {
443 GLfloat dsize = psz[0] / ctx->Point.Threshold;
444 psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
445 col[3] *= dsize * dsize;
446 }
447
448 if (psz[0] < 1.0)
449 psz[0] = 1.0;
450
451 if (restore_psz != psz[0] || restore_alpha != col[3]) {
452 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
453 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
454
455 intel_draw_point(intel, v0);
456
457 psz[0] = restore_psz;
458 col[3] = restore_alpha;
459
460 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
461 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
462 }
463 else
464 intel_draw_point(intel, v0);
465 }
466
467
468
469
470
471 /***********************************************************************
472 * Fixup for I915 WPOS texture coordinate *
473 ***********************************************************************/
474
475
476
477 static void
478 intel_wpos_triangle(struct intel_context *intel,
479 intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
480 {
481 GLuint offset = intel->wpos_offset;
482 GLuint size = intel->wpos_size;
483 GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
484 GLfloat *v1_wpos = (GLfloat *)((char *)v1 + offset);
485 GLfloat *v2_wpos = (GLfloat *)((char *)v2 + offset);
486
487 __memcpy(v0_wpos, v0, size);
488 __memcpy(v1_wpos, v1, size);
489 __memcpy(v2_wpos, v2, size);
490
491 v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
492 v1_wpos[1] = -v1_wpos[1] + intel->driDrawable->h;
493 v2_wpos[1] = -v2_wpos[1] + intel->driDrawable->h;
494
495
496 intel_draw_triangle(intel, v0, v1, v2);
497 }
498
499
500 static void
501 intel_wpos_line(struct intel_context *intel,
502 intelVertexPtr v0, intelVertexPtr v1)
503 {
504 GLuint offset = intel->wpos_offset;
505 GLuint size = intel->wpos_size;
506 GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
507 GLfloat *v1_wpos = (GLfloat *)((char *)v1 + offset);
508
509 __memcpy(v0_wpos, v0, size);
510 __memcpy(v1_wpos, v1, size);
511
512 v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
513 v1_wpos[1] = -v1_wpos[1] + intel->driDrawable->h;
514
515 intel_draw_line(intel, v0, v1);
516 }
517
518
519 static void
520 intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
521 {
522 GLuint offset = intel->wpos_offset;
523 GLuint size = intel->wpos_size;
524 GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
525
526 __memcpy(v0_wpos, v0, size);
527 v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
528
529 intel_draw_point(intel, v0);
530 }
531
532
533
534
535
536
537 /***********************************************************************
538 * Macros for t_dd_tritmp.h to draw basic primitives *
539 ***********************************************************************/
540
541 #define TRI( a, b, c ) \
542 do { \
543 if (DO_FALLBACK) \
544 intel->draw_tri( intel, a, b, c ); \
545 else \
546 intel_draw_triangle( intel, a, b, c ); \
547 } while (0)
548
549 #define QUAD( a, b, c, d ) \
550 do { \
551 if (DO_FALLBACK) { \
552 intel->draw_tri( intel, a, b, d ); \
553 intel->draw_tri( intel, b, c, d ); \
554 } else \
555 intel_draw_quad( intel, a, b, c, d ); \
556 } while (0)
557
558 #define LINE( v0, v1 ) \
559 do { \
560 if (DO_FALLBACK) \
561 intel->draw_line( intel, v0, v1 ); \
562 else \
563 intel_draw_line( intel, v0, v1 ); \
564 } while (0)
565
566 #define POINT( v0 ) \
567 do { \
568 if (DO_FALLBACK) \
569 intel->draw_point( intel, v0 ); \
570 else \
571 intel_draw_point( intel, v0 ); \
572 } while (0)
573
574
575 /***********************************************************************
576 * Build render functions from dd templates *
577 ***********************************************************************/
578
579 #define INTEL_OFFSET_BIT 0x01
580 #define INTEL_TWOSIDE_BIT 0x02
581 #define INTEL_UNFILLED_BIT 0x04
582 #define INTEL_FALLBACK_BIT 0x08
583 #define INTEL_MAX_TRIFUNC 0x10
584
585
586 static struct
587 {
588 tnl_points_func points;
589 tnl_line_func line;
590 tnl_triangle_func triangle;
591 tnl_quad_func quad;
592 } rast_tab[INTEL_MAX_TRIFUNC];
593
594
595 #define DO_FALLBACK (IND & INTEL_FALLBACK_BIT)
596 #define DO_OFFSET (IND & INTEL_OFFSET_BIT)
597 #define DO_UNFILLED (IND & INTEL_UNFILLED_BIT)
598 #define DO_TWOSIDE (IND & INTEL_TWOSIDE_BIT)
599 #define DO_FLAT 0
600 #define DO_TRI 1
601 #define DO_QUAD 1
602 #define DO_LINE 1
603 #define DO_POINTS 1
604 #define DO_FULL_QUAD 1
605
606 #define HAVE_RGBA 1
607 #define HAVE_SPEC 1
608 #define HAVE_BACK_COLORS 0
609 #define HAVE_HW_FLATSHADE 1
610 #define VERTEX intelVertex
611 #define TAB rast_tab
612
613 /* Only used to pull back colors into vertices (ie, we know color is
614 * floating point).
615 */
616 #define INTEL_COLOR( dst, src ) \
617 do { \
618 UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \
619 UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \
620 UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \
621 UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]); \
622 } while (0)
623
624 #define INTEL_SPEC( dst, src ) \
625 do { \
626 UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \
627 UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \
628 UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \
629 } while (0)
630
631
632 #define DEPTH_SCALE intel->polygon_offset_scale
633 #define UNFILLED_TRI unfilled_tri
634 #define UNFILLED_QUAD unfilled_quad
635 #define VERT_X(_v) _v->v.x
636 #define VERT_Y(_v) _v->v.y
637 #define VERT_Z(_v) _v->v.z
638 #define AREA_IS_CCW( a ) (a > 0)
639 #define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
640
641 #define VERT_SET_RGBA( v, c ) if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
642 #define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
643 #define VERT_SAVE_RGBA( idx ) if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
644 #define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
645
646 #define VERT_SET_SPEC( v, c ) if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
647 #define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
648 #define VERT_SAVE_SPEC( idx ) if (specoffset) spec[idx] = v[idx]->ui[specoffset]
649 #define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
650
651 #define LOCAL_VARS(n) \
652 struct intel_context *intel = intel_context(ctx); \
653 GLuint color[n] = { 0, }, spec[n] = { 0, }; \
654 GLuint coloroffset = intel->coloroffset; \
655 GLboolean specoffset = intel->specoffset; \
656 (void) color; (void) spec; (void) coloroffset; (void) specoffset;
657
658
659 /***********************************************************************
660 * Helpers for rendering unfilled primitives *
661 ***********************************************************************/
662
663 static const GLuint hw_prim[GL_POLYGON + 1] = {
664 PRIM3D_POINTLIST,
665 PRIM3D_LINELIST,
666 PRIM3D_LINELIST,
667 PRIM3D_LINELIST,
668 PRIM3D_TRILIST,
669 PRIM3D_TRILIST,
670 PRIM3D_TRILIST,
671 PRIM3D_TRILIST,
672 PRIM3D_TRILIST,
673 PRIM3D_TRILIST
674 };
675
676 #define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
677 #define RENDER_PRIMITIVE intel->render_primitive
678 #define TAG(x) x
679 #define IND INTEL_FALLBACK_BIT
680 #include "tnl_dd/t_dd_unfilled.h"
681 #undef IND
682
683 /***********************************************************************
684 * Generate GL render functions *
685 ***********************************************************************/
686
687 #define IND (0)
688 #define TAG(x) x
689 #include "tnl_dd/t_dd_tritmp.h"
690
691 #define IND (INTEL_OFFSET_BIT)
692 #define TAG(x) x##_offset
693 #include "tnl_dd/t_dd_tritmp.h"
694
695 #define IND (INTEL_TWOSIDE_BIT)
696 #define TAG(x) x##_twoside
697 #include "tnl_dd/t_dd_tritmp.h"
698
699 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
700 #define TAG(x) x##_twoside_offset
701 #include "tnl_dd/t_dd_tritmp.h"
702
703 #define IND (INTEL_UNFILLED_BIT)
704 #define TAG(x) x##_unfilled
705 #include "tnl_dd/t_dd_tritmp.h"
706
707 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
708 #define TAG(x) x##_offset_unfilled
709 #include "tnl_dd/t_dd_tritmp.h"
710
711 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
712 #define TAG(x) x##_twoside_unfilled
713 #include "tnl_dd/t_dd_tritmp.h"
714
715 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
716 #define TAG(x) x##_twoside_offset_unfilled
717 #include "tnl_dd/t_dd_tritmp.h"
718
719 #define IND (INTEL_FALLBACK_BIT)
720 #define TAG(x) x##_fallback
721 #include "tnl_dd/t_dd_tritmp.h"
722
723 #define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
724 #define TAG(x) x##_offset_fallback
725 #include "tnl_dd/t_dd_tritmp.h"
726
727 #define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
728 #define TAG(x) x##_twoside_fallback
729 #include "tnl_dd/t_dd_tritmp.h"
730
731 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
732 #define TAG(x) x##_twoside_offset_fallback
733 #include "tnl_dd/t_dd_tritmp.h"
734
735 #define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
736 #define TAG(x) x##_unfilled_fallback
737 #include "tnl_dd/t_dd_tritmp.h"
738
739 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
740 #define TAG(x) x##_offset_unfilled_fallback
741 #include "tnl_dd/t_dd_tritmp.h"
742
743 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
744 #define TAG(x) x##_twoside_unfilled_fallback
745 #include "tnl_dd/t_dd_tritmp.h"
746
747 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
748 INTEL_FALLBACK_BIT)
749 #define TAG(x) x##_twoside_offset_unfilled_fallback
750 #include "tnl_dd/t_dd_tritmp.h"
751
752
753 static void
754 init_rast_tab(void)
755 {
756 init();
757 init_offset();
758 init_twoside();
759 init_twoside_offset();
760 init_unfilled();
761 init_offset_unfilled();
762 init_twoside_unfilled();
763 init_twoside_offset_unfilled();
764 init_fallback();
765 init_offset_fallback();
766 init_twoside_fallback();
767 init_twoside_offset_fallback();
768 init_unfilled_fallback();
769 init_offset_unfilled_fallback();
770 init_twoside_unfilled_fallback();
771 init_twoside_offset_unfilled_fallback();
772 }
773
774
775 /***********************************************************************
776 * Rasterization fallback helpers *
777 ***********************************************************************/
778
779
780 /* This code is hit only when a mix of accelerated and unaccelerated
781 * primitives are being drawn, and only for the unaccelerated
782 * primitives.
783 */
784 static void
785 intel_fallback_tri(struct intel_context *intel,
786 intelVertex * v0, intelVertex * v1, intelVertex * v2)
787 {
788 GLcontext *ctx = &intel->ctx;
789 SWvertex v[3];
790
791 if (0)
792 fprintf(stderr, "\n%s\n", __FUNCTION__);
793
794 INTEL_FIREVERTICES(intel);
795
796 _swsetup_Translate(ctx, v0, &v[0]);
797 _swsetup_Translate(ctx, v1, &v[1]);
798 _swsetup_Translate(ctx, v2, &v[2]);
799 intelSpanRenderStart(ctx);
800 _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
801 intelSpanRenderFinish(ctx);
802 }
803
804
805 static void
806 intel_fallback_line(struct intel_context *intel,
807 intelVertex * v0, intelVertex * v1)
808 {
809 GLcontext *ctx = &intel->ctx;
810 SWvertex v[2];
811
812 if (0)
813 fprintf(stderr, "\n%s\n", __FUNCTION__);
814
815 INTEL_FIREVERTICES(intel);
816
817 _swsetup_Translate(ctx, v0, &v[0]);
818 _swsetup_Translate(ctx, v1, &v[1]);
819 intelSpanRenderStart(ctx);
820 _swrast_Line(ctx, &v[0], &v[1]);
821 intelSpanRenderFinish(ctx);
822 }
823
824 static void
825 intel_fallback_point(struct intel_context *intel,
826 intelVertex * v0)
827 {
828 GLcontext *ctx = &intel->ctx;
829 SWvertex v[1];
830
831 if (0)
832 fprintf(stderr, "\n%s\n", __FUNCTION__);
833
834 INTEL_FIREVERTICES(intel);
835
836 _swsetup_Translate(ctx, v0, &v[0]);
837 intelSpanRenderStart(ctx);
838 _swrast_Point(ctx, &v[0]);
839 intelSpanRenderFinish(ctx);
840 }
841
842
843 /**********************************************************************/
844 /* Render unclipped begin/end objects */
845 /**********************************************************************/
846
847 #define IND 0
848 #define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
849 #define RENDER_POINTS( start, count ) \
850 for ( ; start < count ; start++) POINT( V(ELT(start)) );
851 #define RENDER_LINE( v0, v1 ) LINE( V(v0), V(v1) )
852 #define RENDER_TRI( v0, v1, v2 ) TRI( V(v0), V(v1), V(v2) )
853 #define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
854 #define INIT(x) intelRenderPrimitive( ctx, x )
855 #undef LOCAL_VARS
856 #define LOCAL_VARS \
857 struct intel_context *intel = intel_context(ctx); \
858 GLubyte *vertptr = (GLubyte *)intel->verts; \
859 const GLuint vertsize = intel->vertex_size; \
860 const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts; \
861 (void) elt;
862 #define RESET_STIPPLE
863 #define RESET_OCCLUSION
864 #define PRESERVE_VB_DEFS
865 #define ELT(x) x
866 #define TAG(x) intel_##x##_verts
867 #include "tnl/t_vb_rendertmp.h"
868 #undef ELT
869 #undef TAG
870 #define TAG(x) intel_##x##_elts
871 #define ELT(x) elt[x]
872 #include "tnl/t_vb_rendertmp.h"
873
874 /**********************************************************************/
875 /* Render clipped primitives */
876 /**********************************************************************/
877
878
879
880 static void
881 intelRenderClippedPoly(GLcontext * ctx, const GLuint * elts, GLuint n)
882 {
883 struct intel_context *intel = intel_context(ctx);
884 TNLcontext *tnl = TNL_CONTEXT(ctx);
885 struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
886 GLuint prim = intel->render_primitive;
887
888 /* Render the new vertices as an unclipped polygon.
889 */
890 {
891 GLuint *tmp = VB->Elts;
892 VB->Elts = (GLuint *) elts;
893 tnl->Driver.Render.PrimTabElts[GL_POLYGON] (ctx, 0, n,
894 PRIM_BEGIN | PRIM_END);
895 VB->Elts = tmp;
896 }
897
898 /* Restore the render primitive
899 */
900 if (prim != GL_POLYGON)
901 tnl->Driver.Render.PrimitiveNotify(ctx, prim);
902 }
903
904 static void
905 intelRenderClippedLine(GLcontext * ctx, GLuint ii, GLuint jj)
906 {
907 TNLcontext *tnl = TNL_CONTEXT(ctx);
908
909 tnl->Driver.Render.Line(ctx, ii, jj);
910 }
911
912 static void
913 intelFastRenderClippedPoly(GLcontext * ctx, const GLuint * elts, GLuint n)
914 {
915 struct intel_context *intel = intel_context(ctx);
916 const GLuint vertsize = intel->vertex_size;
917 GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
918 GLubyte *vertptr = (GLubyte *) intel->verts;
919 const GLuint *start = (const GLuint *) V(elts[0]);
920 int i, j;
921
922 for (i = 2; i < n; i++) {
923 COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
924 COPY_DWORDS(j, vb, vertsize, V(elts[i]));
925 COPY_DWORDS(j, vb, vertsize, start);
926 }
927 }
928
929 /**********************************************************************/
930 /* Choose render functions */
931 /**********************************************************************/
932
933
934
935
936 #define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN | DD_POINT_SMOOTH | DD_TRI_SMOOTH)
937 #define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
938
939 void
940 intelChooseRenderState(GLcontext * ctx)
941 {
942 TNLcontext *tnl = TNL_CONTEXT(ctx);
943 struct intel_context *intel = intel_context(ctx);
944 GLuint flags = ctx->_TriangleCaps;
945 const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current;
946 GLboolean have_wpos = (fprog && (fprog->Base.InputsRead & FRAG_BIT_WPOS));
947 GLuint index = 0;
948
949 if (INTEL_DEBUG & DEBUG_STATE)
950 fprintf(stderr, "\n%s\n", __FUNCTION__);
951
952 if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
953
954 if (flags & ANY_RASTER_FLAGS) {
955 if (flags & DD_TRI_LIGHT_TWOSIDE)
956 index |= INTEL_TWOSIDE_BIT;
957 if (flags & DD_TRI_OFFSET)
958 index |= INTEL_OFFSET_BIT;
959 if (flags & DD_TRI_UNFILLED)
960 index |= INTEL_UNFILLED_BIT;
961 }
962
963 if (have_wpos) {
964 intel->draw_point = intel_wpos_point;
965 intel->draw_line = intel_wpos_line;
966 intel->draw_tri = intel_wpos_triangle;
967
968 /* Make sure these get called:
969 */
970 index |= INTEL_FALLBACK_BIT;
971 }
972 else {
973 intel->draw_point = intel_draw_point;
974 intel->draw_line = intel_draw_line;
975 intel->draw_tri = intel_draw_triangle;
976 }
977
978 /* Hook in fallbacks for specific primitives.
979 */
980 if (flags & ANY_FALLBACK_FLAGS) {
981 if (flags & DD_LINE_STIPPLE)
982 intel->draw_line = intel_fallback_line;
983
984 if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
985 intel->draw_tri = intel_fallback_tri;
986
987 if (flags & DD_TRI_SMOOTH) {
988 if (intel->conformance_mode > 0)
989 intel->draw_tri = intel_fallback_tri;
990 }
991
992 if (flags & DD_POINT_ATTEN) {
993 if (0)
994 intel->draw_point = intel_atten_point;
995 else
996 intel->draw_point = intel_fallback_point;
997 }
998
999 if (flags & DD_POINT_SMOOTH) {
1000 if (intel->conformance_mode > 0)
1001 intel->draw_point = intel_fallback_point;
1002 }
1003
1004 index |= INTEL_FALLBACK_BIT;
1005 }
1006 }
1007
1008 if (intel->RenderIndex != index) {
1009 intel->RenderIndex = index;
1010
1011 tnl->Driver.Render.Points = rast_tab[index].points;
1012 tnl->Driver.Render.Line = rast_tab[index].line;
1013 tnl->Driver.Render.Triangle = rast_tab[index].triangle;
1014 tnl->Driver.Render.Quad = rast_tab[index].quad;
1015
1016 if (index == 0) {
1017 tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
1018 tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
1019 tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
1020 tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
1021 }
1022 else {
1023 tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
1024 tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
1025 tnl->Driver.Render.ClippedLine = intelRenderClippedLine;
1026 tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
1027 }
1028 }
1029 }
1030
1031 static const GLenum reduced_prim[GL_POLYGON + 1] = {
1032 GL_POINTS,
1033 GL_LINES,
1034 GL_LINES,
1035 GL_LINES,
1036 GL_TRIANGLES,
1037 GL_TRIANGLES,
1038 GL_TRIANGLES,
1039 GL_TRIANGLES,
1040 GL_TRIANGLES,
1041 GL_TRIANGLES
1042 };
1043
1044
1045 /**********************************************************************/
1046 /* High level hooks for t_vb_render.c */
1047 /**********************************************************************/
1048
1049
1050
1051
1052 static void
1053 intelRunPipeline(GLcontext * ctx)
1054 {
1055 struct intel_context *intel = intel_context(ctx);
1056
1057 _mesa_lock_context_textures(ctx);
1058
1059 if (ctx->NewState)
1060 _mesa_update_state_locked(ctx);
1061
1062 if (intel->NewGLState) {
1063 if (intel->NewGLState & _NEW_TEXTURE) {
1064 intel->vtbl.update_texture_state(intel);
1065 }
1066
1067 if (!intel->Fallback) {
1068 if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
1069 intelChooseRenderState(ctx);
1070 }
1071
1072 intel->NewGLState = 0;
1073 }
1074
1075 intel_map_vertex_shader_textures(ctx);
1076 _tnl_run_pipeline(ctx);
1077 intel_unmap_vertex_shader_textures(ctx);
1078
1079 _mesa_unlock_context_textures(ctx);
1080 }
1081
1082 static void
1083 intelRenderStart(GLcontext * ctx)
1084 {
1085 struct intel_context *intel = intel_context(ctx);
1086
1087 intel_check_front_buffer_rendering(intel);
1088 intel->vtbl.render_start(intel_context(ctx));
1089 intel->vtbl.emit_state(intel);
1090 }
1091
1092 static void
1093 intelRenderFinish(GLcontext * ctx)
1094 {
1095 struct intel_context *intel = intel_context(ctx);
1096
1097 if (intel->RenderIndex & INTEL_FALLBACK_BIT)
1098 _swrast_flush(ctx);
1099
1100 INTEL_FIREVERTICES(intel);
1101 }
1102
1103
1104
1105
1106 /* System to flush dma and emit state changes based on the rasterized
1107 * primitive.
1108 */
1109 static void
1110 intelRasterPrimitive(GLcontext * ctx, GLenum rprim, GLuint hwprim)
1111 {
1112 struct intel_context *intel = intel_context(ctx);
1113
1114 if (0)
1115 fprintf(stderr, "%s %s %x\n", __FUNCTION__,
1116 _mesa_lookup_enum_by_nr(rprim), hwprim);
1117
1118 intel->vtbl.reduced_primitive_state(intel, rprim);
1119
1120 /* Start a new primitive. Arrange to have it flushed later on.
1121 */
1122 if (hwprim != intel->prim.primitive) {
1123 INTEL_FIREVERTICES(intel);
1124
1125 intel_set_prim(intel, hwprim);
1126 }
1127 }
1128
1129
1130 /*
1131 */
1132 static void
1133 intelRenderPrimitive(GLcontext * ctx, GLenum prim)
1134 {
1135 struct intel_context *intel = intel_context(ctx);
1136
1137 if (0)
1138 fprintf(stderr, "%s %s\n", __FUNCTION__, _mesa_lookup_enum_by_nr(prim));
1139
1140 /* Let some clipping routines know which primitive they're dealing
1141 * with.
1142 */
1143 intel->render_primitive = prim;
1144
1145 /* Shortcircuit this when called from t_dd_rendertmp.h for unfilled
1146 * triangles. The rasterized primitive will always be reset by
1147 * lower level functions in that case, potentially pingponging the
1148 * state:
1149 */
1150 if (reduced_prim[prim] == GL_TRIANGLES &&
1151 (ctx->_TriangleCaps & DD_TRI_UNFILLED))
1152 return;
1153
1154 /* Set some primitive-dependent state and Start? a new primitive.
1155 */
1156 intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
1157 }
1158
1159
1160 /**********************************************************************/
1161 /* Transition to/from hardware rasterization. */
1162 /**********************************************************************/
1163
1164 static char *fallbackStrings[] = {
1165 [0] = "Draw buffer",
1166 [1] = "Read buffer",
1167 [2] = "Depth buffer",
1168 [3] = "Stencil buffer",
1169 [4] = "User disable",
1170 [5] = "Render mode",
1171
1172 [12] = "Texture",
1173 [13] = "Color mask",
1174 [14] = "Stencil",
1175 [15] = "Stipple",
1176 [16] = "Program",
1177 [17] = "Logic op",
1178 [18] = "Smooth polygon",
1179 [19] = "Smooth point",
1180 };
1181
1182
1183 static char *
1184 getFallbackString(GLuint bit)
1185 {
1186 int i = 0;
1187 while (bit > 1) {
1188 i++;
1189 bit >>= 1;
1190 }
1191 return fallbackStrings[i];
1192 }
1193
1194
1195
1196 /**
1197 * Enable/disable a fallback flag.
1198 * \param bit one of INTEL_FALLBACK_x flags.
1199 */
1200 void
1201 intelFallback(struct intel_context *intel, GLbitfield bit, GLboolean mode)
1202 {
1203 GLcontext *ctx = &intel->ctx;
1204 TNLcontext *tnl = TNL_CONTEXT(ctx);
1205 const GLbitfield oldfallback = intel->Fallback;
1206
1207 if (mode) {
1208 intel->Fallback |= bit;
1209 if (oldfallback == 0) {
1210 intelFlush(ctx);
1211 if (INTEL_DEBUG & DEBUG_FALLBACKS)
1212 fprintf(stderr, "ENTER FALLBACK %x: %s\n",
1213 bit, getFallbackString(bit));
1214 _swsetup_Wakeup(ctx);
1215 intel->RenderIndex = ~0;
1216 }
1217 }
1218 else {
1219 intel->Fallback &= ~bit;
1220 if (oldfallback == bit) {
1221 _swrast_flush(ctx);
1222 if (INTEL_DEBUG & DEBUG_FALLBACKS)
1223 fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
1224 tnl->Driver.Render.Start = intelRenderStart;
1225 tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1226 tnl->Driver.Render.Finish = intelRenderFinish;
1227 tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1228 tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1229 tnl->Driver.Render.Interp = _tnl_interp;
1230
1231 _tnl_invalidate_vertex_state(ctx, ~0);
1232 _tnl_invalidate_vertices(ctx, ~0);
1233 _tnl_install_attrs(ctx,
1234 intel->vertex_attrs,
1235 intel->vertex_attr_count,
1236 intel->ViewportMatrix.m, 0);
1237
1238 intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
1239 }
1240 }
1241 }
1242
1243 union fi
1244 {
1245 GLfloat f;
1246 GLint i;
1247 };
1248
1249 /**********************************************************************/
1250 /* Initialization. */
1251 /**********************************************************************/
1252
1253
1254 void
1255 intelInitTriFuncs(GLcontext * ctx)
1256 {
1257 TNLcontext *tnl = TNL_CONTEXT(ctx);
1258 static int firsttime = 1;
1259
1260 if (firsttime) {
1261 init_rast_tab();
1262 firsttime = 0;
1263 }
1264
1265 tnl->Driver.RunPipeline = intelRunPipeline;
1266 tnl->Driver.Render.Start = intelRenderStart;
1267 tnl->Driver.Render.Finish = intelRenderFinish;
1268 tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1269 tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
1270 tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1271 tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1272 tnl->Driver.Render.Interp = _tnl_interp;
1273 }