intel/blorp: Take a destination swizzle in blorp_blit
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/context.h"
25 #include "main/teximage.h"
26 #include "main/blend.h"
27 #include "main/fbobject.h"
28 #include "main/renderbuffer.h"
29 #include "main/glformats.h"
30
31 #include "brw_blorp.h"
32 #include "brw_context.h"
33 #include "brw_defines.h"
34 #include "brw_meta_util.h"
35 #include "brw_state.h"
36 #include "intel_fbo.h"
37 #include "intel_debug.h"
38
39 #define FILE_DEBUG_FLAG DEBUG_BLORP
40
41 static bool
42 brw_blorp_lookup_shader(struct blorp_context *blorp,
43 const void *key, uint32_t key_size,
44 uint32_t *kernel_out, void *prog_data_out)
45 {
46 struct brw_context *brw = blorp->driver_ctx;
47 return brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
48 key, key_size, kernel_out, prog_data_out);
49 }
50
51 static void
52 brw_blorp_upload_shader(struct blorp_context *blorp,
53 const void *key, uint32_t key_size,
54 const void *kernel, uint32_t kernel_size,
55 const void *prog_data, uint32_t prog_data_size,
56 uint32_t *kernel_out, void *prog_data_out)
57 {
58 struct brw_context *brw = blorp->driver_ctx;
59 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG, key, key_size,
60 kernel, kernel_size, prog_data, prog_data_size,
61 kernel_out, prog_data_out);
62 }
63
64 void
65 brw_blorp_init(struct brw_context *brw)
66 {
67 blorp_init(&brw->blorp, brw, &brw->isl_dev);
68
69 brw->blorp.compiler = brw->intelScreen->compiler;
70
71 switch (brw->gen) {
72 case 6:
73 brw->blorp.mocs.tex = 0;
74 brw->blorp.mocs.rb = 0;
75 brw->blorp.mocs.vb = 0;
76 brw->blorp.exec = gen6_blorp_exec;
77 break;
78 case 7:
79 brw->blorp.mocs.tex = GEN7_MOCS_L3;
80 brw->blorp.mocs.rb = GEN7_MOCS_L3;
81 brw->blorp.mocs.vb = GEN7_MOCS_L3;
82 if (brw->is_haswell) {
83 brw->blorp.exec = gen75_blorp_exec;
84 } else {
85 brw->blorp.exec = gen7_blorp_exec;
86 }
87 break;
88 case 8:
89 brw->blorp.mocs.tex = BDW_MOCS_WB;
90 brw->blorp.mocs.rb = BDW_MOCS_PTE;
91 brw->blorp.mocs.vb = BDW_MOCS_WB;
92 brw->blorp.exec = gen8_blorp_exec;
93 break;
94 case 9:
95 brw->blorp.mocs.tex = SKL_MOCS_WB;
96 brw->blorp.mocs.rb = SKL_MOCS_PTE;
97 brw->blorp.mocs.vb = SKL_MOCS_WB;
98 brw->blorp.exec = gen9_blorp_exec;
99 break;
100 default:
101 unreachable("Invalid gen");
102 }
103
104 brw->blorp.lookup_shader = brw_blorp_lookup_shader;
105 brw->blorp.upload_shader = brw_blorp_upload_shader;
106 }
107
108 static void
109 apply_gen6_stencil_hiz_offset(struct isl_surf *surf,
110 struct intel_mipmap_tree *mt,
111 uint32_t lod,
112 uint32_t *offset)
113 {
114 assert(mt->array_layout == ALL_SLICES_AT_EACH_LOD);
115
116 if (mt->format == MESA_FORMAT_S_UINT8) {
117 /* Note: we can't compute the stencil offset using
118 * intel_miptree_get_aligned_offset(), because the miptree
119 * claims that the region is untiled even though it's W tiled.
120 */
121 *offset = mt->level[lod].level_y * mt->pitch +
122 mt->level[lod].level_x * 64;
123 } else {
124 *offset = intel_miptree_get_aligned_offset(mt,
125 mt->level[lod].level_x,
126 mt->level[lod].level_y,
127 false);
128 }
129
130 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, lod);
131 surf->logical_level0_px.height = minify(surf->logical_level0_px.height, lod);
132 surf->phys_level0_sa.width = minify(surf->phys_level0_sa.width, lod);
133 surf->phys_level0_sa.height = minify(surf->phys_level0_sa.height, lod);
134 surf->levels = 1;
135 surf->array_pitch_el_rows =
136 ALIGN(surf->phys_level0_sa.height, surf->image_alignment_el.height);
137 }
138
139 static void
140 blorp_surf_for_miptree(struct brw_context *brw,
141 struct blorp_surf *surf,
142 struct intel_mipmap_tree *mt,
143 bool is_render_target,
144 unsigned *level,
145 struct isl_surf tmp_surfs[2])
146 {
147 intel_miptree_get_isl_surf(brw, mt, &tmp_surfs[0]);
148 surf->surf = &tmp_surfs[0];
149 surf->addr = (struct blorp_address) {
150 .buffer = mt->bo,
151 .offset = mt->offset,
152 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
153 I915_GEM_DOMAIN_SAMPLER,
154 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
155 };
156
157 if (brw->gen == 6 && mt->format == MESA_FORMAT_S_UINT8 &&
158 mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
159 /* Sandy bridge stencil and HiZ use this ALL_SLICES_AT_EACH_LOD hack in
160 * order to allow for layered rendering. The hack makes each LOD of the
161 * stencil or HiZ buffer a single tightly packed array surface at some
162 * offset into the surface. Since ISL doesn't know how to deal with the
163 * crazy ALL_SLICES_AT_EACH_LOD layout and since we have to do a manual
164 * offset of it anyway, we might as well do the offset here and keep the
165 * hacks inside the i965 driver.
166 *
167 * See also gen6_depth_stencil_state.c
168 */
169 uint32_t offset;
170 apply_gen6_stencil_hiz_offset(&tmp_surfs[0], mt, *level, &offset);
171 surf->addr.offset += offset;
172 *level = 0;
173 }
174
175 struct isl_surf *aux_surf = &tmp_surfs[1];
176 intel_miptree_get_aux_isl_surf(brw, mt, aux_surf, &surf->aux_usage);
177
178 /* For textures that are in the RESOLVED state, we ignore the MCS */
179 if (mt->mcs_mt && !is_render_target &&
180 mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_RESOLVED)
181 surf->aux_usage = ISL_AUX_USAGE_NONE;
182
183 if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
184 /* We only really need a clear color if we also have an auxiliary
185 * surface. Without one, it does nothing.
186 */
187 surf->clear_color = intel_miptree_get_isl_clear_color(brw, mt);
188
189 surf->aux_surf = aux_surf;
190 surf->aux_addr = (struct blorp_address) {
191 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
192 I915_GEM_DOMAIN_SAMPLER,
193 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
194 };
195
196 if (mt->mcs_mt) {
197 surf->aux_addr.buffer = mt->mcs_mt->bo;
198 surf->aux_addr.offset = mt->mcs_mt->offset;
199 } else {
200 assert(surf->aux_usage == ISL_AUX_USAGE_HIZ);
201 struct intel_mipmap_tree *hiz_mt = mt->hiz_buf->mt;
202 if (hiz_mt) {
203 surf->aux_addr.buffer = hiz_mt->bo;
204 if (brw->gen == 6 &&
205 hiz_mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
206 /* gen6 requires the HiZ buffer to be manually offset to the
207 * right location. We could fixup the surf but it doesn't
208 * matter since most of those fields don't matter.
209 */
210 apply_gen6_stencil_hiz_offset(aux_surf, hiz_mt, *level,
211 &surf->aux_addr.offset);
212 } else {
213 surf->aux_addr.offset = 0;
214 }
215 assert(hiz_mt->pitch == aux_surf->row_pitch);
216 } else {
217 surf->aux_addr.buffer = mt->hiz_buf->bo;
218 surf->aux_addr.offset = 0;
219 }
220 }
221 } else {
222 surf->aux_addr = (struct blorp_address) {
223 .buffer = NULL,
224 };
225 memset(&surf->clear_color, 0, sizeof(surf->clear_color));
226 }
227 assert((surf->aux_usage == ISL_AUX_USAGE_NONE) ==
228 (surf->aux_addr.buffer == NULL));
229 }
230
231 static enum isl_format
232 brw_blorp_to_isl_format(struct brw_context *brw, mesa_format format,
233 bool is_render_target)
234 {
235 switch (format) {
236 case MESA_FORMAT_NONE:
237 return ISL_FORMAT_UNSUPPORTED;
238 case MESA_FORMAT_S_UINT8:
239 return ISL_FORMAT_R8_UINT;
240 case MESA_FORMAT_Z24_UNORM_X8_UINT:
241 return ISL_FORMAT_R24_UNORM_X8_TYPELESS;
242 case MESA_FORMAT_Z_FLOAT32:
243 return ISL_FORMAT_R32_FLOAT;
244 case MESA_FORMAT_Z_UNORM16:
245 return ISL_FORMAT_R16_UNORM;
246 default: {
247 if (is_render_target) {
248 assert(brw->format_supported_as_render_target[format]);
249 return brw->render_target_format[format];
250 } else {
251 return brw_format_for_mesa_format(format);
252 }
253 break;
254 }
255 }
256 }
257
258 /**
259 * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
260 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
261 *
262 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
263 * 0 1 2 3 4 5
264 * 4 5 6 7 0 1
265 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
266 *
267 * which is simply adding 4 then modding by 8 (or anding with 7).
268 *
269 * We then may need to apply workarounds for textureGather hardware bugs.
270 */
271 static enum isl_channel_select
272 swizzle_to_scs(GLenum swizzle)
273 {
274 return (enum isl_channel_select)((swizzle + 4) & 7);
275 }
276
277 /**
278 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
279 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
280 * the physical layer holding sample 0. So, for example, if
281 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
282 * 4*n.
283 */
284 void
285 brw_blorp_blit_miptrees(struct brw_context *brw,
286 struct intel_mipmap_tree *src_mt,
287 unsigned src_level, unsigned src_layer,
288 mesa_format src_format, int src_swizzle,
289 struct intel_mipmap_tree *dst_mt,
290 unsigned dst_level, unsigned dst_layer,
291 mesa_format dst_format,
292 float src_x0, float src_y0,
293 float src_x1, float src_y1,
294 float dst_x0, float dst_y0,
295 float dst_x1, float dst_y1,
296 GLenum filter, bool mirror_x, bool mirror_y,
297 bool decode_srgb, bool encode_srgb)
298 {
299 /* Get ready to blit. This includes depth resolving the src and dst
300 * buffers if necessary. Note: it's not necessary to do a color resolve on
301 * the destination buffer because we use the standard render path to render
302 * to destination color buffers, and the standard render path is
303 * fast-color-aware.
304 */
305 intel_miptree_resolve_color(brw, src_mt, INTEL_MIPTREE_IGNORE_CCS_E);
306 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
307 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
308
309 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
310 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
311 __func__,
312 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
313 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
314 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
315 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
316 mirror_x, mirror_y);
317
318 if (!decode_srgb && _mesa_get_format_color_encoding(src_format) == GL_SRGB)
319 src_format = _mesa_get_srgb_format_linear(src_format);
320
321 if (!encode_srgb && _mesa_get_format_color_encoding(dst_format) == GL_SRGB)
322 dst_format = _mesa_get_srgb_format_linear(dst_format);
323
324 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
325 * texture, the above code configures the source format for L32_FLOAT or
326 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
327 * the SAMPLE message appears to handle multisampled L32_FLOAT and
328 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
329 * around the problem by using a source format of R32_FLOAT. This
330 * shouldn't affect rendering correctness, since the destination format is
331 * R32_FLOAT, so only the contents of the red channel matters.
332 */
333 if (brw->gen == 6 &&
334 src_mt->num_samples > 1 && dst_mt->num_samples <= 1 &&
335 src_mt->format == dst_mt->format &&
336 (dst_format == MESA_FORMAT_L_FLOAT32 ||
337 dst_format == MESA_FORMAT_I_FLOAT32)) {
338 src_format = dst_format = MESA_FORMAT_R_FLOAT32;
339 }
340
341 intel_miptree_check_level_layer(src_mt, src_level, src_layer);
342 intel_miptree_check_level_layer(dst_mt, dst_level, dst_layer);
343 intel_miptree_used_for_rendering(dst_mt);
344
345 struct isl_surf tmp_surfs[4];
346 struct blorp_surf src_surf, dst_surf;
347 blorp_surf_for_miptree(brw, &src_surf, src_mt, false,
348 &src_level, &tmp_surfs[0]);
349 blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true,
350 &dst_level, &tmp_surfs[2]);
351
352 struct isl_swizzle src_isl_swizzle = {
353 .r = swizzle_to_scs(GET_SWZ(src_swizzle, 0)),
354 .g = swizzle_to_scs(GET_SWZ(src_swizzle, 1)),
355 .b = swizzle_to_scs(GET_SWZ(src_swizzle, 2)),
356 .a = swizzle_to_scs(GET_SWZ(src_swizzle, 3)),
357 };
358
359 struct blorp_batch batch;
360 blorp_batch_init(&brw->blorp, &batch, brw);
361 blorp_blit(&batch, &src_surf, src_level, src_layer,
362 brw_blorp_to_isl_format(brw, src_format, false), src_isl_swizzle,
363 &dst_surf, dst_level, dst_layer,
364 brw_blorp_to_isl_format(brw, dst_format, true),
365 ISL_SWIZZLE_IDENTITY,
366 src_x0, src_y0, src_x1, src_y1,
367 dst_x0, dst_y0, dst_x1, dst_y1,
368 filter, mirror_x, mirror_y);
369 blorp_batch_finish(&batch);
370
371 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
372
373 if (intel_miptree_is_lossless_compressed(brw, dst_mt))
374 dst_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED;
375 }
376
377 static struct intel_mipmap_tree *
378 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
379 {
380 struct intel_mipmap_tree *mt = irb->mt;
381 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
382 mt = mt->stencil_mt;
383 return mt;
384 }
385
386 static int
387 blorp_get_texture_swizzle(const struct intel_renderbuffer *irb)
388 {
389 return irb->Base.Base._BaseFormat == GL_RGB ?
390 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ONE) :
391 SWIZZLE_XYZW;
392 }
393
394 static void
395 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
396 struct intel_renderbuffer *src_irb, mesa_format src_format,
397 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
398 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
399 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
400 GLenum filter, bool mirror_x, bool mirror_y)
401 {
402 const struct gl_context *ctx = &brw->ctx;
403
404 /* Find source/dst miptrees */
405 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
406 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
407
408 const bool do_srgb = ctx->Color.sRGBEnabled;
409
410 /* Do the blit */
411 brw_blorp_blit_miptrees(brw,
412 src_mt, src_irb->mt_level, src_irb->mt_layer,
413 src_format, blorp_get_texture_swizzle(src_irb),
414 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
415 dst_format,
416 srcX0, srcY0, srcX1, srcY1,
417 dstX0, dstY0, dstX1, dstY1,
418 filter, mirror_x, mirror_y,
419 do_srgb, do_srgb);
420
421 dst_irb->need_downsample = true;
422 }
423
424 static bool
425 try_blorp_blit(struct brw_context *brw,
426 const struct gl_framebuffer *read_fb,
427 const struct gl_framebuffer *draw_fb,
428 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
429 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
430 GLenum filter, GLbitfield buffer_bit)
431 {
432 struct gl_context *ctx = &brw->ctx;
433
434 /* Sync up the state of window system buffers. We need to do this before
435 * we go looking for the buffers.
436 */
437 intel_prepare_render(brw);
438
439 bool mirror_x, mirror_y;
440 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
441 &srcX0, &srcY0, &srcX1, &srcY1,
442 &dstX0, &dstY0, &dstX1, &dstY1,
443 &mirror_x, &mirror_y))
444 return true;
445
446 /* Find buffers */
447 struct intel_renderbuffer *src_irb;
448 struct intel_renderbuffer *dst_irb;
449 struct intel_mipmap_tree *src_mt;
450 struct intel_mipmap_tree *dst_mt;
451 switch (buffer_bit) {
452 case GL_COLOR_BUFFER_BIT:
453 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
454 for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
455 dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
456 if (dst_irb)
457 do_blorp_blit(brw, buffer_bit,
458 src_irb, src_irb->Base.Base.Format,
459 dst_irb, dst_irb->Base.Base.Format,
460 srcX0, srcY0, srcX1, srcY1,
461 dstX0, dstY0, dstX1, dstY1,
462 filter, mirror_x, mirror_y);
463 }
464 break;
465 case GL_DEPTH_BUFFER_BIT:
466 src_irb =
467 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
468 dst_irb =
469 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
470 src_mt = find_miptree(buffer_bit, src_irb);
471 dst_mt = find_miptree(buffer_bit, dst_irb);
472
473 /* We can't handle format conversions between Z24 and other formats
474 * since we have to lie about the surface format. See the comments in
475 * brw_blorp_surface_info::set().
476 */
477 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
478 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
479 return false;
480
481 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
482 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
483 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
484 filter, mirror_x, mirror_y);
485 break;
486 case GL_STENCIL_BUFFER_BIT:
487 src_irb =
488 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
489 dst_irb =
490 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
491 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
492 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
493 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
494 filter, mirror_x, mirror_y);
495 break;
496 default:
497 unreachable("not reached");
498 }
499
500 return true;
501 }
502
503 bool
504 brw_blorp_copytexsubimage(struct brw_context *brw,
505 struct gl_renderbuffer *src_rb,
506 struct gl_texture_image *dst_image,
507 int slice,
508 int srcX0, int srcY0,
509 int dstX0, int dstY0,
510 int width, int height)
511 {
512 struct gl_context *ctx = &brw->ctx;
513 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
514 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
515
516 /* No pixel transfer operations (zoom, bias, mapping), just a blit */
517 if (brw->ctx._ImageTransferState)
518 return false;
519
520 /* Sync up the state of window system buffers. We need to do this before
521 * we go looking at the src renderbuffer's miptree.
522 */
523 intel_prepare_render(brw);
524
525 struct intel_mipmap_tree *src_mt = src_irb->mt;
526 struct intel_mipmap_tree *dst_mt = intel_image->mt;
527
528 /* There is support for only up to eight samples. */
529 if (src_mt->num_samples > 8 || dst_mt->num_samples > 8)
530 return false;
531
532 /* BLORP is only supported from Gen6 onwards. */
533 if (brw->gen < 6)
534 return false;
535
536 if (_mesa_get_format_base_format(src_rb->Format) !=
537 _mesa_get_format_base_format(dst_image->TexFormat)) {
538 return false;
539 }
540
541 /* We can't handle format conversions between Z24 and other formats since
542 * we have to lie about the surface format. See the comments in
543 * brw_blorp_surface_info::set().
544 */
545 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
546 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
547 return false;
548 }
549
550 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
551 return false;
552
553 /* Source clipping shouldn't be necessary, since copytexsubimage (in
554 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
555 * takes care of it.
556 *
557 * Destination clipping shouldn't be necessary since the restrictions on
558 * glCopyTexSubImage prevent the user from specifying a destination rectangle
559 * that falls outside the bounds of the destination texture.
560 * See error_check_subtexture_dimensions().
561 */
562
563 int srcY1 = srcY0 + height;
564 int srcX1 = srcX0 + width;
565 int dstX1 = dstX0 + width;
566 int dstY1 = dstY0 + height;
567
568 /* Account for the fact that in the system framebuffer, the origin is at
569 * the lower left.
570 */
571 bool mirror_y = false;
572 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
573 GLint tmp = src_rb->Height - srcY0;
574 srcY0 = src_rb->Height - srcY1;
575 srcY1 = tmp;
576 mirror_y = true;
577 }
578
579 /* Account for face selection and texture view MinLayer */
580 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
581 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
582
583 brw_blorp_blit_miptrees(brw,
584 src_mt, src_irb->mt_level, src_irb->mt_layer,
585 src_rb->Format, blorp_get_texture_swizzle(src_irb),
586 dst_mt, dst_level, dst_slice,
587 dst_image->TexFormat,
588 srcX0, srcY0, srcX1, srcY1,
589 dstX0, dstY0, dstX1, dstY1,
590 GL_NEAREST, false, mirror_y,
591 false, false);
592
593 /* If we're copying to a packed depth stencil texture and the source
594 * framebuffer has separate stencil, we need to also copy the stencil data
595 * over.
596 */
597 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
598 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
599 src_rb != NULL) {
600 src_irb = intel_renderbuffer(src_rb);
601 src_mt = src_irb->mt;
602
603 if (src_mt->stencil_mt)
604 src_mt = src_mt->stencil_mt;
605 if (dst_mt->stencil_mt)
606 dst_mt = dst_mt->stencil_mt;
607
608 if (src_mt != dst_mt) {
609 brw_blorp_blit_miptrees(brw,
610 src_mt, src_irb->mt_level, src_irb->mt_layer,
611 src_mt->format,
612 blorp_get_texture_swizzle(src_irb),
613 dst_mt, dst_level, dst_slice,
614 dst_mt->format,
615 srcX0, srcY0, srcX1, srcY1,
616 dstX0, dstY0, dstX1, dstY1,
617 GL_NEAREST, false, mirror_y,
618 false, false);
619 }
620 }
621
622 return true;
623 }
624
625
626 GLbitfield
627 brw_blorp_framebuffer(struct brw_context *brw,
628 struct gl_framebuffer *readFb,
629 struct gl_framebuffer *drawFb,
630 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
631 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
632 GLbitfield mask, GLenum filter)
633 {
634 /* BLORP is not supported before Gen6. */
635 if (brw->gen < 6)
636 return mask;
637
638 static GLbitfield buffer_bits[] = {
639 GL_COLOR_BUFFER_BIT,
640 GL_DEPTH_BUFFER_BIT,
641 GL_STENCIL_BUFFER_BIT,
642 };
643
644 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
645 if ((mask & buffer_bits[i]) &&
646 try_blorp_blit(brw, readFb, drawFb,
647 srcX0, srcY0, srcX1, srcY1,
648 dstX0, dstY0, dstX1, dstY1,
649 filter, buffer_bits[i])) {
650 mask &= ~buffer_bits[i];
651 }
652 }
653
654 return mask;
655 }
656
657 static bool
658 set_write_disables(const struct intel_renderbuffer *irb,
659 const GLubyte *color_mask, bool *color_write_disable)
660 {
661 /* Format information in the renderbuffer represents the requirements
662 * given by the client. There are cases where the backing miptree uses,
663 * for example, RGBA to represent RGBX. Since the client is only expecting
664 * RGB we can treat alpha as not used and write whatever we like into it.
665 */
666 const GLenum base_format = irb->Base.Base._BaseFormat;
667 const int components = _mesa_base_format_component_count(base_format);
668 bool disables = false;
669
670 assert(components > 0);
671
672 for (int i = 0; i < components; i++) {
673 color_write_disable[i] = !color_mask[i];
674 disables = disables || !color_mask[i];
675 }
676
677 return disables;
678 }
679
680 static bool
681 do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb,
682 struct gl_renderbuffer *rb, unsigned buf,
683 bool partial_clear, bool encode_srgb)
684 {
685 struct gl_context *ctx = &brw->ctx;
686 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
687 mesa_format format = irb->mt->format;
688 uint32_t x0, x1, y0, y1;
689
690 if (!encode_srgb && _mesa_get_format_color_encoding(format) == GL_SRGB)
691 format = _mesa_get_srgb_format_linear(format);
692
693 x0 = fb->_Xmin;
694 x1 = fb->_Xmax;
695 if (rb->Name != 0) {
696 y0 = fb->_Ymin;
697 y1 = fb->_Ymax;
698 } else {
699 y0 = rb->Height - fb->_Ymax;
700 y1 = rb->Height - fb->_Ymin;
701 }
702
703 /* If the clear region is empty, just return. */
704 if (x0 == x1 || y0 == y1)
705 return true;
706
707 bool can_fast_clear = !partial_clear;
708
709 bool color_write_disable[4] = { false, false, false, false };
710 if (set_write_disables(irb, ctx->Color.ColorMask[buf], color_write_disable))
711 can_fast_clear = false;
712
713 if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_NO_MCS ||
714 !brw_is_color_fast_clear_compatible(brw, irb->mt, &ctx->Color.ClearColor))
715 can_fast_clear = false;
716
717 const bool is_lossless_compressed = intel_miptree_is_lossless_compressed(
718 brw, irb->mt);
719
720 if (can_fast_clear) {
721 /* Record the clear color in the miptree so that it will be
722 * programmed in SURFACE_STATE by later rendering and resolve
723 * operations.
724 */
725 const bool color_updated = brw_meta_set_fast_clear_color(
726 brw, irb->mt, &ctx->Color.ClearColor);
727
728 /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear
729 * is redundant and can be skipped.
730 */
731 if (!color_updated &&
732 irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
733 return true;
734
735 /* If the MCS buffer hasn't been allocated yet, we need to allocate
736 * it now.
737 */
738 if (!irb->mt->mcs_mt) {
739 assert(!is_lossless_compressed);
740 if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt, false)) {
741 /* MCS allocation failed--probably this will only happen in
742 * out-of-memory conditions. But in any case, try to recover
743 * by falling back to a non-blorp clear technique.
744 */
745 return false;
746 }
747 }
748 }
749
750 intel_miptree_used_for_rendering(irb->mt);
751
752 /* We can't setup the blorp_surf until we've allocated the MCS above */
753 struct isl_surf isl_tmp[2];
754 struct blorp_surf surf;
755 unsigned level = irb->mt_level;
756 blorp_surf_for_miptree(brw, &surf, irb->mt, true, &level, isl_tmp);
757 const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1;
758
759 if (can_fast_clear) {
760 DBG("%s (fast) to mt %p level %d layers %d+%d\n", __FUNCTION__,
761 irb->mt, irb->mt_level, irb->mt_layer, num_layers);
762
763 struct blorp_batch batch;
764 blorp_batch_init(&brw->blorp, &batch, brw);
765 blorp_fast_clear(&batch, &surf,
766 (enum isl_format)brw->render_target_format[format],
767 level, irb->mt_layer, num_layers, x0, y0, x1, y1);
768 blorp_batch_finish(&batch);
769
770 /* Now that the fast clear has occurred, put the buffer in
771 * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing
772 * redundant clears.
773 */
774 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
775 } else {
776 DBG("%s (slow) to mt %p level %d layer %d+%d\n", __FUNCTION__,
777 irb->mt, irb->mt_level, irb->mt_layer, num_layers);
778
779 union isl_color_value clear_color;
780 memcpy(clear_color.f32, ctx->Color.ClearColor.f, sizeof(float) * 4);
781
782 struct blorp_batch batch;
783 blorp_batch_init(&brw->blorp, &batch, brw);
784 blorp_clear(&batch, &surf, level, irb->mt_layer, num_layers,
785 x0, y0, x1, y1,
786 (enum isl_format)brw->render_target_format[format],
787 clear_color, color_write_disable);
788 blorp_batch_finish(&batch);
789
790 if (is_lossless_compressed) {
791 /* Compressed buffers can be cleared also using normal rep-clear. In
792 * such case they behave such as if they were drawn using normal 3D
793 * render pipeline, and we simply mark the mcs as dirty.
794 */
795 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED;
796 }
797 }
798
799 return true;
800 }
801
802 bool
803 brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb,
804 GLbitfield mask, bool partial_clear, bool encode_srgb)
805 {
806 for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
807 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
808 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
809
810 /* Only clear the buffers present in the provided mask */
811 if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0)
812 continue;
813
814 /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
815 * the framebuffer can be complete with some attachments missing. In
816 * this case the _ColorDrawBuffers pointer will be NULL.
817 */
818 if (rb == NULL)
819 continue;
820
821 const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1;
822 for (unsigned layer = 0; layer < num_layers; layer++) {
823 intel_miptree_check_level_layer(irb->mt, irb->mt_level, layer);
824 }
825
826 if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear,
827 encode_srgb)) {
828 return false;
829 }
830
831 irb->need_downsample = true;
832 }
833
834 return true;
835 }
836
837 void
838 brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt)
839 {
840 DBG("%s to mt %p\n", __FUNCTION__, mt);
841
842 const mesa_format format = _mesa_get_srgb_format_linear(mt->format);
843
844 intel_miptree_check_level_layer(mt, 0 /* level */, 0 /* layer */);
845 intel_miptree_used_for_rendering(mt);
846
847 struct isl_surf isl_tmp[2];
848 struct blorp_surf surf;
849 unsigned level = 0;
850 blorp_surf_for_miptree(brw, &surf, mt, true, &level, isl_tmp);
851
852 struct blorp_batch batch;
853 blorp_batch_init(&brw->blorp, &batch, brw);
854 blorp_ccs_resolve(&batch, &surf,
855 brw_blorp_to_isl_format(brw, format, true));
856 blorp_batch_finish(&batch);
857
858 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
859 }
860
861 static void
862 gen6_blorp_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
863 unsigned int level, unsigned int layer, enum blorp_hiz_op op)
864 {
865 intel_miptree_check_level_layer(mt, level, layer);
866 intel_miptree_used_for_rendering(mt);
867
868 assert(intel_miptree_level_has_hiz(mt, level));
869
870 struct isl_surf isl_tmp[2];
871 struct blorp_surf surf;
872 blorp_surf_for_miptree(brw, &surf, mt, true, &level, isl_tmp);
873
874 struct blorp_batch batch;
875 blorp_batch_init(&brw->blorp, &batch, brw);
876 blorp_gen6_hiz_op(&batch, &surf, level, layer, op);
877 blorp_batch_finish(&batch);
878 }
879
880 /**
881 * Perform a HiZ or depth resolve operation.
882 *
883 * For an overview of HiZ ops, see the following sections of the Sandy Bridge
884 * PRM, Volume 1, Part 2:
885 * - 7.5.3.1 Depth Buffer Clear
886 * - 7.5.3.2 Depth Buffer Resolve
887 * - 7.5.3.3 Hierarchical Depth Buffer Resolve
888 */
889 void
890 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
891 unsigned int level, unsigned int layer, enum blorp_hiz_op op)
892 {
893 const char *opname = NULL;
894
895 switch (op) {
896 case BLORP_HIZ_OP_DEPTH_RESOLVE:
897 opname = "depth resolve";
898 break;
899 case BLORP_HIZ_OP_HIZ_RESOLVE:
900 opname = "hiz ambiguate";
901 break;
902 case BLORP_HIZ_OP_DEPTH_CLEAR:
903 opname = "depth clear";
904 break;
905 case BLORP_HIZ_OP_NONE:
906 opname = "noop?";
907 break;
908 }
909
910 DBG("%s %s to mt %p level %d layer %d\n",
911 __func__, opname, mt, level, layer);
912
913 if (brw->gen >= 8) {
914 gen8_hiz_exec(brw, mt, level, layer, op);
915 } else {
916 gen6_blorp_hiz_exec(brw, mt, level, layer, op);
917 }
918 }