i965/blorp: Take a blorp_context in compile_nir_shader
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/context.h"
25 #include "main/teximage.h"
26 #include "main/blend.h"
27 #include "main/fbobject.h"
28 #include "main/renderbuffer.h"
29 #include "main/glformats.h"
30
31 #include "brw_blorp.h"
32 #include "brw_context.h"
33 #include "brw_defines.h"
34 #include "brw_meta_util.h"
35 #include "brw_state.h"
36 #include "intel_fbo.h"
37 #include "intel_debug.h"
38
39 #define FILE_DEBUG_FLAG DEBUG_BLORP
40
41 static bool
42 brw_blorp_lookup_shader(struct blorp_context *blorp,
43 const void *key, uint32_t key_size,
44 uint32_t *kernel_out, void *prog_data_out)
45 {
46 struct brw_context *brw = blorp->driver_ctx;
47 return brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
48 key, key_size, kernel_out, prog_data_out);
49 }
50
51 static void
52 brw_blorp_upload_shader(struct blorp_context *blorp,
53 const void *key, uint32_t key_size,
54 const void *kernel, uint32_t kernel_size,
55 const void *prog_data, uint32_t prog_data_size,
56 uint32_t *kernel_out, void *prog_data_out)
57 {
58 struct brw_context *brw = blorp->driver_ctx;
59 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG, key, key_size,
60 kernel, kernel_size, prog_data, prog_data_size,
61 kernel_out, prog_data_out);
62 }
63
64 void
65 brw_blorp_init(struct brw_context *brw)
66 {
67 blorp_init(&brw->blorp, brw, &brw->isl_dev);
68
69 brw->blorp.compiler = brw->intelScreen->compiler;
70
71 switch (brw->gen) {
72 case 6:
73 brw->blorp.mocs.tex = 0;
74 brw->blorp.mocs.rb = 0;
75 brw->blorp.mocs.vb = 0;
76 brw->blorp.exec = gen6_blorp_exec;
77 break;
78 case 7:
79 brw->blorp.mocs.tex = GEN7_MOCS_L3;
80 brw->blorp.mocs.rb = GEN7_MOCS_L3;
81 brw->blorp.mocs.vb = GEN7_MOCS_L3;
82 if (brw->is_haswell) {
83 brw->blorp.exec = gen75_blorp_exec;
84 } else {
85 brw->blorp.exec = gen7_blorp_exec;
86 }
87 break;
88 case 8:
89 brw->blorp.mocs.tex = BDW_MOCS_WB;
90 brw->blorp.mocs.rb = BDW_MOCS_PTE;
91 brw->blorp.mocs.vb = BDW_MOCS_WB;
92 brw->blorp.exec = gen8_blorp_exec;
93 break;
94 case 9:
95 brw->blorp.mocs.tex = SKL_MOCS_WB;
96 brw->blorp.mocs.rb = SKL_MOCS_PTE;
97 brw->blorp.mocs.vb = SKL_MOCS_WB;
98 brw->blorp.exec = gen9_blorp_exec;
99 break;
100 default:
101 unreachable("Invalid gen");
102 }
103
104 brw->blorp.lookup_shader = brw_blorp_lookup_shader;
105 brw->blorp.upload_shader = brw_blorp_upload_shader;
106 }
107
108 static void
109 apply_gen6_stencil_hiz_offset(struct isl_surf *surf,
110 struct intel_mipmap_tree *mt,
111 uint32_t lod,
112 uint32_t *offset)
113 {
114 assert(mt->array_layout == ALL_SLICES_AT_EACH_LOD);
115
116 if (mt->format == MESA_FORMAT_S_UINT8) {
117 /* Note: we can't compute the stencil offset using
118 * intel_miptree_get_aligned_offset(), because the miptree
119 * claims that the region is untiled even though it's W tiled.
120 */
121 *offset = mt->level[lod].level_y * mt->pitch +
122 mt->level[lod].level_x * 64;
123 } else {
124 *offset = intel_miptree_get_aligned_offset(mt,
125 mt->level[lod].level_x,
126 mt->level[lod].level_y,
127 false);
128 }
129
130 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, lod);
131 surf->logical_level0_px.height = minify(surf->logical_level0_px.height, lod);
132 surf->phys_level0_sa.width = minify(surf->phys_level0_sa.width, lod);
133 surf->phys_level0_sa.height = minify(surf->phys_level0_sa.height, lod);
134 surf->levels = 1;
135 surf->array_pitch_el_rows =
136 ALIGN(surf->phys_level0_sa.height, surf->image_alignment_el.height);
137 }
138
139 static void
140 brw_blorp_surf_for_miptree(struct brw_context *brw,
141 struct brw_blorp_surf *surf,
142 struct intel_mipmap_tree *mt,
143 bool is_render_target,
144 unsigned *level,
145 struct isl_surf tmp_surfs[2])
146 {
147 intel_miptree_get_isl_surf(brw, mt, &tmp_surfs[0]);
148 surf->surf = &tmp_surfs[0];
149 surf->addr = (struct blorp_address) {
150 .buffer = mt->bo,
151 .offset = mt->offset,
152 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
153 I915_GEM_DOMAIN_SAMPLER,
154 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
155 };
156
157 if (brw->gen == 6 && mt->format == MESA_FORMAT_S_UINT8 &&
158 mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
159 /* Sandy bridge stencil and HiZ use this ALL_SLICES_AT_EACH_LOD hack in
160 * order to allow for layered rendering. The hack makes each LOD of the
161 * stencil or HiZ buffer a single tightly packed array surface at some
162 * offset into the surface. Since ISL doesn't know how to deal with the
163 * crazy ALL_SLICES_AT_EACH_LOD layout and since we have to do a manual
164 * offset of it anyway, we might as well do the offset here and keep the
165 * hacks inside the i965 driver.
166 *
167 * See also gen6_depth_stencil_state.c
168 */
169 uint32_t offset;
170 apply_gen6_stencil_hiz_offset(&tmp_surfs[0], mt, *level, &offset);
171 surf->addr.offset += offset;
172 *level = 0;
173 }
174
175 struct isl_surf *aux_surf = &tmp_surfs[1];
176 intel_miptree_get_aux_isl_surf(brw, mt, aux_surf, &surf->aux_usage);
177
178 /* For textures that are in the RESOLVED state, we ignore the MCS */
179 if (mt->mcs_mt && !is_render_target &&
180 mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_RESOLVED)
181 surf->aux_usage = ISL_AUX_USAGE_NONE;
182
183 if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
184 /* We only really need a clear color if we also have an auxiliary
185 * surface. Without one, it does nothing.
186 */
187 surf->clear_color = intel_miptree_get_isl_clear_color(brw, mt);
188
189 surf->aux_surf = aux_surf;
190 surf->aux_addr = (struct blorp_address) {
191 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
192 I915_GEM_DOMAIN_SAMPLER,
193 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
194 };
195
196 if (mt->mcs_mt) {
197 surf->aux_addr.buffer = mt->mcs_mt->bo;
198 surf->aux_addr.offset = mt->mcs_mt->offset;
199 } else {
200 assert(surf->aux_usage == ISL_AUX_USAGE_HIZ);
201 struct intel_mipmap_tree *hiz_mt = mt->hiz_buf->mt;
202 if (hiz_mt) {
203 surf->aux_addr.buffer = hiz_mt->bo;
204 if (brw->gen == 6 &&
205 hiz_mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
206 /* gen6 requires the HiZ buffer to be manually offset to the
207 * right location. We could fixup the surf but it doesn't
208 * matter since most of those fields don't matter.
209 */
210 apply_gen6_stencil_hiz_offset(aux_surf, hiz_mt, *level,
211 &surf->aux_addr.offset);
212 } else {
213 surf->aux_addr.offset = 0;
214 }
215 assert(hiz_mt->pitch == aux_surf->row_pitch);
216 } else {
217 surf->aux_addr.buffer = mt->hiz_buf->bo;
218 surf->aux_addr.offset = 0;
219 }
220 }
221 } else {
222 surf->aux_addr = (struct blorp_address) {
223 .buffer = NULL,
224 };
225 memset(&surf->clear_color, 0, sizeof(surf->clear_color));
226 }
227 assert((surf->aux_usage == ISL_AUX_USAGE_NONE) ==
228 (surf->aux_addr.buffer == NULL));
229 }
230
231 static enum isl_format
232 brw_blorp_to_isl_format(struct brw_context *brw, mesa_format format,
233 bool is_render_target)
234 {
235 switch (format) {
236 case MESA_FORMAT_NONE:
237 return ISL_FORMAT_UNSUPPORTED;
238 case MESA_FORMAT_S_UINT8:
239 return ISL_FORMAT_R8_UINT;
240 case MESA_FORMAT_Z24_UNORM_X8_UINT:
241 return ISL_FORMAT_R24_UNORM_X8_TYPELESS;
242 case MESA_FORMAT_Z_FLOAT32:
243 return ISL_FORMAT_R32_FLOAT;
244 case MESA_FORMAT_Z_UNORM16:
245 return ISL_FORMAT_R16_UNORM;
246 default: {
247 if (is_render_target) {
248 assert(brw->format_supported_as_render_target[format]);
249 return brw->render_target_format[format];
250 } else {
251 return brw_format_for_mesa_format(format);
252 }
253 break;
254 }
255 }
256 }
257
258 /**
259 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
260 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
261 * the physical layer holding sample 0. So, for example, if
262 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
263 * 4*n.
264 */
265 void
266 brw_blorp_blit_miptrees(struct brw_context *brw,
267 struct intel_mipmap_tree *src_mt,
268 unsigned src_level, unsigned src_layer,
269 mesa_format src_format, int src_swizzle,
270 struct intel_mipmap_tree *dst_mt,
271 unsigned dst_level, unsigned dst_layer,
272 mesa_format dst_format,
273 float src_x0, float src_y0,
274 float src_x1, float src_y1,
275 float dst_x0, float dst_y0,
276 float dst_x1, float dst_y1,
277 GLenum filter, bool mirror_x, bool mirror_y,
278 bool decode_srgb, bool encode_srgb)
279 {
280 /* Get ready to blit. This includes depth resolving the src and dst
281 * buffers if necessary. Note: it's not necessary to do a color resolve on
282 * the destination buffer because we use the standard render path to render
283 * to destination color buffers, and the standard render path is
284 * fast-color-aware.
285 */
286 intel_miptree_resolve_color(brw, src_mt, INTEL_MIPTREE_IGNORE_CCS_E);
287 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
288 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
289
290 intel_miptree_prepare_mcs(brw, dst_mt);
291
292 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
293 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
294 __func__,
295 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
296 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
297 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
298 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
299 mirror_x, mirror_y);
300
301 if (!decode_srgb && _mesa_get_format_color_encoding(src_format) == GL_SRGB)
302 src_format = _mesa_get_srgb_format_linear(src_format);
303
304 if (!encode_srgb && _mesa_get_format_color_encoding(dst_format) == GL_SRGB)
305 dst_format = _mesa_get_srgb_format_linear(dst_format);
306
307 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
308 * texture, the above code configures the source format for L32_FLOAT or
309 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
310 * the SAMPLE message appears to handle multisampled L32_FLOAT and
311 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
312 * around the problem by using a source format of R32_FLOAT. This
313 * shouldn't affect rendering correctness, since the destination format is
314 * R32_FLOAT, so only the contents of the red channel matters.
315 */
316 if (brw->gen == 6 &&
317 src_mt->num_samples > 1 && dst_mt->num_samples <= 1 &&
318 src_mt->format == dst_mt->format &&
319 (dst_format == MESA_FORMAT_L_FLOAT32 ||
320 dst_format == MESA_FORMAT_I_FLOAT32)) {
321 src_format = dst_format = MESA_FORMAT_R_FLOAT32;
322 }
323
324 intel_miptree_check_level_layer(src_mt, src_level, src_layer);
325 intel_miptree_check_level_layer(dst_mt, dst_level, dst_layer);
326 intel_miptree_used_for_rendering(dst_mt);
327
328 struct isl_surf tmp_surfs[4];
329 struct brw_blorp_surf src_surf, dst_surf;
330 brw_blorp_surf_for_miptree(brw, &src_surf, src_mt, false,
331 &src_level, &tmp_surfs[0]);
332 brw_blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true,
333 &dst_level, &tmp_surfs[2]);
334
335 brw_blorp_blit(brw, &src_surf, src_level, src_layer,
336 brw_blorp_to_isl_format(brw, src_format, false), src_swizzle,
337 &dst_surf, dst_level, dst_layer,
338 brw_blorp_to_isl_format(brw, dst_format, true),
339 src_x0, src_y0, src_x1, src_y1,
340 dst_x0, dst_y0, dst_x1, dst_y1,
341 filter, mirror_x, mirror_y);
342
343 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
344
345 if (intel_miptree_is_lossless_compressed(brw, dst_mt))
346 dst_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED;
347 }
348
349 static struct intel_mipmap_tree *
350 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
351 {
352 struct intel_mipmap_tree *mt = irb->mt;
353 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
354 mt = mt->stencil_mt;
355 return mt;
356 }
357
358 static int
359 blorp_get_texture_swizzle(const struct intel_renderbuffer *irb)
360 {
361 return irb->Base.Base._BaseFormat == GL_RGB ?
362 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ONE) :
363 SWIZZLE_XYZW;
364 }
365
366 static void
367 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
368 struct intel_renderbuffer *src_irb, mesa_format src_format,
369 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
370 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
371 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
372 GLenum filter, bool mirror_x, bool mirror_y)
373 {
374 const struct gl_context *ctx = &brw->ctx;
375
376 /* Find source/dst miptrees */
377 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
378 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
379
380 const bool do_srgb = ctx->Color.sRGBEnabled;
381
382 /* Do the blit */
383 brw_blorp_blit_miptrees(brw,
384 src_mt, src_irb->mt_level, src_irb->mt_layer,
385 src_format, blorp_get_texture_swizzle(src_irb),
386 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
387 dst_format,
388 srcX0, srcY0, srcX1, srcY1,
389 dstX0, dstY0, dstX1, dstY1,
390 filter, mirror_x, mirror_y,
391 do_srgb, do_srgb);
392
393 dst_irb->need_downsample = true;
394 }
395
396 static bool
397 try_blorp_blit(struct brw_context *brw,
398 const struct gl_framebuffer *read_fb,
399 const struct gl_framebuffer *draw_fb,
400 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
401 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
402 GLenum filter, GLbitfield buffer_bit)
403 {
404 struct gl_context *ctx = &brw->ctx;
405
406 /* Sync up the state of window system buffers. We need to do this before
407 * we go looking for the buffers.
408 */
409 intel_prepare_render(brw);
410
411 bool mirror_x, mirror_y;
412 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
413 &srcX0, &srcY0, &srcX1, &srcY1,
414 &dstX0, &dstY0, &dstX1, &dstY1,
415 &mirror_x, &mirror_y))
416 return true;
417
418 /* Find buffers */
419 struct intel_renderbuffer *src_irb;
420 struct intel_renderbuffer *dst_irb;
421 struct intel_mipmap_tree *src_mt;
422 struct intel_mipmap_tree *dst_mt;
423 switch (buffer_bit) {
424 case GL_COLOR_BUFFER_BIT:
425 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
426 for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
427 dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
428 if (dst_irb)
429 do_blorp_blit(brw, buffer_bit,
430 src_irb, src_irb->Base.Base.Format,
431 dst_irb, dst_irb->Base.Base.Format,
432 srcX0, srcY0, srcX1, srcY1,
433 dstX0, dstY0, dstX1, dstY1,
434 filter, mirror_x, mirror_y);
435 }
436 break;
437 case GL_DEPTH_BUFFER_BIT:
438 src_irb =
439 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
440 dst_irb =
441 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
442 src_mt = find_miptree(buffer_bit, src_irb);
443 dst_mt = find_miptree(buffer_bit, dst_irb);
444
445 /* We can't handle format conversions between Z24 and other formats
446 * since we have to lie about the surface format. See the comments in
447 * brw_blorp_surface_info::set().
448 */
449 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
450 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
451 return false;
452
453 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
454 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
455 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
456 filter, mirror_x, mirror_y);
457 break;
458 case GL_STENCIL_BUFFER_BIT:
459 src_irb =
460 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
461 dst_irb =
462 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
463 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
464 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
465 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
466 filter, mirror_x, mirror_y);
467 break;
468 default:
469 unreachable("not reached");
470 }
471
472 return true;
473 }
474
475 bool
476 brw_blorp_copytexsubimage(struct brw_context *brw,
477 struct gl_renderbuffer *src_rb,
478 struct gl_texture_image *dst_image,
479 int slice,
480 int srcX0, int srcY0,
481 int dstX0, int dstY0,
482 int width, int height)
483 {
484 struct gl_context *ctx = &brw->ctx;
485 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
486 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
487
488 /* No pixel transfer operations (zoom, bias, mapping), just a blit */
489 if (brw->ctx._ImageTransferState)
490 return false;
491
492 /* Sync up the state of window system buffers. We need to do this before
493 * we go looking at the src renderbuffer's miptree.
494 */
495 intel_prepare_render(brw);
496
497 struct intel_mipmap_tree *src_mt = src_irb->mt;
498 struct intel_mipmap_tree *dst_mt = intel_image->mt;
499
500 /* There is support for only up to eight samples. */
501 if (src_mt->num_samples > 8 || dst_mt->num_samples > 8)
502 return false;
503
504 /* BLORP is only supported from Gen6 onwards. */
505 if (brw->gen < 6)
506 return false;
507
508 if (_mesa_get_format_base_format(src_rb->Format) !=
509 _mesa_get_format_base_format(dst_image->TexFormat)) {
510 return false;
511 }
512
513 /* We can't handle format conversions between Z24 and other formats since
514 * we have to lie about the surface format. See the comments in
515 * brw_blorp_surface_info::set().
516 */
517 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
518 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
519 return false;
520 }
521
522 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
523 return false;
524
525 /* Source clipping shouldn't be necessary, since copytexsubimage (in
526 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
527 * takes care of it.
528 *
529 * Destination clipping shouldn't be necessary since the restrictions on
530 * glCopyTexSubImage prevent the user from specifying a destination rectangle
531 * that falls outside the bounds of the destination texture.
532 * See error_check_subtexture_dimensions().
533 */
534
535 int srcY1 = srcY0 + height;
536 int srcX1 = srcX0 + width;
537 int dstX1 = dstX0 + width;
538 int dstY1 = dstY0 + height;
539
540 /* Account for the fact that in the system framebuffer, the origin is at
541 * the lower left.
542 */
543 bool mirror_y = false;
544 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
545 GLint tmp = src_rb->Height - srcY0;
546 srcY0 = src_rb->Height - srcY1;
547 srcY1 = tmp;
548 mirror_y = true;
549 }
550
551 /* Account for face selection and texture view MinLayer */
552 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
553 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
554
555 brw_blorp_blit_miptrees(brw,
556 src_mt, src_irb->mt_level, src_irb->mt_layer,
557 src_rb->Format, blorp_get_texture_swizzle(src_irb),
558 dst_mt, dst_level, dst_slice,
559 dst_image->TexFormat,
560 srcX0, srcY0, srcX1, srcY1,
561 dstX0, dstY0, dstX1, dstY1,
562 GL_NEAREST, false, mirror_y,
563 false, false);
564
565 /* If we're copying to a packed depth stencil texture and the source
566 * framebuffer has separate stencil, we need to also copy the stencil data
567 * over.
568 */
569 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
570 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
571 src_rb != NULL) {
572 src_irb = intel_renderbuffer(src_rb);
573 src_mt = src_irb->mt;
574
575 if (src_mt->stencil_mt)
576 src_mt = src_mt->stencil_mt;
577 if (dst_mt->stencil_mt)
578 dst_mt = dst_mt->stencil_mt;
579
580 if (src_mt != dst_mt) {
581 brw_blorp_blit_miptrees(brw,
582 src_mt, src_irb->mt_level, src_irb->mt_layer,
583 src_mt->format,
584 blorp_get_texture_swizzle(src_irb),
585 dst_mt, dst_level, dst_slice,
586 dst_mt->format,
587 srcX0, srcY0, srcX1, srcY1,
588 dstX0, dstY0, dstX1, dstY1,
589 GL_NEAREST, false, mirror_y,
590 false, false);
591 }
592 }
593
594 return true;
595 }
596
597
598 GLbitfield
599 brw_blorp_framebuffer(struct brw_context *brw,
600 struct gl_framebuffer *readFb,
601 struct gl_framebuffer *drawFb,
602 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
603 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
604 GLbitfield mask, GLenum filter)
605 {
606 /* BLORP is not supported before Gen6. */
607 if (brw->gen < 6)
608 return mask;
609
610 static GLbitfield buffer_bits[] = {
611 GL_COLOR_BUFFER_BIT,
612 GL_DEPTH_BUFFER_BIT,
613 GL_STENCIL_BUFFER_BIT,
614 };
615
616 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
617 if ((mask & buffer_bits[i]) &&
618 try_blorp_blit(brw, readFb, drawFb,
619 srcX0, srcY0, srcX1, srcY1,
620 dstX0, dstY0, dstX1, dstY1,
621 filter, buffer_bits[i])) {
622 mask &= ~buffer_bits[i];
623 }
624 }
625
626 return mask;
627 }
628
629 static bool
630 set_write_disables(const struct intel_renderbuffer *irb,
631 const GLubyte *color_mask, bool *color_write_disable)
632 {
633 /* Format information in the renderbuffer represents the requirements
634 * given by the client. There are cases where the backing miptree uses,
635 * for example, RGBA to represent RGBX. Since the client is only expecting
636 * RGB we can treat alpha as not used and write whatever we like into it.
637 */
638 const GLenum base_format = irb->Base.Base._BaseFormat;
639 const int components = _mesa_base_format_component_count(base_format);
640 bool disables = false;
641
642 assert(components > 0);
643
644 for (int i = 0; i < components; i++) {
645 color_write_disable[i] = !color_mask[i];
646 disables = disables || !color_mask[i];
647 }
648
649 return disables;
650 }
651
652 static bool
653 do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb,
654 struct gl_renderbuffer *rb, unsigned buf,
655 bool partial_clear, bool encode_srgb, unsigned layer)
656 {
657 struct gl_context *ctx = &brw->ctx;
658 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
659 mesa_format format = irb->mt->format;
660 uint32_t x0, x1, y0, y1;
661
662 if (!encode_srgb && _mesa_get_format_color_encoding(format) == GL_SRGB)
663 format = _mesa_get_srgb_format_linear(format);
664
665 x0 = fb->_Xmin;
666 x1 = fb->_Xmax;
667 if (rb->Name != 0) {
668 y0 = fb->_Ymin;
669 y1 = fb->_Ymax;
670 } else {
671 y0 = rb->Height - fb->_Ymax;
672 y1 = rb->Height - fb->_Ymin;
673 }
674
675 /* If the clear region is empty, just return. */
676 if (x0 == x1 || y0 == y1)
677 return true;
678
679 bool can_fast_clear = !partial_clear;
680
681 bool color_write_disable[4] = { false, false, false, false };
682 if (set_write_disables(irb, ctx->Color.ColorMask[buf], color_write_disable))
683 can_fast_clear = false;
684
685 if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_NO_MCS ||
686 !brw_is_color_fast_clear_compatible(brw, irb->mt, &ctx->Color.ClearColor))
687 can_fast_clear = false;
688
689 if (can_fast_clear) {
690 /* Record the clear color in the miptree so that it will be
691 * programmed in SURFACE_STATE by later rendering and resolve
692 * operations.
693 */
694 const bool color_updated = brw_meta_set_fast_clear_color(
695 brw, irb->mt, &ctx->Color.ClearColor);
696
697 /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear
698 * is redundant and can be skipped.
699 */
700 if (!color_updated &&
701 irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
702 return true;
703
704 /* If the MCS buffer hasn't been allocated yet, we need to allocate
705 * it now.
706 */
707 if (!irb->mt->mcs_mt) {
708 if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt)) {
709 /* MCS allocation failed--probably this will only happen in
710 * out-of-memory conditions. But in any case, try to recover
711 * by falling back to a non-blorp clear technique.
712 */
713 return false;
714 }
715 }
716 }
717
718 intel_miptree_check_level_layer(irb->mt, irb->mt_level, layer);
719 intel_miptree_used_for_rendering(irb->mt);
720
721 /* We can't setup the blorp_surf until we've allocated the MCS above */
722 struct isl_surf isl_tmp[2];
723 struct brw_blorp_surf surf;
724 unsigned level = irb->mt_level;
725 brw_blorp_surf_for_miptree(brw, &surf, irb->mt, true, &level, isl_tmp);
726
727 if (can_fast_clear) {
728 DBG("%s (fast) to mt %p level %d layer %d\n", __FUNCTION__,
729 irb->mt, irb->mt_level, irb->mt_layer);
730
731 blorp_fast_clear(brw, &surf, level, layer, x0, y0, x1, y1);
732
733 /* Now that the fast clear has occurred, put the buffer in
734 * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing
735 * redundant clears.
736 */
737 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
738 } else {
739 DBG("%s (slow) to mt %p level %d layer %d\n", __FUNCTION__,
740 irb->mt, irb->mt_level, irb->mt_layer);
741
742 union isl_color_value clear_color;
743 memcpy(clear_color.f32, ctx->Color.ClearColor.f, sizeof(float) * 4);
744
745 blorp_clear(brw, &surf, level, layer, x0, y0, x1, y1,
746 (enum isl_format)brw->render_target_format[format],
747 clear_color, color_write_disable);
748
749 if (intel_miptree_is_lossless_compressed(brw, irb->mt)) {
750 /* Compressed buffers can be cleared also using normal rep-clear. In
751 * such case they bahave such as if they were drawn using normal 3D
752 * render pipeline, and we simply mark the mcs as dirty.
753 */
754 assert(partial_clear);
755 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED;
756 }
757 }
758
759 return true;
760 }
761
762 bool
763 brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb,
764 GLbitfield mask, bool partial_clear, bool encode_srgb)
765 {
766 for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
767 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
768 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
769
770 /* Only clear the buffers present in the provided mask */
771 if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0)
772 continue;
773
774 /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
775 * the framebuffer can be complete with some attachments missing. In
776 * this case the _ColorDrawBuffers pointer will be NULL.
777 */
778 if (rb == NULL)
779 continue;
780
781 if (fb->MaxNumLayers > 0) {
782 unsigned layer_multiplier =
783 (irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
784 irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
785 irb->mt->num_samples : 1;
786 unsigned num_layers = irb->layer_count;
787 for (unsigned layer = 0; layer < num_layers; layer++) {
788 if (!do_single_blorp_clear(
789 brw, fb, rb, buf, partial_clear, encode_srgb,
790 irb->mt_layer + layer * layer_multiplier)) {
791 return false;
792 }
793 }
794 } else {
795 unsigned layer = irb->mt_layer;
796 if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear,
797 encode_srgb, layer))
798 return false;
799 }
800
801 irb->need_downsample = true;
802 }
803
804 return true;
805 }
806
807 void
808 brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt)
809 {
810 DBG("%s to mt %p\n", __FUNCTION__, mt);
811
812 const mesa_format format = _mesa_get_srgb_format_linear(mt->format);
813
814 intel_miptree_check_level_layer(mt, 0 /* level */, 0 /* layer */);
815 intel_miptree_used_for_rendering(mt);
816
817 struct isl_surf isl_tmp[2];
818 struct brw_blorp_surf surf;
819 unsigned level = 0;
820 brw_blorp_surf_for_miptree(brw, &surf, mt, true, &level, isl_tmp);
821
822 brw_blorp_ccs_resolve(brw, &surf, brw_blorp_to_isl_format(brw, format, true));
823
824 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
825 }
826
827 static void
828 gen6_blorp_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
829 unsigned int level, unsigned int layer, enum gen6_hiz_op op)
830 {
831 intel_miptree_check_level_layer(mt, level, layer);
832 intel_miptree_used_for_rendering(mt);
833
834 assert(intel_miptree_level_has_hiz(mt, level));
835
836 struct isl_surf isl_tmp[2];
837 struct brw_blorp_surf surf;
838 brw_blorp_surf_for_miptree(brw, &surf, mt, true, &level, isl_tmp);
839
840 blorp_gen6_hiz_op(brw, &surf, level, layer, op);
841 }
842
843 /**
844 * Perform a HiZ or depth resolve operation.
845 *
846 * For an overview of HiZ ops, see the following sections of the Sandy Bridge
847 * PRM, Volume 1, Part 2:
848 * - 7.5.3.1 Depth Buffer Clear
849 * - 7.5.3.2 Depth Buffer Resolve
850 * - 7.5.3.3 Hierarchical Depth Buffer Resolve
851 */
852 void
853 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
854 unsigned int level, unsigned int layer, enum gen6_hiz_op op)
855 {
856 const char *opname = NULL;
857
858 switch (op) {
859 case GEN6_HIZ_OP_DEPTH_RESOLVE:
860 opname = "depth resolve";
861 break;
862 case GEN6_HIZ_OP_HIZ_RESOLVE:
863 opname = "hiz ambiguate";
864 break;
865 case GEN6_HIZ_OP_DEPTH_CLEAR:
866 opname = "depth clear";
867 break;
868 case GEN6_HIZ_OP_NONE:
869 opname = "noop?";
870 break;
871 }
872
873 DBG("%s %s to mt %p level %d layer %d\n",
874 __func__, opname, mt, level, layer);
875
876 if (brw->gen >= 8) {
877 gen8_hiz_exec(brw, mt, level, layer, op);
878 } else {
879 gen6_blorp_hiz_exec(brw, mt, level, layer, op);
880 }
881 }