i965/blorp: Take an explicit fast clear op in resolve_color
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/context.h"
25 #include "main/teximage.h"
26 #include "main/blend.h"
27 #include "main/fbobject.h"
28 #include "main/renderbuffer.h"
29 #include "main/glformats.h"
30
31 #include "brw_blorp.h"
32 #include "brw_context.h"
33 #include "brw_defines.h"
34 #include "brw_meta_util.h"
35 #include "brw_state.h"
36 #include "intel_fbo.h"
37 #include "common/gen_debug.h"
38
39 #define FILE_DEBUG_FLAG DEBUG_BLORP
40
41 static bool
42 brw_blorp_lookup_shader(struct blorp_context *blorp,
43 const void *key, uint32_t key_size,
44 uint32_t *kernel_out, void *prog_data_out)
45 {
46 struct brw_context *brw = blorp->driver_ctx;
47 return brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
48 key, key_size, kernel_out, prog_data_out);
49 }
50
51 static bool
52 brw_blorp_upload_shader(struct blorp_context *blorp,
53 const void *key, uint32_t key_size,
54 const void *kernel, uint32_t kernel_size,
55 const struct brw_stage_prog_data *prog_data,
56 uint32_t prog_data_size,
57 uint32_t *kernel_out, void *prog_data_out)
58 {
59 struct brw_context *brw = blorp->driver_ctx;
60 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG, key, key_size,
61 kernel, kernel_size, prog_data, prog_data_size,
62 kernel_out, prog_data_out);
63 return true;
64 }
65
66 void
67 brw_blorp_init(struct brw_context *brw)
68 {
69 blorp_init(&brw->blorp, brw, &brw->isl_dev);
70
71 brw->blorp.compiler = brw->screen->compiler;
72
73 switch (brw->gen) {
74 case 4:
75 if (brw->is_g4x) {
76 brw->blorp.exec = gen45_blorp_exec;
77 } else {
78 brw->blorp.exec = gen4_blorp_exec;
79 }
80 break;
81 case 5:
82 brw->blorp.exec = gen5_blorp_exec;
83 break;
84 case 6:
85 brw->blorp.mocs.tex = 0;
86 brw->blorp.mocs.rb = 0;
87 brw->blorp.mocs.vb = 0;
88 brw->blorp.exec = gen6_blorp_exec;
89 break;
90 case 7:
91 brw->blorp.mocs.tex = GEN7_MOCS_L3;
92 brw->blorp.mocs.rb = GEN7_MOCS_L3;
93 brw->blorp.mocs.vb = GEN7_MOCS_L3;
94 if (brw->is_haswell) {
95 brw->blorp.exec = gen75_blorp_exec;
96 } else {
97 brw->blorp.exec = gen7_blorp_exec;
98 }
99 break;
100 case 8:
101 brw->blorp.mocs.tex = BDW_MOCS_WB;
102 brw->blorp.mocs.rb = BDW_MOCS_PTE;
103 brw->blorp.mocs.vb = BDW_MOCS_WB;
104 brw->blorp.exec = gen8_blorp_exec;
105 break;
106 case 9:
107 brw->blorp.mocs.tex = SKL_MOCS_WB;
108 brw->blorp.mocs.rb = SKL_MOCS_PTE;
109 brw->blorp.mocs.vb = SKL_MOCS_WB;
110 brw->blorp.exec = gen9_blorp_exec;
111 break;
112 default:
113 unreachable("Invalid gen");
114 }
115
116 brw->blorp.lookup_shader = brw_blorp_lookup_shader;
117 brw->blorp.upload_shader = brw_blorp_upload_shader;
118 }
119
120 static void
121 blorp_surf_for_miptree(struct brw_context *brw,
122 struct blorp_surf *surf,
123 struct intel_mipmap_tree *mt,
124 bool is_render_target,
125 uint32_t safe_aux_usage,
126 unsigned *level,
127 unsigned start_layer, unsigned num_layers,
128 struct isl_surf tmp_surfs[2])
129 {
130 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
131 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
132 const unsigned num_samples = MAX2(1, mt->num_samples);
133 for (unsigned i = 0; i < num_layers; i++) {
134 for (unsigned s = 0; s < num_samples; s++) {
135 const unsigned phys_layer = (start_layer + i) * num_samples + s;
136 intel_miptree_check_level_layer(mt, *level, phys_layer);
137 }
138 }
139 } else {
140 for (unsigned i = 0; i < num_layers; i++)
141 intel_miptree_check_level_layer(mt, *level, start_layer + i);
142 }
143
144 intel_miptree_get_isl_surf(brw, mt, &tmp_surfs[0]);
145 surf->surf = &tmp_surfs[0];
146 surf->addr = (struct blorp_address) {
147 .buffer = mt->bo,
148 .offset = mt->offset,
149 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
150 I915_GEM_DOMAIN_SAMPLER,
151 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
152 };
153
154 struct isl_surf *aux_surf = &tmp_surfs[1];
155 intel_miptree_get_aux_isl_surf(brw, mt, aux_surf, &surf->aux_usage);
156
157 if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
158 if (surf->aux_usage == ISL_AUX_USAGE_HIZ) {
159 /* If we're not going to use it as a depth buffer, resolve HiZ */
160 if (!(safe_aux_usage & (1 << ISL_AUX_USAGE_HIZ))) {
161 for (unsigned i = 0; i < num_layers; i++) {
162 intel_miptree_slice_resolve_depth(brw, mt, *level,
163 start_layer + i);
164
165 /* If we're rendering to it then we'll need a HiZ resolve once
166 * we're done before we can use it with HiZ again.
167 */
168 if (is_render_target)
169 intel_miptree_slice_set_needs_hiz_resolve(mt, *level,
170 start_layer + i);
171 }
172 surf->aux_usage = ISL_AUX_USAGE_NONE;
173 }
174 } else if (!(safe_aux_usage & (1 << surf->aux_usage))) {
175 uint32_t flags = 0;
176 if (safe_aux_usage & (1 << ISL_AUX_USAGE_CCS_E))
177 flags |= INTEL_MIPTREE_IGNORE_CCS_E;
178
179 intel_miptree_resolve_color(brw, mt,
180 *level, 1,
181 start_layer, num_layers, flags);
182
183 assert(!intel_miptree_has_color_unresolved(mt, *level, 1,
184 start_layer, num_layers));
185 surf->aux_usage = ISL_AUX_USAGE_NONE;
186 }
187 }
188
189 if (is_render_target)
190 intel_miptree_used_for_rendering(brw, mt, *level,
191 start_layer, num_layers);
192
193 if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
194 /* We only really need a clear color if we also have an auxiliary
195 * surface. Without one, it does nothing.
196 */
197 surf->clear_color = mt->fast_clear_color;
198
199 surf->aux_surf = aux_surf;
200 surf->aux_addr = (struct blorp_address) {
201 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
202 I915_GEM_DOMAIN_SAMPLER,
203 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
204 };
205
206 if (mt->mcs_buf) {
207 surf->aux_addr.buffer = mt->mcs_buf->bo;
208 surf->aux_addr.offset = mt->mcs_buf->offset;
209 } else {
210 assert(surf->aux_usage == ISL_AUX_USAGE_HIZ);
211
212 surf->aux_addr.buffer = mt->hiz_buf->aux_base.bo;
213 surf->aux_addr.offset = mt->hiz_buf->aux_base.offset;
214 }
215 } else {
216 surf->aux_addr = (struct blorp_address) {
217 .buffer = NULL,
218 };
219 memset(&surf->clear_color, 0, sizeof(surf->clear_color));
220 }
221 assert((surf->aux_usage == ISL_AUX_USAGE_NONE) ==
222 (surf->aux_addr.buffer == NULL));
223
224 /* ISL wants real levels, not offset ones. */
225 *level -= mt->first_level;
226 }
227
228 static enum isl_format
229 brw_blorp_to_isl_format(struct brw_context *brw, mesa_format format,
230 bool is_render_target)
231 {
232 switch (format) {
233 case MESA_FORMAT_NONE:
234 return ISL_FORMAT_UNSUPPORTED;
235 case MESA_FORMAT_S_UINT8:
236 return ISL_FORMAT_R8_UINT;
237 case MESA_FORMAT_Z24_UNORM_X8_UINT:
238 case MESA_FORMAT_Z24_UNORM_S8_UINT:
239 return ISL_FORMAT_R24_UNORM_X8_TYPELESS;
240 case MESA_FORMAT_Z_FLOAT32:
241 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
242 return ISL_FORMAT_R32_FLOAT;
243 case MESA_FORMAT_Z_UNORM16:
244 return ISL_FORMAT_R16_UNORM;
245 default: {
246 if (is_render_target) {
247 assert(brw->format_supported_as_render_target[format]);
248 return brw->render_target_format[format];
249 } else {
250 return brw_isl_format_for_mesa_format(format);
251 }
252 break;
253 }
254 }
255 }
256
257 /**
258 * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
259 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
260 *
261 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
262 * 0 1 2 3 4 5
263 * 4 5 6 7 0 1
264 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
265 *
266 * which is simply adding 4 then modding by 8 (or anding with 7).
267 *
268 * We then may need to apply workarounds for textureGather hardware bugs.
269 */
270 static enum isl_channel_select
271 swizzle_to_scs(GLenum swizzle)
272 {
273 return (enum isl_channel_select)((swizzle + 4) & 7);
274 }
275
276 static unsigned
277 physical_to_logical_layer(struct intel_mipmap_tree *mt,
278 unsigned physical_layer)
279 {
280 if (mt->num_samples > 1 &&
281 (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
282 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS)) {
283 assert(physical_layer % mt->num_samples == 0);
284 return physical_layer / mt->num_samples;
285 } else {
286 return physical_layer;
287 }
288 }
289
290 /**
291 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
292 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
293 * the physical layer holding sample 0. So, for example, if
294 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
295 * 4*n.
296 */
297 void
298 brw_blorp_blit_miptrees(struct brw_context *brw,
299 struct intel_mipmap_tree *src_mt,
300 unsigned src_level, unsigned src_layer,
301 mesa_format src_format, int src_swizzle,
302 struct intel_mipmap_tree *dst_mt,
303 unsigned dst_level, unsigned dst_layer,
304 mesa_format dst_format,
305 float src_x0, float src_y0,
306 float src_x1, float src_y1,
307 float dst_x0, float dst_y0,
308 float dst_x1, float dst_y1,
309 GLenum filter, bool mirror_x, bool mirror_y,
310 bool decode_srgb, bool encode_srgb)
311 {
312 /* Blorp operates in logical layers */
313 src_layer = physical_to_logical_layer(src_mt, src_layer);
314 dst_layer = physical_to_logical_layer(dst_mt, dst_layer);
315
316 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
317 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
318 __func__,
319 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
320 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
321 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
322 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
323 mirror_x, mirror_y);
324
325 if (!decode_srgb && _mesa_get_format_color_encoding(src_format) == GL_SRGB)
326 src_format = _mesa_get_srgb_format_linear(src_format);
327
328 if (!encode_srgb && _mesa_get_format_color_encoding(dst_format) == GL_SRGB)
329 dst_format = _mesa_get_srgb_format_linear(dst_format);
330
331 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
332 * texture, the above code configures the source format for L32_FLOAT or
333 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
334 * the SAMPLE message appears to handle multisampled L32_FLOAT and
335 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
336 * around the problem by using a source format of R32_FLOAT. This
337 * shouldn't affect rendering correctness, since the destination format is
338 * R32_FLOAT, so only the contents of the red channel matters.
339 */
340 if (brw->gen == 6 &&
341 src_mt->num_samples > 1 && dst_mt->num_samples <= 1 &&
342 src_mt->format == dst_mt->format &&
343 (dst_format == MESA_FORMAT_L_FLOAT32 ||
344 dst_format == MESA_FORMAT_I_FLOAT32)) {
345 src_format = dst_format = MESA_FORMAT_R_FLOAT32;
346 }
347
348 uint32_t src_usage_flags = (1 << ISL_AUX_USAGE_MCS);
349 if (src_format == src_mt->format)
350 src_usage_flags |= (1 << ISL_AUX_USAGE_CCS_E);
351
352 uint32_t dst_usage_flags = (1 << ISL_AUX_USAGE_MCS);
353 if (dst_format == dst_mt->format) {
354 dst_usage_flags |= (1 << ISL_AUX_USAGE_CCS_E) |
355 (1 << ISL_AUX_USAGE_CCS_D);
356 }
357
358 struct isl_surf tmp_surfs[4];
359 struct blorp_surf src_surf, dst_surf;
360 blorp_surf_for_miptree(brw, &src_surf, src_mt, false, src_usage_flags,
361 &src_level, src_layer, 1, &tmp_surfs[0]);
362 blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true, dst_usage_flags,
363 &dst_level, dst_layer, 1, &tmp_surfs[2]);
364
365 struct isl_swizzle src_isl_swizzle = {
366 .r = swizzle_to_scs(GET_SWZ(src_swizzle, 0)),
367 .g = swizzle_to_scs(GET_SWZ(src_swizzle, 1)),
368 .b = swizzle_to_scs(GET_SWZ(src_swizzle, 2)),
369 .a = swizzle_to_scs(GET_SWZ(src_swizzle, 3)),
370 };
371
372 struct blorp_batch batch;
373 blorp_batch_init(&brw->blorp, &batch, brw, 0);
374 blorp_blit(&batch, &src_surf, src_level, src_layer,
375 brw_blorp_to_isl_format(brw, src_format, false), src_isl_swizzle,
376 &dst_surf, dst_level, dst_layer,
377 brw_blorp_to_isl_format(brw, dst_format, true),
378 ISL_SWIZZLE_IDENTITY,
379 src_x0, src_y0, src_x1, src_y1,
380 dst_x0, dst_y0, dst_x1, dst_y1,
381 filter, mirror_x, mirror_y);
382 blorp_batch_finish(&batch);
383 }
384
385 void
386 brw_blorp_copy_miptrees(struct brw_context *brw,
387 struct intel_mipmap_tree *src_mt,
388 unsigned src_level, unsigned src_layer,
389 struct intel_mipmap_tree *dst_mt,
390 unsigned dst_level, unsigned dst_layer,
391 unsigned src_x, unsigned src_y,
392 unsigned dst_x, unsigned dst_y,
393 unsigned src_width, unsigned src_height)
394 {
395 DBG("%s from %dx %s mt %p %d %d (%d,%d) %dx%d"
396 "to %dx %s mt %p %d %d (%d,%d)\n",
397 __func__,
398 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
399 src_level, src_layer, src_x, src_y, src_width, src_height,
400 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
401 dst_level, dst_layer, dst_x, dst_y);
402
403 struct isl_surf tmp_surfs[4];
404 struct blorp_surf src_surf, dst_surf;
405 blorp_surf_for_miptree(brw, &src_surf, src_mt, false,
406 (1 << ISL_AUX_USAGE_MCS) |
407 (1 << ISL_AUX_USAGE_CCS_E),
408 &src_level, src_layer, 1, &tmp_surfs[0]);
409 blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true,
410 (1 << ISL_AUX_USAGE_MCS) |
411 (1 << ISL_AUX_USAGE_CCS_E),
412 &dst_level, dst_layer, 1, &tmp_surfs[2]);
413
414 struct blorp_batch batch;
415 blorp_batch_init(&brw->blorp, &batch, brw, 0);
416 blorp_copy(&batch, &src_surf, src_level, src_layer,
417 &dst_surf, dst_level, dst_layer,
418 src_x, src_y, dst_x, dst_y, src_width, src_height);
419 blorp_batch_finish(&batch);
420 }
421
422 static struct intel_mipmap_tree *
423 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
424 {
425 struct intel_mipmap_tree *mt = irb->mt;
426 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
427 mt = mt->stencil_mt;
428 return mt;
429 }
430
431 static int
432 blorp_get_texture_swizzle(const struct intel_renderbuffer *irb)
433 {
434 return irb->Base.Base._BaseFormat == GL_RGB ?
435 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ONE) :
436 SWIZZLE_XYZW;
437 }
438
439 static void
440 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
441 struct intel_renderbuffer *src_irb, mesa_format src_format,
442 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
443 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
444 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
445 GLenum filter, bool mirror_x, bool mirror_y)
446 {
447 const struct gl_context *ctx = &brw->ctx;
448
449 /* Find source/dst miptrees */
450 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
451 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
452
453 const bool do_srgb = ctx->Color.sRGBEnabled;
454
455 /* Do the blit */
456 brw_blorp_blit_miptrees(brw,
457 src_mt, src_irb->mt_level, src_irb->mt_layer,
458 src_format, blorp_get_texture_swizzle(src_irb),
459 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
460 dst_format,
461 srcX0, srcY0, srcX1, srcY1,
462 dstX0, dstY0, dstX1, dstY1,
463 filter, mirror_x, mirror_y,
464 do_srgb, do_srgb);
465
466 dst_irb->need_downsample = true;
467 }
468
469 static bool
470 try_blorp_blit(struct brw_context *brw,
471 const struct gl_framebuffer *read_fb,
472 const struct gl_framebuffer *draw_fb,
473 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
474 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
475 GLenum filter, GLbitfield buffer_bit)
476 {
477 struct gl_context *ctx = &brw->ctx;
478
479 /* Sync up the state of window system buffers. We need to do this before
480 * we go looking for the buffers.
481 */
482 intel_prepare_render(brw);
483
484 bool mirror_x, mirror_y;
485 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
486 &srcX0, &srcY0, &srcX1, &srcY1,
487 &dstX0, &dstY0, &dstX1, &dstY1,
488 &mirror_x, &mirror_y))
489 return true;
490
491 /* Find buffers */
492 struct intel_renderbuffer *src_irb;
493 struct intel_renderbuffer *dst_irb;
494 struct intel_mipmap_tree *src_mt;
495 struct intel_mipmap_tree *dst_mt;
496 switch (buffer_bit) {
497 case GL_COLOR_BUFFER_BIT:
498 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
499 for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
500 dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
501 if (dst_irb)
502 do_blorp_blit(brw, buffer_bit,
503 src_irb, src_irb->Base.Base.Format,
504 dst_irb, dst_irb->Base.Base.Format,
505 srcX0, srcY0, srcX1, srcY1,
506 dstX0, dstY0, dstX1, dstY1,
507 filter, mirror_x, mirror_y);
508 }
509 break;
510 case GL_DEPTH_BUFFER_BIT:
511 src_irb =
512 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
513 dst_irb =
514 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
515 src_mt = find_miptree(buffer_bit, src_irb);
516 dst_mt = find_miptree(buffer_bit, dst_irb);
517
518 /* We can't handle format conversions between Z24 and other formats
519 * since we have to lie about the surface format. See the comments in
520 * brw_blorp_surface_info::set().
521 */
522 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
523 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
524 return false;
525
526 /* We also can't handle any combined depth-stencil formats because we
527 * have to reinterpret as a color format.
528 */
529 if (_mesa_get_format_base_format(src_mt->format) == GL_DEPTH_STENCIL ||
530 _mesa_get_format_base_format(dst_mt->format) == GL_DEPTH_STENCIL)
531 return false;
532
533 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
534 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
535 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
536 filter, mirror_x, mirror_y);
537 break;
538 case GL_STENCIL_BUFFER_BIT:
539 /* Blorp doesn't support combined depth stencil which is all we have
540 * prior to gen6.
541 */
542 if (brw->gen < 6)
543 return false;
544
545 src_irb =
546 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
547 dst_irb =
548 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
549 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
550 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
551 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
552 filter, mirror_x, mirror_y);
553 break;
554 default:
555 unreachable("not reached");
556 }
557
558 return true;
559 }
560
561 bool
562 brw_blorp_copytexsubimage(struct brw_context *brw,
563 struct gl_renderbuffer *src_rb,
564 struct gl_texture_image *dst_image,
565 int slice,
566 int srcX0, int srcY0,
567 int dstX0, int dstY0,
568 int width, int height)
569 {
570 struct gl_context *ctx = &brw->ctx;
571 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
572 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
573
574 /* No pixel transfer operations (zoom, bias, mapping), just a blit */
575 if (brw->ctx._ImageTransferState)
576 return false;
577
578 /* Sync up the state of window system buffers. We need to do this before
579 * we go looking at the src renderbuffer's miptree.
580 */
581 intel_prepare_render(brw);
582
583 struct intel_mipmap_tree *src_mt = src_irb->mt;
584 struct intel_mipmap_tree *dst_mt = intel_image->mt;
585
586 /* There is support for only up to eight samples. */
587 if (src_mt->num_samples > 8 || dst_mt->num_samples > 8)
588 return false;
589
590 if (_mesa_get_format_base_format(src_rb->Format) !=
591 _mesa_get_format_base_format(dst_image->TexFormat)) {
592 return false;
593 }
594
595 /* We can't handle format conversions between Z24 and other formats since
596 * we have to lie about the surface format. See the comments in
597 * brw_blorp_surface_info::set().
598 */
599 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
600 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
601 return false;
602 }
603
604 /* We also can't handle any combined depth-stencil formats because we
605 * have to reinterpret as a color format.
606 */
607 if (_mesa_get_format_base_format(src_mt->format) == GL_DEPTH_STENCIL ||
608 _mesa_get_format_base_format(dst_mt->format) == GL_DEPTH_STENCIL)
609 return false;
610
611 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
612 return false;
613
614 /* Source clipping shouldn't be necessary, since copytexsubimage (in
615 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
616 * takes care of it.
617 *
618 * Destination clipping shouldn't be necessary since the restrictions on
619 * glCopyTexSubImage prevent the user from specifying a destination rectangle
620 * that falls outside the bounds of the destination texture.
621 * See error_check_subtexture_dimensions().
622 */
623
624 int srcY1 = srcY0 + height;
625 int srcX1 = srcX0 + width;
626 int dstX1 = dstX0 + width;
627 int dstY1 = dstY0 + height;
628
629 /* Account for the fact that in the system framebuffer, the origin is at
630 * the lower left.
631 */
632 bool mirror_y = false;
633 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
634 GLint tmp = src_rb->Height - srcY0;
635 srcY0 = src_rb->Height - srcY1;
636 srcY1 = tmp;
637 mirror_y = true;
638 }
639
640 /* Account for face selection and texture view MinLayer */
641 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
642 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
643
644 brw_blorp_blit_miptrees(brw,
645 src_mt, src_irb->mt_level, src_irb->mt_layer,
646 src_rb->Format, blorp_get_texture_swizzle(src_irb),
647 dst_mt, dst_level, dst_slice,
648 dst_image->TexFormat,
649 srcX0, srcY0, srcX1, srcY1,
650 dstX0, dstY0, dstX1, dstY1,
651 GL_NEAREST, false, mirror_y,
652 false, false);
653
654 /* If we're copying to a packed depth stencil texture and the source
655 * framebuffer has separate stencil, we need to also copy the stencil data
656 * over.
657 */
658 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
659 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
660 src_rb != NULL) {
661 src_irb = intel_renderbuffer(src_rb);
662 src_mt = src_irb->mt;
663
664 if (src_mt->stencil_mt)
665 src_mt = src_mt->stencil_mt;
666 if (dst_mt->stencil_mt)
667 dst_mt = dst_mt->stencil_mt;
668
669 if (src_mt != dst_mt) {
670 brw_blorp_blit_miptrees(brw,
671 src_mt, src_irb->mt_level, src_irb->mt_layer,
672 src_mt->format,
673 blorp_get_texture_swizzle(src_irb),
674 dst_mt, dst_level, dst_slice,
675 dst_mt->format,
676 srcX0, srcY0, srcX1, srcY1,
677 dstX0, dstY0, dstX1, dstY1,
678 GL_NEAREST, false, mirror_y,
679 false, false);
680 }
681 }
682
683 return true;
684 }
685
686
687 GLbitfield
688 brw_blorp_framebuffer(struct brw_context *brw,
689 struct gl_framebuffer *readFb,
690 struct gl_framebuffer *drawFb,
691 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
692 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
693 GLbitfield mask, GLenum filter)
694 {
695 static GLbitfield buffer_bits[] = {
696 GL_COLOR_BUFFER_BIT,
697 GL_DEPTH_BUFFER_BIT,
698 GL_STENCIL_BUFFER_BIT,
699 };
700
701 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
702 if ((mask & buffer_bits[i]) &&
703 try_blorp_blit(brw, readFb, drawFb,
704 srcX0, srcY0, srcX1, srcY1,
705 dstX0, dstY0, dstX1, dstY1,
706 filter, buffer_bits[i])) {
707 mask &= ~buffer_bits[i];
708 }
709 }
710
711 return mask;
712 }
713
714 static bool
715 set_write_disables(const struct intel_renderbuffer *irb,
716 const GLubyte *color_mask, bool *color_write_disable)
717 {
718 /* Format information in the renderbuffer represents the requirements
719 * given by the client. There are cases where the backing miptree uses,
720 * for example, RGBA to represent RGBX. Since the client is only expecting
721 * RGB we can treat alpha as not used and write whatever we like into it.
722 */
723 const GLenum base_format = irb->Base.Base._BaseFormat;
724 const int components = _mesa_base_format_component_count(base_format);
725 bool disables = false;
726
727 assert(components > 0);
728
729 for (int i = 0; i < components; i++) {
730 color_write_disable[i] = !color_mask[i];
731 disables = disables || !color_mask[i];
732 }
733
734 return disables;
735 }
736
737 static unsigned
738 irb_logical_mt_layer(struct intel_renderbuffer *irb)
739 {
740 return physical_to_logical_layer(irb->mt, irb->mt_layer);
741 }
742
743 static bool
744 do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb,
745 struct gl_renderbuffer *rb, unsigned buf,
746 bool partial_clear, bool encode_srgb)
747 {
748 struct gl_context *ctx = &brw->ctx;
749 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
750 mesa_format format = irb->mt->format;
751 uint32_t x0, x1, y0, y1;
752
753 if (!encode_srgb && _mesa_get_format_color_encoding(format) == GL_SRGB)
754 format = _mesa_get_srgb_format_linear(format);
755
756 x0 = fb->_Xmin;
757 x1 = fb->_Xmax;
758 if (rb->Name != 0) {
759 y0 = fb->_Ymin;
760 y1 = fb->_Ymax;
761 } else {
762 y0 = rb->Height - fb->_Ymax;
763 y1 = rb->Height - fb->_Ymin;
764 }
765
766 /* If the clear region is empty, just return. */
767 if (x0 == x1 || y0 == y1)
768 return true;
769
770 bool can_fast_clear = !partial_clear;
771
772 bool color_write_disable[4] = { false, false, false, false };
773 if (set_write_disables(irb, ctx->Color.ColorMask[buf], color_write_disable))
774 can_fast_clear = false;
775
776 if (irb->mt->aux_disable & INTEL_AUX_DISABLE_CCS ||
777 !brw_is_color_fast_clear_compatible(brw, irb->mt, &ctx->Color.ClearColor))
778 can_fast_clear = false;
779
780 const unsigned logical_layer = irb_logical_mt_layer(irb);
781 const enum intel_fast_clear_state fast_clear_state =
782 intel_miptree_get_fast_clear_state(irb->mt, irb->mt_level,
783 logical_layer);
784
785 /* Surface state can only record one fast clear color value. Therefore
786 * unless different levels/layers agree on the color it can be used to
787 * represent only single level/layer. Here it will be reserved for the
788 * first slice (level 0, layer 0).
789 */
790 if (irb->layer_count > 1 || irb->mt_level || irb->mt_layer)
791 can_fast_clear = false;
792
793 if (can_fast_clear) {
794 union isl_color_value clear_color =
795 brw_meta_convert_fast_clear_color(brw, irb->mt,
796 &ctx->Color.ClearColor);
797
798 /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear
799 * is redundant and can be skipped.
800 */
801 if (fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR &&
802 memcmp(&irb->mt->fast_clear_color,
803 &clear_color, sizeof(clear_color)) == 0)
804 return true;
805
806 irb->mt->fast_clear_color = clear_color;
807
808 /* If the MCS buffer hasn't been allocated yet, we need to allocate
809 * it now.
810 */
811 if (!irb->mt->mcs_buf) {
812 assert(!intel_miptree_is_lossless_compressed(brw, irb->mt));
813 if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt, false)) {
814 /* MCS allocation failed--probably this will only happen in
815 * out-of-memory conditions. But in any case, try to recover
816 * by falling back to a non-blorp clear technique.
817 */
818 return false;
819 }
820 }
821 }
822
823 const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1;
824
825 /* We can't setup the blorp_surf until we've allocated the MCS above */
826 struct isl_surf isl_tmp[2];
827 struct blorp_surf surf;
828 unsigned level = irb->mt_level;
829 blorp_surf_for_miptree(brw, &surf, irb->mt, true,
830 (1 << ISL_AUX_USAGE_MCS) |
831 (1 << ISL_AUX_USAGE_CCS_E) |
832 (1 << ISL_AUX_USAGE_CCS_D),
833 &level, logical_layer, num_layers, isl_tmp);
834
835 if (can_fast_clear) {
836 DBG("%s (fast) to mt %p level %d layers %d+%d\n", __FUNCTION__,
837 irb->mt, irb->mt_level, irb->mt_layer, num_layers);
838
839 /* Ivybrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
840 *
841 * "Any transition from any value in {Clear, Render, Resolve} to a
842 * different value in {Clear, Render, Resolve} requires end of pipe
843 * synchronization."
844 *
845 * In other words, fast clear ops are not properly synchronized with
846 * other drawing. We need to use a PIPE_CONTROL to ensure that the
847 * contents of the previous draw hit the render target before we resolve
848 * and again afterwards to ensure that the resolve is complete before we
849 * do any more regular drawing.
850 */
851 brw_emit_pipe_control_flush(brw,
852 PIPE_CONTROL_RENDER_TARGET_FLUSH |
853 PIPE_CONTROL_CS_STALL);
854
855 struct blorp_batch batch;
856 blorp_batch_init(&brw->blorp, &batch, brw, 0);
857 blorp_fast_clear(&batch, &surf,
858 brw->render_target_format[format],
859 level, logical_layer, num_layers,
860 x0, y0, x1, y1);
861 blorp_batch_finish(&batch);
862
863 brw_emit_pipe_control_flush(brw,
864 PIPE_CONTROL_RENDER_TARGET_FLUSH |
865 PIPE_CONTROL_CS_STALL);
866
867 /* Now that the fast clear has occurred, put the buffer in
868 * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing
869 * redundant clears.
870 */
871 intel_miptree_set_fast_clear_state(brw, irb->mt, irb->mt_level,
872 logical_layer, num_layers,
873 INTEL_FAST_CLEAR_STATE_CLEAR);
874 } else {
875 DBG("%s (slow) to mt %p level %d layer %d+%d\n", __FUNCTION__,
876 irb->mt, irb->mt_level, irb->mt_layer, num_layers);
877
878 union isl_color_value clear_color;
879 memcpy(clear_color.f32, ctx->Color.ClearColor.f, sizeof(float) * 4);
880
881 struct blorp_batch batch;
882 blorp_batch_init(&brw->blorp, &batch, brw, 0);
883 blorp_clear(&batch, &surf,
884 brw->render_target_format[format],
885 ISL_SWIZZLE_IDENTITY,
886 level, irb_logical_mt_layer(irb), num_layers,
887 x0, y0, x1, y1,
888 clear_color, color_write_disable);
889 blorp_batch_finish(&batch);
890 }
891
892 return true;
893 }
894
895 bool
896 brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb,
897 GLbitfield mask, bool partial_clear, bool encode_srgb)
898 {
899 for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
900 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
901 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
902
903 /* Only clear the buffers present in the provided mask */
904 if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0)
905 continue;
906
907 /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
908 * the framebuffer can be complete with some attachments missing. In
909 * this case the _ColorDrawBuffers pointer will be NULL.
910 */
911 if (rb == NULL)
912 continue;
913
914 if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear,
915 encode_srgb)) {
916 return false;
917 }
918
919 irb->need_downsample = true;
920 }
921
922 return true;
923 }
924
925 void
926 brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt,
927 unsigned level, unsigned layer,
928 enum blorp_fast_clear_op resolve_op)
929 {
930 DBG("%s to mt %p level %u layer %u\n", __FUNCTION__, mt, level, layer);
931
932 const mesa_format format = _mesa_get_srgb_format_linear(mt->format);
933
934 struct isl_surf isl_tmp[2];
935 struct blorp_surf surf;
936 blorp_surf_for_miptree(brw, &surf, mt, true,
937 (1 << ISL_AUX_USAGE_CCS_E) |
938 (1 << ISL_AUX_USAGE_CCS_D),
939 &level, layer, 1 /* num_layers */,
940 isl_tmp);
941
942 /* Ivybrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
943 *
944 * "Any transition from any value in {Clear, Render, Resolve} to a
945 * different value in {Clear, Render, Resolve} requires end of pipe
946 * synchronization."
947 *
948 * In other words, fast clear ops are not properly synchronized with
949 * other drawing. We need to use a PIPE_CONTROL to ensure that the
950 * contents of the previous draw hit the render target before we resolve
951 * and again afterwards to ensure that the resolve is complete before we
952 * do any more regular drawing.
953 */
954 brw_emit_pipe_control_flush(brw,
955 PIPE_CONTROL_RENDER_TARGET_FLUSH |
956 PIPE_CONTROL_CS_STALL);
957
958
959 struct blorp_batch batch;
960 blorp_batch_init(&brw->blorp, &batch, brw, 0);
961 blorp_ccs_resolve(&batch, &surf, level, layer,
962 brw_blorp_to_isl_format(brw, format, true),
963 resolve_op);
964 blorp_batch_finish(&batch);
965
966 /* See comment above */
967 brw_emit_pipe_control_flush(brw,
968 PIPE_CONTROL_RENDER_TARGET_FLUSH |
969 PIPE_CONTROL_CS_STALL);
970 }
971
972 /**
973 * Perform a HiZ or depth resolve operation.
974 *
975 * For an overview of HiZ ops, see the following sections of the Sandy Bridge
976 * PRM, Volume 1, Part 2:
977 * - 7.5.3.1 Depth Buffer Clear
978 * - 7.5.3.2 Depth Buffer Resolve
979 * - 7.5.3.3 Hierarchical Depth Buffer Resolve
980 */
981 void
982 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
983 unsigned int level, unsigned int start_layer,
984 unsigned int num_layers, enum blorp_hiz_op op)
985 {
986 assert(intel_miptree_level_has_hiz(mt, level));
987 assert(op != BLORP_HIZ_OP_NONE);
988 const char *opname = NULL;
989
990 switch (op) {
991 case BLORP_HIZ_OP_DEPTH_RESOLVE:
992 opname = "depth resolve";
993 break;
994 case BLORP_HIZ_OP_HIZ_RESOLVE:
995 opname = "hiz ambiguate";
996 break;
997 case BLORP_HIZ_OP_DEPTH_CLEAR:
998 opname = "depth clear";
999 break;
1000 case BLORP_HIZ_OP_NONE:
1001 opname = "noop?";
1002 break;
1003 }
1004
1005 DBG("%s %s to mt %p level %d layers %d-%d\n",
1006 __func__, opname, mt, level, start_layer, start_layer + num_layers - 1);
1007
1008 /* The following stalls and flushes are only documented to be required for
1009 * HiZ clear operations. However, they also seem to be required for the
1010 * HiZ resolve operation which is basically the same as a fast clear only a
1011 * different value is written into the HiZ surface.
1012 */
1013 if (op == BLORP_HIZ_OP_DEPTH_CLEAR || op == BLORP_HIZ_OP_HIZ_RESOLVE) {
1014 if (brw->gen == 6) {
1015 /* From the Sandy Bridge PRM, volume 2 part 1, page 313:
1016 *
1017 * "If other rendering operations have preceded this clear, a
1018 * PIPE_CONTROL with write cache flush enabled and Z-inhibit
1019 * disabled must be issued before the rectangle primitive used for
1020 * the depth buffer clear operation.
1021 */
1022 brw_emit_pipe_control_flush(brw,
1023 PIPE_CONTROL_RENDER_TARGET_FLUSH |
1024 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1025 PIPE_CONTROL_CS_STALL);
1026 } else if (brw->gen >= 7) {
1027 /*
1028 * From the Ivybridge PRM, volume 2, "Depth Buffer Clear":
1029 *
1030 * If other rendering operations have preceded this clear, a
1031 * PIPE_CONTROL with depth cache flush enabled, Depth Stall bit
1032 * enabled must be issued before the rectangle primitive used for
1033 * the depth buffer clear operation.
1034 *
1035 * Same applies for Gen8 and Gen9.
1036 *
1037 * In addition, from the Ivybridge PRM, volume 2, 1.10.4.1
1038 * PIPE_CONTROL, Depth Cache Flush Enable:
1039 *
1040 * This bit must not be set when Depth Stall Enable bit is set in
1041 * this packet.
1042 *
1043 * This is confirmed to hold for real, HSW gets immediate gpu hangs.
1044 *
1045 * Therefore issue two pipe control flushes, one for cache flush and
1046 * another for depth stall.
1047 */
1048 brw_emit_pipe_control_flush(brw,
1049 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1050 PIPE_CONTROL_CS_STALL);
1051
1052 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DEPTH_STALL);
1053 }
1054 }
1055
1056
1057 struct isl_surf isl_tmp[2];
1058 struct blorp_surf surf;
1059 blorp_surf_for_miptree(brw, &surf, mt, true, (1 << ISL_AUX_USAGE_HIZ),
1060 &level, start_layer, num_layers, isl_tmp);
1061
1062 struct blorp_batch batch;
1063 blorp_batch_init(&brw->blorp, &batch, brw, 0);
1064 blorp_hiz_op(&batch, &surf, level, start_layer, num_layers, op);
1065 blorp_batch_finish(&batch);
1066
1067 /* The following stalls and flushes are only documented to be required for
1068 * HiZ clear operations. However, they also seem to be required for the
1069 * HiZ resolve operation which is basically the same as a fast clear only a
1070 * different value is written into the HiZ surface.
1071 */
1072 if (op == BLORP_HIZ_OP_DEPTH_CLEAR || op == BLORP_HIZ_OP_HIZ_RESOLVE) {
1073 if (brw->gen == 6) {
1074 /* From the Sandy Bridge PRM, volume 2 part 1, page 314:
1075 *
1076 * "DevSNB, DevSNB-B{W/A}]: Depth buffer clear pass must be
1077 * followed by a PIPE_CONTROL command with DEPTH_STALL bit set
1078 * and Then followed by Depth FLUSH'
1079 */
1080 brw_emit_pipe_control_flush(brw,
1081 PIPE_CONTROL_DEPTH_STALL);
1082
1083 brw_emit_pipe_control_flush(brw,
1084 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1085 PIPE_CONTROL_CS_STALL);
1086 } else if (brw->gen >= 8) {
1087 /*
1088 * From the Broadwell PRM, volume 7, "Depth Buffer Clear":
1089 *
1090 * "Depth buffer clear pass using any of the methods (WM_STATE,
1091 * 3DSTATE_WM or 3DSTATE_WM_HZ_OP) must be followed by a
1092 * PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits
1093 * "set" before starting to render. DepthStall and DepthFlush are
1094 * not needed between consecutive depth clear passes nor is it
1095 * required if the depth clear pass was done with
1096 * 'full_surf_clear' bit set in the 3DSTATE_WM_HZ_OP."
1097 *
1098 * TODO: Such as the spec says, this could be conditional.
1099 */
1100 brw_emit_pipe_control_flush(brw,
1101 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1102 PIPE_CONTROL_DEPTH_STALL);
1103
1104 }
1105 }
1106 }