intel/blorp: Add plumbing for color resolve slice details
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/context.h"
25 #include "main/teximage.h"
26 #include "main/blend.h"
27 #include "main/fbobject.h"
28 #include "main/renderbuffer.h"
29 #include "main/glformats.h"
30
31 #include "brw_blorp.h"
32 #include "brw_context.h"
33 #include "brw_defines.h"
34 #include "brw_meta_util.h"
35 #include "brw_state.h"
36 #include "intel_fbo.h"
37 #include "intel_debug.h"
38
39 #define FILE_DEBUG_FLAG DEBUG_BLORP
40
41 static bool
42 brw_blorp_lookup_shader(struct blorp_context *blorp,
43 const void *key, uint32_t key_size,
44 uint32_t *kernel_out, void *prog_data_out)
45 {
46 struct brw_context *brw = blorp->driver_ctx;
47 return brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
48 key, key_size, kernel_out, prog_data_out);
49 }
50
51 static void
52 brw_blorp_upload_shader(struct blorp_context *blorp,
53 const void *key, uint32_t key_size,
54 const void *kernel, uint32_t kernel_size,
55 const struct brw_stage_prog_data *prog_data,
56 uint32_t prog_data_size,
57 uint32_t *kernel_out, void *prog_data_out)
58 {
59 struct brw_context *brw = blorp->driver_ctx;
60 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG, key, key_size,
61 kernel, kernel_size, prog_data, prog_data_size,
62 kernel_out, prog_data_out);
63 }
64
65 void
66 brw_blorp_init(struct brw_context *brw)
67 {
68 blorp_init(&brw->blorp, brw, &brw->isl_dev);
69
70 brw->blorp.compiler = brw->screen->compiler;
71
72 switch (brw->gen) {
73 case 6:
74 brw->blorp.mocs.tex = 0;
75 brw->blorp.mocs.rb = 0;
76 brw->blorp.mocs.vb = 0;
77 brw->blorp.exec = gen6_blorp_exec;
78 break;
79 case 7:
80 brw->blorp.mocs.tex = GEN7_MOCS_L3;
81 brw->blorp.mocs.rb = GEN7_MOCS_L3;
82 brw->blorp.mocs.vb = GEN7_MOCS_L3;
83 if (brw->is_haswell) {
84 brw->blorp.exec = gen75_blorp_exec;
85 } else {
86 brw->blorp.exec = gen7_blorp_exec;
87 }
88 break;
89 case 8:
90 brw->blorp.mocs.tex = BDW_MOCS_WB;
91 brw->blorp.mocs.rb = BDW_MOCS_PTE;
92 brw->blorp.mocs.vb = BDW_MOCS_WB;
93 brw->blorp.exec = gen8_blorp_exec;
94 break;
95 case 9:
96 brw->blorp.mocs.tex = SKL_MOCS_WB;
97 brw->blorp.mocs.rb = SKL_MOCS_PTE;
98 brw->blorp.mocs.vb = SKL_MOCS_WB;
99 brw->blorp.exec = gen9_blorp_exec;
100 break;
101 default:
102 unreachable("Invalid gen");
103 }
104
105 brw->blorp.lookup_shader = brw_blorp_lookup_shader;
106 brw->blorp.upload_shader = brw_blorp_upload_shader;
107 }
108
109 static void
110 apply_gen6_stencil_hiz_offset(struct isl_surf *surf,
111 struct intel_mipmap_tree *mt,
112 uint32_t lod,
113 uint32_t *offset)
114 {
115 assert(mt->array_layout == ALL_SLICES_AT_EACH_LOD);
116
117 if (mt->format == MESA_FORMAT_S_UINT8) {
118 /* Note: we can't compute the stencil offset using
119 * intel_miptree_get_aligned_offset(), because the miptree
120 * claims that the region is untiled even though it's W tiled.
121 */
122 *offset = mt->level[lod].level_y * mt->pitch +
123 mt->level[lod].level_x * 64;
124 } else {
125 *offset = intel_miptree_get_aligned_offset(mt,
126 mt->level[lod].level_x,
127 mt->level[lod].level_y);
128 }
129
130 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, lod);
131 surf->logical_level0_px.height = minify(surf->logical_level0_px.height, lod);
132 surf->phys_level0_sa.width = minify(surf->phys_level0_sa.width, lod);
133 surf->phys_level0_sa.height = minify(surf->phys_level0_sa.height, lod);
134 surf->levels = 1;
135 surf->array_pitch_el_rows =
136 ALIGN(surf->phys_level0_sa.height, surf->image_alignment_el.height);
137 }
138
139 static void
140 blorp_surf_for_miptree(struct brw_context *brw,
141 struct blorp_surf *surf,
142 struct intel_mipmap_tree *mt,
143 bool is_render_target,
144 unsigned *level,
145 struct isl_surf tmp_surfs[2])
146 {
147 intel_miptree_get_isl_surf(brw, mt, &tmp_surfs[0]);
148 surf->surf = &tmp_surfs[0];
149 surf->addr = (struct blorp_address) {
150 .buffer = mt->bo,
151 .offset = mt->offset,
152 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
153 I915_GEM_DOMAIN_SAMPLER,
154 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
155 };
156
157 if (brw->gen == 6 && mt->format == MESA_FORMAT_S_UINT8 &&
158 mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
159 /* Sandy bridge stencil and HiZ use this ALL_SLICES_AT_EACH_LOD hack in
160 * order to allow for layered rendering. The hack makes each LOD of the
161 * stencil or HiZ buffer a single tightly packed array surface at some
162 * offset into the surface. Since ISL doesn't know how to deal with the
163 * crazy ALL_SLICES_AT_EACH_LOD layout and since we have to do a manual
164 * offset of it anyway, we might as well do the offset here and keep the
165 * hacks inside the i965 driver.
166 *
167 * See also gen6_depth_stencil_state.c
168 */
169 uint32_t offset;
170 apply_gen6_stencil_hiz_offset(&tmp_surfs[0], mt, *level, &offset);
171 surf->addr.offset += offset;
172 *level = 0;
173 }
174
175 struct isl_surf *aux_surf = &tmp_surfs[1];
176 intel_miptree_get_aux_isl_surf(brw, mt, aux_surf, &surf->aux_usage);
177
178 /* For textures that are in the RESOLVED state, we ignore the MCS */
179 if (mt->mcs_buf && !is_render_target &&
180 mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_RESOLVED)
181 surf->aux_usage = ISL_AUX_USAGE_NONE;
182
183 if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
184 /* We only really need a clear color if we also have an auxiliary
185 * surface. Without one, it does nothing.
186 */
187 surf->clear_color = intel_miptree_get_isl_clear_color(brw, mt);
188
189 surf->aux_surf = aux_surf;
190 surf->aux_addr = (struct blorp_address) {
191 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
192 I915_GEM_DOMAIN_SAMPLER,
193 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
194 };
195
196 if (mt->mcs_buf) {
197 surf->aux_addr.buffer = mt->mcs_buf->bo;
198 surf->aux_addr.offset = mt->mcs_buf->offset;
199 } else {
200 assert(surf->aux_usage == ISL_AUX_USAGE_HIZ);
201 struct intel_mipmap_tree *hiz_mt = mt->hiz_buf->mt;
202 if (hiz_mt) {
203 surf->aux_addr.buffer = hiz_mt->bo;
204 if (brw->gen == 6 &&
205 hiz_mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
206 /* gen6 requires the HiZ buffer to be manually offset to the
207 * right location. We could fixup the surf but it doesn't
208 * matter since most of those fields don't matter.
209 */
210 apply_gen6_stencil_hiz_offset(aux_surf, hiz_mt, *level,
211 &surf->aux_addr.offset);
212 } else {
213 surf->aux_addr.offset = 0;
214 }
215 assert(hiz_mt->pitch == aux_surf->row_pitch);
216 } else {
217 surf->aux_addr.buffer = mt->hiz_buf->aux_base.bo;
218 surf->aux_addr.offset = mt->hiz_buf->aux_base.offset;
219 }
220 }
221 } else {
222 surf->aux_addr = (struct blorp_address) {
223 .buffer = NULL,
224 };
225 memset(&surf->clear_color, 0, sizeof(surf->clear_color));
226 }
227 assert((surf->aux_usage == ISL_AUX_USAGE_NONE) ==
228 (surf->aux_addr.buffer == NULL));
229 }
230
231 static enum isl_format
232 brw_blorp_to_isl_format(struct brw_context *brw, mesa_format format,
233 bool is_render_target)
234 {
235 switch (format) {
236 case MESA_FORMAT_NONE:
237 return ISL_FORMAT_UNSUPPORTED;
238 case MESA_FORMAT_S_UINT8:
239 return ISL_FORMAT_R8_UINT;
240 case MESA_FORMAT_Z24_UNORM_X8_UINT:
241 return ISL_FORMAT_R24_UNORM_X8_TYPELESS;
242 case MESA_FORMAT_Z_FLOAT32:
243 return ISL_FORMAT_R32_FLOAT;
244 case MESA_FORMAT_Z_UNORM16:
245 return ISL_FORMAT_R16_UNORM;
246 default: {
247 if (is_render_target) {
248 assert(brw->format_supported_as_render_target[format]);
249 return brw->render_target_format[format];
250 } else {
251 return brw_format_for_mesa_format(format);
252 }
253 break;
254 }
255 }
256 }
257
258 /**
259 * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
260 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
261 *
262 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
263 * 0 1 2 3 4 5
264 * 4 5 6 7 0 1
265 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
266 *
267 * which is simply adding 4 then modding by 8 (or anding with 7).
268 *
269 * We then may need to apply workarounds for textureGather hardware bugs.
270 */
271 static enum isl_channel_select
272 swizzle_to_scs(GLenum swizzle)
273 {
274 return (enum isl_channel_select)((swizzle + 4) & 7);
275 }
276
277 static unsigned
278 physical_to_logical_layer(struct intel_mipmap_tree *mt,
279 unsigned physical_layer)
280 {
281 if (mt->num_samples > 1 &&
282 (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
283 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS)) {
284 assert(physical_layer % mt->num_samples == 0);
285 return physical_layer / mt->num_samples;
286 } else {
287 return physical_layer;
288 }
289 }
290
291 static void
292 miptree_check_level_logical_layer(struct intel_mipmap_tree *mt,
293 unsigned level,
294 unsigned logical_layer)
295 {
296 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
297 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
298 const unsigned num_samples = MAX2(1, mt->num_samples);
299 for (unsigned s = 0; s < num_samples; s++) {
300 const unsigned physical_layer = (logical_layer * num_samples) + s;
301 intel_miptree_check_level_layer(mt, level, physical_layer);
302 }
303 } else {
304 intel_miptree_check_level_layer(mt, level, logical_layer);
305 }
306 }
307
308 /**
309 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
310 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
311 * the physical layer holding sample 0. So, for example, if
312 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
313 * 4*n.
314 */
315 void
316 brw_blorp_blit_miptrees(struct brw_context *brw,
317 struct intel_mipmap_tree *src_mt,
318 unsigned src_level, unsigned src_layer,
319 mesa_format src_format, int src_swizzle,
320 struct intel_mipmap_tree *dst_mt,
321 unsigned dst_level, unsigned dst_layer,
322 mesa_format dst_format,
323 float src_x0, float src_y0,
324 float src_x1, float src_y1,
325 float dst_x0, float dst_y0,
326 float dst_x1, float dst_y1,
327 GLenum filter, bool mirror_x, bool mirror_y,
328 bool decode_srgb, bool encode_srgb)
329 {
330 /* Get ready to blit. This includes depth resolving the src and dst
331 * buffers if necessary. Note: it's not necessary to do a color resolve on
332 * the destination buffer because we use the standard render path to render
333 * to destination color buffers, and the standard render path is
334 * fast-color-aware.
335 */
336 intel_miptree_resolve_color(brw, src_mt, INTEL_MIPTREE_IGNORE_CCS_E);
337 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
338 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
339
340 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
341 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
342 __func__,
343 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
344 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
345 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
346 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
347 mirror_x, mirror_y);
348
349 if (!decode_srgb && _mesa_get_format_color_encoding(src_format) == GL_SRGB)
350 src_format = _mesa_get_srgb_format_linear(src_format);
351
352 if (!encode_srgb && _mesa_get_format_color_encoding(dst_format) == GL_SRGB)
353 dst_format = _mesa_get_srgb_format_linear(dst_format);
354
355 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
356 * texture, the above code configures the source format for L32_FLOAT or
357 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
358 * the SAMPLE message appears to handle multisampled L32_FLOAT and
359 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
360 * around the problem by using a source format of R32_FLOAT. This
361 * shouldn't affect rendering correctness, since the destination format is
362 * R32_FLOAT, so only the contents of the red channel matters.
363 */
364 if (brw->gen == 6 &&
365 src_mt->num_samples > 1 && dst_mt->num_samples <= 1 &&
366 src_mt->format == dst_mt->format &&
367 (dst_format == MESA_FORMAT_L_FLOAT32 ||
368 dst_format == MESA_FORMAT_I_FLOAT32)) {
369 src_format = dst_format = MESA_FORMAT_R_FLOAT32;
370 }
371
372 intel_miptree_check_level_layer(src_mt, src_level, src_layer);
373 intel_miptree_check_level_layer(dst_mt, dst_level, dst_layer);
374 intel_miptree_used_for_rendering(dst_mt);
375
376 struct isl_surf tmp_surfs[4];
377 struct blorp_surf src_surf, dst_surf;
378 blorp_surf_for_miptree(brw, &src_surf, src_mt, false,
379 &src_level, &tmp_surfs[0]);
380 blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true,
381 &dst_level, &tmp_surfs[2]);
382
383 struct isl_swizzle src_isl_swizzle = {
384 .r = swizzle_to_scs(GET_SWZ(src_swizzle, 0)),
385 .g = swizzle_to_scs(GET_SWZ(src_swizzle, 1)),
386 .b = swizzle_to_scs(GET_SWZ(src_swizzle, 2)),
387 .a = swizzle_to_scs(GET_SWZ(src_swizzle, 3)),
388 };
389
390 struct blorp_batch batch;
391 blorp_batch_init(&brw->blorp, &batch, brw, 0);
392 blorp_blit(&batch, &src_surf, src_level,
393 physical_to_logical_layer(src_mt, src_layer),
394 brw_blorp_to_isl_format(brw, src_format, false), src_isl_swizzle,
395 &dst_surf, dst_level,
396 physical_to_logical_layer(dst_mt, dst_layer),
397 brw_blorp_to_isl_format(brw, dst_format, true),
398 ISL_SWIZZLE_IDENTITY,
399 src_x0, src_y0, src_x1, src_y1,
400 dst_x0, dst_y0, dst_x1, dst_y1,
401 filter, mirror_x, mirror_y);
402 blorp_batch_finish(&batch);
403
404 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
405
406 if (intel_miptree_is_lossless_compressed(brw, dst_mt))
407 dst_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED;
408 }
409
410 void
411 brw_blorp_copy_miptrees(struct brw_context *brw,
412 struct intel_mipmap_tree *src_mt,
413 unsigned src_level, unsigned src_layer,
414 struct intel_mipmap_tree *dst_mt,
415 unsigned dst_level, unsigned dst_layer,
416 unsigned src_x, unsigned src_y,
417 unsigned dst_x, unsigned dst_y,
418 unsigned src_width, unsigned src_height)
419 {
420 /* Get ready to blit. This includes depth resolving the src and dst
421 * buffers if necessary. Note: it's not necessary to do a color resolve on
422 * the destination buffer because we use the standard render path to render
423 * to destination color buffers, and the standard render path is
424 * fast-color-aware.
425 */
426 intel_miptree_resolve_color(brw, src_mt, INTEL_MIPTREE_IGNORE_CCS_E);
427 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
428 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
429
430 DBG("%s from %dx %s mt %p %d %d (%d,%d) %dx%d"
431 "to %dx %s mt %p %d %d (%d,%d)\n",
432 __func__,
433 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
434 src_level, src_layer, src_x, src_y, src_width, src_height,
435 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
436 dst_level, dst_layer, dst_x, dst_y);
437
438 miptree_check_level_logical_layer(src_mt, src_level, src_layer);
439 miptree_check_level_logical_layer(dst_mt, dst_level, dst_layer);
440 intel_miptree_used_for_rendering(dst_mt);
441
442 struct isl_surf tmp_surfs[4];
443 struct blorp_surf src_surf, dst_surf;
444 blorp_surf_for_miptree(brw, &src_surf, src_mt, false,
445 &src_level, &tmp_surfs[0]);
446 blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true,
447 &dst_level, &tmp_surfs[2]);
448
449 struct blorp_batch batch;
450 blorp_batch_init(&brw->blorp, &batch, brw, 0);
451 blorp_copy(&batch, &src_surf, src_level, src_layer,
452 &dst_surf, dst_level, dst_layer,
453 src_x, src_y, dst_x, dst_y, src_width, src_height);
454 blorp_batch_finish(&batch);
455
456 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
457
458 if (intel_miptree_is_lossless_compressed(brw, dst_mt))
459 dst_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED;
460 }
461
462 static struct intel_mipmap_tree *
463 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
464 {
465 struct intel_mipmap_tree *mt = irb->mt;
466 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
467 mt = mt->stencil_mt;
468 return mt;
469 }
470
471 static int
472 blorp_get_texture_swizzle(const struct intel_renderbuffer *irb)
473 {
474 return irb->Base.Base._BaseFormat == GL_RGB ?
475 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ONE) :
476 SWIZZLE_XYZW;
477 }
478
479 static void
480 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
481 struct intel_renderbuffer *src_irb, mesa_format src_format,
482 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
483 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
484 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
485 GLenum filter, bool mirror_x, bool mirror_y)
486 {
487 const struct gl_context *ctx = &brw->ctx;
488
489 /* Find source/dst miptrees */
490 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
491 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
492
493 const bool do_srgb = ctx->Color.sRGBEnabled;
494
495 /* Do the blit */
496 brw_blorp_blit_miptrees(brw,
497 src_mt, src_irb->mt_level, src_irb->mt_layer,
498 src_format, blorp_get_texture_swizzle(src_irb),
499 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
500 dst_format,
501 srcX0, srcY0, srcX1, srcY1,
502 dstX0, dstY0, dstX1, dstY1,
503 filter, mirror_x, mirror_y,
504 do_srgb, do_srgb);
505
506 dst_irb->need_downsample = true;
507 }
508
509 static bool
510 try_blorp_blit(struct brw_context *brw,
511 const struct gl_framebuffer *read_fb,
512 const struct gl_framebuffer *draw_fb,
513 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
514 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
515 GLenum filter, GLbitfield buffer_bit)
516 {
517 struct gl_context *ctx = &brw->ctx;
518
519 /* Sync up the state of window system buffers. We need to do this before
520 * we go looking for the buffers.
521 */
522 intel_prepare_render(brw);
523
524 bool mirror_x, mirror_y;
525 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
526 &srcX0, &srcY0, &srcX1, &srcY1,
527 &dstX0, &dstY0, &dstX1, &dstY1,
528 &mirror_x, &mirror_y))
529 return true;
530
531 /* Find buffers */
532 struct intel_renderbuffer *src_irb;
533 struct intel_renderbuffer *dst_irb;
534 struct intel_mipmap_tree *src_mt;
535 struct intel_mipmap_tree *dst_mt;
536 switch (buffer_bit) {
537 case GL_COLOR_BUFFER_BIT:
538 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
539 for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
540 dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
541 if (dst_irb)
542 do_blorp_blit(brw, buffer_bit,
543 src_irb, src_irb->Base.Base.Format,
544 dst_irb, dst_irb->Base.Base.Format,
545 srcX0, srcY0, srcX1, srcY1,
546 dstX0, dstY0, dstX1, dstY1,
547 filter, mirror_x, mirror_y);
548 }
549 break;
550 case GL_DEPTH_BUFFER_BIT:
551 src_irb =
552 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
553 dst_irb =
554 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
555 src_mt = find_miptree(buffer_bit, src_irb);
556 dst_mt = find_miptree(buffer_bit, dst_irb);
557
558 /* We can't handle format conversions between Z24 and other formats
559 * since we have to lie about the surface format. See the comments in
560 * brw_blorp_surface_info::set().
561 */
562 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
563 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
564 return false;
565
566 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
567 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
568 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
569 filter, mirror_x, mirror_y);
570 break;
571 case GL_STENCIL_BUFFER_BIT:
572 src_irb =
573 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
574 dst_irb =
575 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
576 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
577 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
578 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
579 filter, mirror_x, mirror_y);
580 break;
581 default:
582 unreachable("not reached");
583 }
584
585 return true;
586 }
587
588 bool
589 brw_blorp_copytexsubimage(struct brw_context *brw,
590 struct gl_renderbuffer *src_rb,
591 struct gl_texture_image *dst_image,
592 int slice,
593 int srcX0, int srcY0,
594 int dstX0, int dstY0,
595 int width, int height)
596 {
597 struct gl_context *ctx = &brw->ctx;
598 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
599 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
600
601 /* No pixel transfer operations (zoom, bias, mapping), just a blit */
602 if (brw->ctx._ImageTransferState)
603 return false;
604
605 /* Sync up the state of window system buffers. We need to do this before
606 * we go looking at the src renderbuffer's miptree.
607 */
608 intel_prepare_render(brw);
609
610 struct intel_mipmap_tree *src_mt = src_irb->mt;
611 struct intel_mipmap_tree *dst_mt = intel_image->mt;
612
613 /* There is support for only up to eight samples. */
614 if (src_mt->num_samples > 8 || dst_mt->num_samples > 8)
615 return false;
616
617 /* BLORP is only supported from Gen6 onwards. */
618 if (brw->gen < 6)
619 return false;
620
621 if (_mesa_get_format_base_format(src_rb->Format) !=
622 _mesa_get_format_base_format(dst_image->TexFormat)) {
623 return false;
624 }
625
626 /* We can't handle format conversions between Z24 and other formats since
627 * we have to lie about the surface format. See the comments in
628 * brw_blorp_surface_info::set().
629 */
630 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
631 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
632 return false;
633 }
634
635 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
636 return false;
637
638 /* Source clipping shouldn't be necessary, since copytexsubimage (in
639 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
640 * takes care of it.
641 *
642 * Destination clipping shouldn't be necessary since the restrictions on
643 * glCopyTexSubImage prevent the user from specifying a destination rectangle
644 * that falls outside the bounds of the destination texture.
645 * See error_check_subtexture_dimensions().
646 */
647
648 int srcY1 = srcY0 + height;
649 int srcX1 = srcX0 + width;
650 int dstX1 = dstX0 + width;
651 int dstY1 = dstY0 + height;
652
653 /* Account for the fact that in the system framebuffer, the origin is at
654 * the lower left.
655 */
656 bool mirror_y = false;
657 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
658 GLint tmp = src_rb->Height - srcY0;
659 srcY0 = src_rb->Height - srcY1;
660 srcY1 = tmp;
661 mirror_y = true;
662 }
663
664 /* Account for face selection and texture view MinLayer */
665 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
666 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
667
668 brw_blorp_blit_miptrees(brw,
669 src_mt, src_irb->mt_level, src_irb->mt_layer,
670 src_rb->Format, blorp_get_texture_swizzle(src_irb),
671 dst_mt, dst_level, dst_slice,
672 dst_image->TexFormat,
673 srcX0, srcY0, srcX1, srcY1,
674 dstX0, dstY0, dstX1, dstY1,
675 GL_NEAREST, false, mirror_y,
676 false, false);
677
678 /* If we're copying to a packed depth stencil texture and the source
679 * framebuffer has separate stencil, we need to also copy the stencil data
680 * over.
681 */
682 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
683 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
684 src_rb != NULL) {
685 src_irb = intel_renderbuffer(src_rb);
686 src_mt = src_irb->mt;
687
688 if (src_mt->stencil_mt)
689 src_mt = src_mt->stencil_mt;
690 if (dst_mt->stencil_mt)
691 dst_mt = dst_mt->stencil_mt;
692
693 if (src_mt != dst_mt) {
694 brw_blorp_blit_miptrees(brw,
695 src_mt, src_irb->mt_level, src_irb->mt_layer,
696 src_mt->format,
697 blorp_get_texture_swizzle(src_irb),
698 dst_mt, dst_level, dst_slice,
699 dst_mt->format,
700 srcX0, srcY0, srcX1, srcY1,
701 dstX0, dstY0, dstX1, dstY1,
702 GL_NEAREST, false, mirror_y,
703 false, false);
704 }
705 }
706
707 return true;
708 }
709
710
711 GLbitfield
712 brw_blorp_framebuffer(struct brw_context *brw,
713 struct gl_framebuffer *readFb,
714 struct gl_framebuffer *drawFb,
715 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
716 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
717 GLbitfield mask, GLenum filter)
718 {
719 /* BLORP is not supported before Gen6. */
720 if (brw->gen < 6)
721 return mask;
722
723 static GLbitfield buffer_bits[] = {
724 GL_COLOR_BUFFER_BIT,
725 GL_DEPTH_BUFFER_BIT,
726 GL_STENCIL_BUFFER_BIT,
727 };
728
729 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
730 if ((mask & buffer_bits[i]) &&
731 try_blorp_blit(brw, readFb, drawFb,
732 srcX0, srcY0, srcX1, srcY1,
733 dstX0, dstY0, dstX1, dstY1,
734 filter, buffer_bits[i])) {
735 mask &= ~buffer_bits[i];
736 }
737 }
738
739 return mask;
740 }
741
742 static bool
743 set_write_disables(const struct intel_renderbuffer *irb,
744 const GLubyte *color_mask, bool *color_write_disable)
745 {
746 /* Format information in the renderbuffer represents the requirements
747 * given by the client. There are cases where the backing miptree uses,
748 * for example, RGBA to represent RGBX. Since the client is only expecting
749 * RGB we can treat alpha as not used and write whatever we like into it.
750 */
751 const GLenum base_format = irb->Base.Base._BaseFormat;
752 const int components = _mesa_base_format_component_count(base_format);
753 bool disables = false;
754
755 assert(components > 0);
756
757 for (int i = 0; i < components; i++) {
758 color_write_disable[i] = !color_mask[i];
759 disables = disables || !color_mask[i];
760 }
761
762 return disables;
763 }
764
765 static unsigned
766 irb_logical_mt_layer(struct intel_renderbuffer *irb)
767 {
768 return physical_to_logical_layer(irb->mt, irb->mt_layer);
769 }
770
771 static bool
772 do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb,
773 struct gl_renderbuffer *rb, unsigned buf,
774 bool partial_clear, bool encode_srgb)
775 {
776 struct gl_context *ctx = &brw->ctx;
777 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
778 mesa_format format = irb->mt->format;
779 uint32_t x0, x1, y0, y1;
780
781 if (!encode_srgb && _mesa_get_format_color_encoding(format) == GL_SRGB)
782 format = _mesa_get_srgb_format_linear(format);
783
784 x0 = fb->_Xmin;
785 x1 = fb->_Xmax;
786 if (rb->Name != 0) {
787 y0 = fb->_Ymin;
788 y1 = fb->_Ymax;
789 } else {
790 y0 = rb->Height - fb->_Ymax;
791 y1 = rb->Height - fb->_Ymin;
792 }
793
794 /* If the clear region is empty, just return. */
795 if (x0 == x1 || y0 == y1)
796 return true;
797
798 bool can_fast_clear = !partial_clear;
799
800 bool color_write_disable[4] = { false, false, false, false };
801 if (set_write_disables(irb, ctx->Color.ColorMask[buf], color_write_disable))
802 can_fast_clear = false;
803
804 if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_NO_MCS ||
805 !brw_is_color_fast_clear_compatible(brw, irb->mt, &ctx->Color.ClearColor))
806 can_fast_clear = false;
807
808 const bool is_lossless_compressed = intel_miptree_is_lossless_compressed(
809 brw, irb->mt);
810
811 if (can_fast_clear) {
812 /* Record the clear color in the miptree so that it will be
813 * programmed in SURFACE_STATE by later rendering and resolve
814 * operations.
815 */
816 const bool color_updated = brw_meta_set_fast_clear_color(
817 brw, irb->mt, &ctx->Color.ClearColor);
818
819 /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear
820 * is redundant and can be skipped.
821 */
822 if (!color_updated &&
823 irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
824 return true;
825
826 /* If the MCS buffer hasn't been allocated yet, we need to allocate
827 * it now.
828 */
829 if (!irb->mt->mcs_buf) {
830 assert(!is_lossless_compressed);
831 if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt, false)) {
832 /* MCS allocation failed--probably this will only happen in
833 * out-of-memory conditions. But in any case, try to recover
834 * by falling back to a non-blorp clear technique.
835 */
836 return false;
837 }
838 }
839 }
840
841 intel_miptree_used_for_rendering(irb->mt);
842
843 /* We can't setup the blorp_surf until we've allocated the MCS above */
844 struct isl_surf isl_tmp[2];
845 struct blorp_surf surf;
846 unsigned level = irb->mt_level;
847 blorp_surf_for_miptree(brw, &surf, irb->mt, true, &level, isl_tmp);
848 const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1;
849
850 if (can_fast_clear) {
851 DBG("%s (fast) to mt %p level %d layers %d+%d\n", __FUNCTION__,
852 irb->mt, irb->mt_level, irb->mt_layer, num_layers);
853
854 struct blorp_batch batch;
855 blorp_batch_init(&brw->blorp, &batch, brw, 0);
856 blorp_fast_clear(&batch, &surf,
857 (enum isl_format)brw->render_target_format[format],
858 level, irb_logical_mt_layer(irb), num_layers,
859 x0, y0, x1, y1);
860 blorp_batch_finish(&batch);
861
862 /* Now that the fast clear has occurred, put the buffer in
863 * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing
864 * redundant clears.
865 */
866 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
867 } else {
868 DBG("%s (slow) to mt %p level %d layer %d+%d\n", __FUNCTION__,
869 irb->mt, irb->mt_level, irb->mt_layer, num_layers);
870
871 union isl_color_value clear_color;
872 memcpy(clear_color.f32, ctx->Color.ClearColor.f, sizeof(float) * 4);
873
874 struct blorp_batch batch;
875 blorp_batch_init(&brw->blorp, &batch, brw, 0);
876 blorp_clear(&batch, &surf,
877 (enum isl_format)brw->render_target_format[format],
878 ISL_SWIZZLE_IDENTITY,
879 level, irb_logical_mt_layer(irb), num_layers,
880 x0, y0, x1, y1,
881 clear_color, color_write_disable);
882 blorp_batch_finish(&batch);
883
884 if (is_lossless_compressed) {
885 /* Compressed buffers can be cleared also using normal rep-clear. In
886 * such case they behave such as if they were drawn using normal 3D
887 * render pipeline, and we simply mark the mcs as dirty.
888 */
889 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED;
890 }
891 }
892
893 return true;
894 }
895
896 bool
897 brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb,
898 GLbitfield mask, bool partial_clear, bool encode_srgb)
899 {
900 for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
901 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
902 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
903
904 /* Only clear the buffers present in the provided mask */
905 if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0)
906 continue;
907
908 /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
909 * the framebuffer can be complete with some attachments missing. In
910 * this case the _ColorDrawBuffers pointer will be NULL.
911 */
912 if (rb == NULL)
913 continue;
914
915 const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1;
916 for (unsigned layer = 0; layer < num_layers; layer++) {
917 intel_miptree_check_level_layer(irb->mt, irb->mt_level, layer);
918 }
919
920 if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear,
921 encode_srgb)) {
922 return false;
923 }
924
925 irb->need_downsample = true;
926 }
927
928 return true;
929 }
930
931 void
932 brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt)
933 {
934 DBG("%s to mt %p\n", __FUNCTION__, mt);
935
936 const mesa_format format = _mesa_get_srgb_format_linear(mt->format);
937
938 intel_miptree_check_level_layer(mt, 0 /* level */, 0 /* layer */);
939 intel_miptree_used_for_rendering(mt);
940
941 struct isl_surf isl_tmp[2];
942 struct blorp_surf surf;
943 unsigned level = 0;
944 blorp_surf_for_miptree(brw, &surf, mt, true, &level, isl_tmp);
945
946 struct blorp_batch batch;
947 blorp_batch_init(&brw->blorp, &batch, brw, 0);
948 blorp_ccs_resolve(&batch, &surf, 0 /* level */, 0 /* layer */,
949 brw_blorp_to_isl_format(brw, format, true));
950 blorp_batch_finish(&batch);
951
952 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
953 }
954
955 static void
956 gen6_blorp_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
957 unsigned int level, unsigned int layer, enum blorp_hiz_op op)
958 {
959 intel_miptree_check_level_layer(mt, level, layer);
960 intel_miptree_used_for_rendering(mt);
961
962 assert(intel_miptree_level_has_hiz(mt, level));
963
964 struct isl_surf isl_tmp[2];
965 struct blorp_surf surf;
966 blorp_surf_for_miptree(brw, &surf, mt, true, &level, isl_tmp);
967
968 struct blorp_batch batch;
969 blorp_batch_init(&brw->blorp, &batch, brw, 0);
970 blorp_gen6_hiz_op(&batch, &surf, level, layer, op);
971 blorp_batch_finish(&batch);
972 }
973
974 /**
975 * Perform a HiZ or depth resolve operation.
976 *
977 * For an overview of HiZ ops, see the following sections of the Sandy Bridge
978 * PRM, Volume 1, Part 2:
979 * - 7.5.3.1 Depth Buffer Clear
980 * - 7.5.3.2 Depth Buffer Resolve
981 * - 7.5.3.3 Hierarchical Depth Buffer Resolve
982 */
983 void
984 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
985 unsigned int level, unsigned int layer, enum blorp_hiz_op op)
986 {
987 const char *opname = NULL;
988
989 switch (op) {
990 case BLORP_HIZ_OP_DEPTH_RESOLVE:
991 opname = "depth resolve";
992 break;
993 case BLORP_HIZ_OP_HIZ_RESOLVE:
994 opname = "hiz ambiguate";
995 break;
996 case BLORP_HIZ_OP_DEPTH_CLEAR:
997 opname = "depth clear";
998 break;
999 case BLORP_HIZ_OP_NONE:
1000 opname = "noop?";
1001 break;
1002 }
1003
1004 DBG("%s %s to mt %p level %d layer %d\n",
1005 __func__, opname, mt, level, layer);
1006
1007 if (brw->gen >= 8) {
1008 gen8_hiz_exec(brw, mt, level, layer, op);
1009 } else {
1010 gen6_blorp_hiz_exec(brw, mt, level, layer, op);
1011 }
1012 }