intel/blorp: make upload_shader() return a bool indicating success or failure
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/context.h"
25 #include "main/teximage.h"
26 #include "main/blend.h"
27 #include "main/fbobject.h"
28 #include "main/renderbuffer.h"
29 #include "main/glformats.h"
30
31 #include "brw_blorp.h"
32 #include "brw_context.h"
33 #include "brw_defines.h"
34 #include "brw_meta_util.h"
35 #include "brw_state.h"
36 #include "intel_fbo.h"
37 #include "common/gen_debug.h"
38
39 #define FILE_DEBUG_FLAG DEBUG_BLORP
40
41 static bool
42 brw_blorp_lookup_shader(struct blorp_context *blorp,
43 const void *key, uint32_t key_size,
44 uint32_t *kernel_out, void *prog_data_out)
45 {
46 struct brw_context *brw = blorp->driver_ctx;
47 return brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
48 key, key_size, kernel_out, prog_data_out);
49 }
50
51 static bool
52 brw_blorp_upload_shader(struct blorp_context *blorp,
53 const void *key, uint32_t key_size,
54 const void *kernel, uint32_t kernel_size,
55 const struct brw_stage_prog_data *prog_data,
56 uint32_t prog_data_size,
57 uint32_t *kernel_out, void *prog_data_out)
58 {
59 struct brw_context *brw = blorp->driver_ctx;
60 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG, key, key_size,
61 kernel, kernel_size, prog_data, prog_data_size,
62 kernel_out, prog_data_out);
63 return true;
64 }
65
66 void
67 brw_blorp_init(struct brw_context *brw)
68 {
69 blorp_init(&brw->blorp, brw, &brw->isl_dev);
70
71 brw->blorp.compiler = brw->screen->compiler;
72
73 switch (brw->gen) {
74 case 6:
75 brw->blorp.mocs.tex = 0;
76 brw->blorp.mocs.rb = 0;
77 brw->blorp.mocs.vb = 0;
78 brw->blorp.exec = gen6_blorp_exec;
79 break;
80 case 7:
81 brw->blorp.mocs.tex = GEN7_MOCS_L3;
82 brw->blorp.mocs.rb = GEN7_MOCS_L3;
83 brw->blorp.mocs.vb = GEN7_MOCS_L3;
84 if (brw->is_haswell) {
85 brw->blorp.exec = gen75_blorp_exec;
86 } else {
87 brw->blorp.exec = gen7_blorp_exec;
88 }
89 break;
90 case 8:
91 brw->blorp.mocs.tex = BDW_MOCS_WB;
92 brw->blorp.mocs.rb = BDW_MOCS_PTE;
93 brw->blorp.mocs.vb = BDW_MOCS_WB;
94 brw->blorp.exec = gen8_blorp_exec;
95 break;
96 case 9:
97 brw->blorp.mocs.tex = SKL_MOCS_WB;
98 brw->blorp.mocs.rb = SKL_MOCS_PTE;
99 brw->blorp.mocs.vb = SKL_MOCS_WB;
100 brw->blorp.exec = gen9_blorp_exec;
101 break;
102 default:
103 unreachable("Invalid gen");
104 }
105
106 brw->blorp.lookup_shader = brw_blorp_lookup_shader;
107 brw->blorp.upload_shader = brw_blorp_upload_shader;
108 }
109
110 static void
111 apply_gen6_stencil_hiz_offset(struct isl_surf *surf,
112 struct intel_mipmap_tree *mt,
113 uint32_t lod,
114 uint32_t *offset)
115 {
116 assert(mt->array_layout == ALL_SLICES_AT_EACH_LOD);
117
118 if (mt->format == MESA_FORMAT_S_UINT8) {
119 /* Note: we can't compute the stencil offset using
120 * intel_miptree_get_aligned_offset(), because the miptree
121 * claims that the region is untiled even though it's W tiled.
122 */
123 *offset = mt->level[lod].level_y * mt->pitch +
124 mt->level[lod].level_x * 64;
125 } else {
126 *offset = intel_miptree_get_aligned_offset(mt,
127 mt->level[lod].level_x,
128 mt->level[lod].level_y);
129 }
130
131 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, lod);
132 surf->logical_level0_px.height = minify(surf->logical_level0_px.height, lod);
133 surf->phys_level0_sa.width = minify(surf->phys_level0_sa.width, lod);
134 surf->phys_level0_sa.height = minify(surf->phys_level0_sa.height, lod);
135 surf->levels = 1;
136 surf->array_pitch_el_rows =
137 ALIGN(surf->phys_level0_sa.height, surf->image_alignment_el.height);
138 }
139
140 static void
141 blorp_surf_for_miptree(struct brw_context *brw,
142 struct blorp_surf *surf,
143 struct intel_mipmap_tree *mt,
144 bool is_render_target,
145 uint32_t safe_aux_usage,
146 unsigned *level,
147 unsigned start_layer, unsigned num_layers,
148 struct isl_surf tmp_surfs[2])
149 {
150 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
151 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
152 const unsigned num_samples = MAX2(1, mt->num_samples);
153 for (unsigned i = 0; i < num_layers; i++) {
154 for (unsigned s = 0; s < num_samples; s++) {
155 const unsigned phys_layer = (start_layer + i) * num_samples + s;
156 intel_miptree_check_level_layer(mt, *level, phys_layer);
157 }
158 }
159 } else {
160 for (unsigned i = 0; i < num_layers; i++)
161 intel_miptree_check_level_layer(mt, *level, start_layer + i);
162 }
163
164 intel_miptree_get_isl_surf(brw, mt, &tmp_surfs[0]);
165 surf->surf = &tmp_surfs[0];
166 surf->addr = (struct blorp_address) {
167 .buffer = mt->bo,
168 .offset = mt->offset,
169 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
170 I915_GEM_DOMAIN_SAMPLER,
171 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
172 };
173
174 if (brw->gen == 6 && mt->format == MESA_FORMAT_S_UINT8 &&
175 mt->array_layout == ALL_SLICES_AT_EACH_LOD) {
176 /* Sandy bridge stencil and HiZ use this ALL_SLICES_AT_EACH_LOD hack in
177 * order to allow for layered rendering. The hack makes each LOD of the
178 * stencil or HiZ buffer a single tightly packed array surface at some
179 * offset into the surface. Since ISL doesn't know how to deal with the
180 * crazy ALL_SLICES_AT_EACH_LOD layout and since we have to do a manual
181 * offset of it anyway, we might as well do the offset here and keep the
182 * hacks inside the i965 driver.
183 *
184 * See also gen6_depth_stencil_state.c
185 */
186 uint32_t offset;
187 apply_gen6_stencil_hiz_offset(&tmp_surfs[0], mt, *level, &offset);
188 surf->addr.offset += offset;
189 *level = 0;
190 }
191
192 struct isl_surf *aux_surf = &tmp_surfs[1];
193 intel_miptree_get_aux_isl_surf(brw, mt, aux_surf, &surf->aux_usage);
194
195 if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
196 if (surf->aux_usage == ISL_AUX_USAGE_HIZ) {
197 /* If we're not going to use it as a depth buffer, resolve HiZ */
198 if (!(safe_aux_usage & (1 << ISL_AUX_USAGE_HIZ))) {
199 for (unsigned i = 0; i < num_layers; i++) {
200 intel_miptree_slice_resolve_depth(brw, mt, *level,
201 start_layer + i);
202
203 /* If we're rendering to it then we'll need a HiZ resolve once
204 * we're done before we can use it with HiZ again.
205 */
206 if (is_render_target)
207 intel_miptree_slice_set_needs_hiz_resolve(mt, *level,
208 start_layer + i);
209 }
210 surf->aux_usage = ISL_AUX_USAGE_NONE;
211 }
212 } else if (!(safe_aux_usage & (1 << surf->aux_usage))) {
213 uint32_t flags = 0;
214 if (safe_aux_usage & (1 << ISL_AUX_USAGE_CCS_E))
215 flags |= INTEL_MIPTREE_IGNORE_CCS_E;
216
217 intel_miptree_resolve_color(brw, mt,
218 *level, start_layer, num_layers, flags);
219
220 assert(!intel_miptree_has_color_unresolved(mt, *level, 1,
221 start_layer, num_layers));
222 surf->aux_usage = ISL_AUX_USAGE_NONE;
223 }
224 }
225
226 if (is_render_target)
227 intel_miptree_used_for_rendering(brw, mt, *level,
228 start_layer, num_layers);
229
230 if (surf->aux_usage != ISL_AUX_USAGE_NONE) {
231 /* We only really need a clear color if we also have an auxiliary
232 * surface. Without one, it does nothing.
233 */
234 surf->clear_color = intel_miptree_get_isl_clear_color(brw, mt);
235
236 surf->aux_surf = aux_surf;
237 surf->aux_addr = (struct blorp_address) {
238 .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER :
239 I915_GEM_DOMAIN_SAMPLER,
240 .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0,
241 };
242
243 if (mt->mcs_buf) {
244 surf->aux_addr.buffer = mt->mcs_buf->bo;
245 surf->aux_addr.offset = mt->mcs_buf->offset;
246 } else {
247 assert(surf->aux_usage == ISL_AUX_USAGE_HIZ);
248
249 surf->aux_addr.buffer = mt->hiz_buf->aux_base.bo;
250 surf->aux_addr.offset = mt->hiz_buf->aux_base.offset;
251
252 struct intel_mipmap_tree *hiz_mt = mt->hiz_buf->mt;
253 if (hiz_mt) {
254 assert(brw->gen == 6 &&
255 hiz_mt->array_layout == ALL_SLICES_AT_EACH_LOD);
256
257 /* gen6 requires the HiZ buffer to be manually offset to the
258 * right location. We could fixup the surf but it doesn't
259 * matter since most of those fields don't matter.
260 */
261 apply_gen6_stencil_hiz_offset(aux_surf, hiz_mt, *level,
262 &surf->aux_addr.offset);
263 assert(hiz_mt->pitch == aux_surf->row_pitch);
264 }
265 }
266 } else {
267 surf->aux_addr = (struct blorp_address) {
268 .buffer = NULL,
269 };
270 memset(&surf->clear_color, 0, sizeof(surf->clear_color));
271 }
272 assert((surf->aux_usage == ISL_AUX_USAGE_NONE) ==
273 (surf->aux_addr.buffer == NULL));
274 }
275
276 static enum isl_format
277 brw_blorp_to_isl_format(struct brw_context *brw, mesa_format format,
278 bool is_render_target)
279 {
280 switch (format) {
281 case MESA_FORMAT_NONE:
282 return ISL_FORMAT_UNSUPPORTED;
283 case MESA_FORMAT_S_UINT8:
284 return ISL_FORMAT_R8_UINT;
285 case MESA_FORMAT_Z24_UNORM_X8_UINT:
286 case MESA_FORMAT_Z24_UNORM_S8_UINT:
287 return ISL_FORMAT_R24_UNORM_X8_TYPELESS;
288 case MESA_FORMAT_Z_FLOAT32:
289 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
290 return ISL_FORMAT_R32_FLOAT;
291 case MESA_FORMAT_Z_UNORM16:
292 return ISL_FORMAT_R16_UNORM;
293 default: {
294 if (is_render_target) {
295 assert(brw->format_supported_as_render_target[format]);
296 return brw->render_target_format[format];
297 } else {
298 return brw_isl_format_for_mesa_format(format);
299 }
300 break;
301 }
302 }
303 }
304
305 /**
306 * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
307 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
308 *
309 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
310 * 0 1 2 3 4 5
311 * 4 5 6 7 0 1
312 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
313 *
314 * which is simply adding 4 then modding by 8 (or anding with 7).
315 *
316 * We then may need to apply workarounds for textureGather hardware bugs.
317 */
318 static enum isl_channel_select
319 swizzle_to_scs(GLenum swizzle)
320 {
321 return (enum isl_channel_select)((swizzle + 4) & 7);
322 }
323
324 static unsigned
325 physical_to_logical_layer(struct intel_mipmap_tree *mt,
326 unsigned physical_layer)
327 {
328 if (mt->num_samples > 1 &&
329 (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
330 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS)) {
331 assert(physical_layer % mt->num_samples == 0);
332 return physical_layer / mt->num_samples;
333 } else {
334 return physical_layer;
335 }
336 }
337
338 /**
339 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
340 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
341 * the physical layer holding sample 0. So, for example, if
342 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
343 * 4*n.
344 */
345 void
346 brw_blorp_blit_miptrees(struct brw_context *brw,
347 struct intel_mipmap_tree *src_mt,
348 unsigned src_level, unsigned src_layer,
349 mesa_format src_format, int src_swizzle,
350 struct intel_mipmap_tree *dst_mt,
351 unsigned dst_level, unsigned dst_layer,
352 mesa_format dst_format,
353 float src_x0, float src_y0,
354 float src_x1, float src_y1,
355 float dst_x0, float dst_y0,
356 float dst_x1, float dst_y1,
357 GLenum filter, bool mirror_x, bool mirror_y,
358 bool decode_srgb, bool encode_srgb)
359 {
360 /* Blorp operates in logical layers */
361 src_layer = physical_to_logical_layer(src_mt, src_layer);
362 dst_layer = physical_to_logical_layer(dst_mt, dst_layer);
363
364 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
365 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
366 __func__,
367 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
368 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
369 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
370 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
371 mirror_x, mirror_y);
372
373 if (!decode_srgb && _mesa_get_format_color_encoding(src_format) == GL_SRGB)
374 src_format = _mesa_get_srgb_format_linear(src_format);
375
376 if (!encode_srgb && _mesa_get_format_color_encoding(dst_format) == GL_SRGB)
377 dst_format = _mesa_get_srgb_format_linear(dst_format);
378
379 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
380 * texture, the above code configures the source format for L32_FLOAT or
381 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
382 * the SAMPLE message appears to handle multisampled L32_FLOAT and
383 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
384 * around the problem by using a source format of R32_FLOAT. This
385 * shouldn't affect rendering correctness, since the destination format is
386 * R32_FLOAT, so only the contents of the red channel matters.
387 */
388 if (brw->gen == 6 &&
389 src_mt->num_samples > 1 && dst_mt->num_samples <= 1 &&
390 src_mt->format == dst_mt->format &&
391 (dst_format == MESA_FORMAT_L_FLOAT32 ||
392 dst_format == MESA_FORMAT_I_FLOAT32)) {
393 src_format = dst_format = MESA_FORMAT_R_FLOAT32;
394 }
395
396 uint32_t src_usage_flags = (1 << ISL_AUX_USAGE_MCS);
397 if (src_format == src_mt->format)
398 src_usage_flags |= (1 << ISL_AUX_USAGE_CCS_E);
399
400 uint32_t dst_usage_flags = (1 << ISL_AUX_USAGE_MCS);
401 if (dst_format == dst_mt->format) {
402 dst_usage_flags |= (1 << ISL_AUX_USAGE_CCS_E) |
403 (1 << ISL_AUX_USAGE_CCS_D);
404 }
405
406 struct isl_surf tmp_surfs[4];
407 struct blorp_surf src_surf, dst_surf;
408 blorp_surf_for_miptree(brw, &src_surf, src_mt, false, src_usage_flags,
409 &src_level, src_layer, 1, &tmp_surfs[0]);
410 blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true, dst_usage_flags,
411 &dst_level, dst_layer, 1, &tmp_surfs[2]);
412
413 struct isl_swizzle src_isl_swizzle = {
414 .r = swizzle_to_scs(GET_SWZ(src_swizzle, 0)),
415 .g = swizzle_to_scs(GET_SWZ(src_swizzle, 1)),
416 .b = swizzle_to_scs(GET_SWZ(src_swizzle, 2)),
417 .a = swizzle_to_scs(GET_SWZ(src_swizzle, 3)),
418 };
419
420 struct blorp_batch batch;
421 blorp_batch_init(&brw->blorp, &batch, brw, 0);
422 blorp_blit(&batch, &src_surf, src_level, src_layer,
423 brw_blorp_to_isl_format(brw, src_format, false), src_isl_swizzle,
424 &dst_surf, dst_level, dst_layer,
425 brw_blorp_to_isl_format(brw, dst_format, true),
426 ISL_SWIZZLE_IDENTITY,
427 src_x0, src_y0, src_x1, src_y1,
428 dst_x0, dst_y0, dst_x1, dst_y1,
429 filter, mirror_x, mirror_y);
430 blorp_batch_finish(&batch);
431 }
432
433 void
434 brw_blorp_copy_miptrees(struct brw_context *brw,
435 struct intel_mipmap_tree *src_mt,
436 unsigned src_level, unsigned src_layer,
437 struct intel_mipmap_tree *dst_mt,
438 unsigned dst_level, unsigned dst_layer,
439 unsigned src_x, unsigned src_y,
440 unsigned dst_x, unsigned dst_y,
441 unsigned src_width, unsigned src_height)
442 {
443 DBG("%s from %dx %s mt %p %d %d (%d,%d) %dx%d"
444 "to %dx %s mt %p %d %d (%d,%d)\n",
445 __func__,
446 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
447 src_level, src_layer, src_x, src_y, src_width, src_height,
448 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
449 dst_level, dst_layer, dst_x, dst_y);
450
451 struct isl_surf tmp_surfs[4];
452 struct blorp_surf src_surf, dst_surf;
453 blorp_surf_for_miptree(brw, &src_surf, src_mt, false,
454 (1 << ISL_AUX_USAGE_MCS) |
455 (1 << ISL_AUX_USAGE_CCS_E),
456 &src_level, src_layer, 1, &tmp_surfs[0]);
457 blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true,
458 (1 << ISL_AUX_USAGE_MCS) |
459 (1 << ISL_AUX_USAGE_CCS_E),
460 &dst_level, dst_layer, 1, &tmp_surfs[2]);
461
462 struct blorp_batch batch;
463 blorp_batch_init(&brw->blorp, &batch, brw, 0);
464 blorp_copy(&batch, &src_surf, src_level, src_layer,
465 &dst_surf, dst_level, dst_layer,
466 src_x, src_y, dst_x, dst_y, src_width, src_height);
467 blorp_batch_finish(&batch);
468 }
469
470 static struct intel_mipmap_tree *
471 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
472 {
473 struct intel_mipmap_tree *mt = irb->mt;
474 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
475 mt = mt->stencil_mt;
476 return mt;
477 }
478
479 static int
480 blorp_get_texture_swizzle(const struct intel_renderbuffer *irb)
481 {
482 return irb->Base.Base._BaseFormat == GL_RGB ?
483 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ONE) :
484 SWIZZLE_XYZW;
485 }
486
487 static void
488 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
489 struct intel_renderbuffer *src_irb, mesa_format src_format,
490 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
491 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
492 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
493 GLenum filter, bool mirror_x, bool mirror_y)
494 {
495 const struct gl_context *ctx = &brw->ctx;
496
497 /* Find source/dst miptrees */
498 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
499 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
500
501 const bool do_srgb = ctx->Color.sRGBEnabled;
502
503 /* Do the blit */
504 brw_blorp_blit_miptrees(brw,
505 src_mt, src_irb->mt_level, src_irb->mt_layer,
506 src_format, blorp_get_texture_swizzle(src_irb),
507 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
508 dst_format,
509 srcX0, srcY0, srcX1, srcY1,
510 dstX0, dstY0, dstX1, dstY1,
511 filter, mirror_x, mirror_y,
512 do_srgb, do_srgb);
513
514 dst_irb->need_downsample = true;
515 }
516
517 static bool
518 try_blorp_blit(struct brw_context *brw,
519 const struct gl_framebuffer *read_fb,
520 const struct gl_framebuffer *draw_fb,
521 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
522 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
523 GLenum filter, GLbitfield buffer_bit)
524 {
525 struct gl_context *ctx = &brw->ctx;
526
527 /* Sync up the state of window system buffers. We need to do this before
528 * we go looking for the buffers.
529 */
530 intel_prepare_render(brw);
531
532 bool mirror_x, mirror_y;
533 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
534 &srcX0, &srcY0, &srcX1, &srcY1,
535 &dstX0, &dstY0, &dstX1, &dstY1,
536 &mirror_x, &mirror_y))
537 return true;
538
539 /* Find buffers */
540 struct intel_renderbuffer *src_irb;
541 struct intel_renderbuffer *dst_irb;
542 struct intel_mipmap_tree *src_mt;
543 struct intel_mipmap_tree *dst_mt;
544 switch (buffer_bit) {
545 case GL_COLOR_BUFFER_BIT:
546 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
547 for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
548 dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
549 if (dst_irb)
550 do_blorp_blit(brw, buffer_bit,
551 src_irb, src_irb->Base.Base.Format,
552 dst_irb, dst_irb->Base.Base.Format,
553 srcX0, srcY0, srcX1, srcY1,
554 dstX0, dstY0, dstX1, dstY1,
555 filter, mirror_x, mirror_y);
556 }
557 break;
558 case GL_DEPTH_BUFFER_BIT:
559 src_irb =
560 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
561 dst_irb =
562 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
563 src_mt = find_miptree(buffer_bit, src_irb);
564 dst_mt = find_miptree(buffer_bit, dst_irb);
565
566 /* We can't handle format conversions between Z24 and other formats
567 * since we have to lie about the surface format. See the comments in
568 * brw_blorp_surface_info::set().
569 */
570 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
571 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
572 return false;
573
574 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
575 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
576 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
577 filter, mirror_x, mirror_y);
578 break;
579 case GL_STENCIL_BUFFER_BIT:
580 src_irb =
581 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
582 dst_irb =
583 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
584 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
585 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
586 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
587 filter, mirror_x, mirror_y);
588 break;
589 default:
590 unreachable("not reached");
591 }
592
593 return true;
594 }
595
596 bool
597 brw_blorp_copytexsubimage(struct brw_context *brw,
598 struct gl_renderbuffer *src_rb,
599 struct gl_texture_image *dst_image,
600 int slice,
601 int srcX0, int srcY0,
602 int dstX0, int dstY0,
603 int width, int height)
604 {
605 struct gl_context *ctx = &brw->ctx;
606 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
607 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
608
609 /* No pixel transfer operations (zoom, bias, mapping), just a blit */
610 if (brw->ctx._ImageTransferState)
611 return false;
612
613 /* Sync up the state of window system buffers. We need to do this before
614 * we go looking at the src renderbuffer's miptree.
615 */
616 intel_prepare_render(brw);
617
618 struct intel_mipmap_tree *src_mt = src_irb->mt;
619 struct intel_mipmap_tree *dst_mt = intel_image->mt;
620
621 /* There is support for only up to eight samples. */
622 if (src_mt->num_samples > 8 || dst_mt->num_samples > 8)
623 return false;
624
625 /* BLORP is only supported from Gen6 onwards. */
626 if (brw->gen < 6)
627 return false;
628
629 if (_mesa_get_format_base_format(src_rb->Format) !=
630 _mesa_get_format_base_format(dst_image->TexFormat)) {
631 return false;
632 }
633
634 /* We can't handle format conversions between Z24 and other formats since
635 * we have to lie about the surface format. See the comments in
636 * brw_blorp_surface_info::set().
637 */
638 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
639 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
640 return false;
641 }
642
643 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
644 return false;
645
646 /* Source clipping shouldn't be necessary, since copytexsubimage (in
647 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
648 * takes care of it.
649 *
650 * Destination clipping shouldn't be necessary since the restrictions on
651 * glCopyTexSubImage prevent the user from specifying a destination rectangle
652 * that falls outside the bounds of the destination texture.
653 * See error_check_subtexture_dimensions().
654 */
655
656 int srcY1 = srcY0 + height;
657 int srcX1 = srcX0 + width;
658 int dstX1 = dstX0 + width;
659 int dstY1 = dstY0 + height;
660
661 /* Account for the fact that in the system framebuffer, the origin is at
662 * the lower left.
663 */
664 bool mirror_y = false;
665 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
666 GLint tmp = src_rb->Height - srcY0;
667 srcY0 = src_rb->Height - srcY1;
668 srcY1 = tmp;
669 mirror_y = true;
670 }
671
672 /* Account for face selection and texture view MinLayer */
673 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
674 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
675
676 brw_blorp_blit_miptrees(brw,
677 src_mt, src_irb->mt_level, src_irb->mt_layer,
678 src_rb->Format, blorp_get_texture_swizzle(src_irb),
679 dst_mt, dst_level, dst_slice,
680 dst_image->TexFormat,
681 srcX0, srcY0, srcX1, srcY1,
682 dstX0, dstY0, dstX1, dstY1,
683 GL_NEAREST, false, mirror_y,
684 false, false);
685
686 /* If we're copying to a packed depth stencil texture and the source
687 * framebuffer has separate stencil, we need to also copy the stencil data
688 * over.
689 */
690 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
691 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
692 src_rb != NULL) {
693 src_irb = intel_renderbuffer(src_rb);
694 src_mt = src_irb->mt;
695
696 if (src_mt->stencil_mt)
697 src_mt = src_mt->stencil_mt;
698 if (dst_mt->stencil_mt)
699 dst_mt = dst_mt->stencil_mt;
700
701 if (src_mt != dst_mt) {
702 brw_blorp_blit_miptrees(brw,
703 src_mt, src_irb->mt_level, src_irb->mt_layer,
704 src_mt->format,
705 blorp_get_texture_swizzle(src_irb),
706 dst_mt, dst_level, dst_slice,
707 dst_mt->format,
708 srcX0, srcY0, srcX1, srcY1,
709 dstX0, dstY0, dstX1, dstY1,
710 GL_NEAREST, false, mirror_y,
711 false, false);
712 }
713 }
714
715 return true;
716 }
717
718
719 GLbitfield
720 brw_blorp_framebuffer(struct brw_context *brw,
721 struct gl_framebuffer *readFb,
722 struct gl_framebuffer *drawFb,
723 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
724 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
725 GLbitfield mask, GLenum filter)
726 {
727 /* BLORP is not supported before Gen6. */
728 if (brw->gen < 6)
729 return mask;
730
731 static GLbitfield buffer_bits[] = {
732 GL_COLOR_BUFFER_BIT,
733 GL_DEPTH_BUFFER_BIT,
734 GL_STENCIL_BUFFER_BIT,
735 };
736
737 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
738 if ((mask & buffer_bits[i]) &&
739 try_blorp_blit(brw, readFb, drawFb,
740 srcX0, srcY0, srcX1, srcY1,
741 dstX0, dstY0, dstX1, dstY1,
742 filter, buffer_bits[i])) {
743 mask &= ~buffer_bits[i];
744 }
745 }
746
747 return mask;
748 }
749
750 static bool
751 set_write_disables(const struct intel_renderbuffer *irb,
752 const GLubyte *color_mask, bool *color_write_disable)
753 {
754 /* Format information in the renderbuffer represents the requirements
755 * given by the client. There are cases where the backing miptree uses,
756 * for example, RGBA to represent RGBX. Since the client is only expecting
757 * RGB we can treat alpha as not used and write whatever we like into it.
758 */
759 const GLenum base_format = irb->Base.Base._BaseFormat;
760 const int components = _mesa_base_format_component_count(base_format);
761 bool disables = false;
762
763 assert(components > 0);
764
765 for (int i = 0; i < components; i++) {
766 color_write_disable[i] = !color_mask[i];
767 disables = disables || !color_mask[i];
768 }
769
770 return disables;
771 }
772
773 static unsigned
774 irb_logical_mt_layer(struct intel_renderbuffer *irb)
775 {
776 return physical_to_logical_layer(irb->mt, irb->mt_layer);
777 }
778
779 static bool
780 do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb,
781 struct gl_renderbuffer *rb, unsigned buf,
782 bool partial_clear, bool encode_srgb)
783 {
784 struct gl_context *ctx = &brw->ctx;
785 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
786 mesa_format format = irb->mt->format;
787 uint32_t x0, x1, y0, y1;
788
789 if (!encode_srgb && _mesa_get_format_color_encoding(format) == GL_SRGB)
790 format = _mesa_get_srgb_format_linear(format);
791
792 x0 = fb->_Xmin;
793 x1 = fb->_Xmax;
794 if (rb->Name != 0) {
795 y0 = fb->_Ymin;
796 y1 = fb->_Ymax;
797 } else {
798 y0 = rb->Height - fb->_Ymax;
799 y1 = rb->Height - fb->_Ymin;
800 }
801
802 /* If the clear region is empty, just return. */
803 if (x0 == x1 || y0 == y1)
804 return true;
805
806 bool can_fast_clear = !partial_clear;
807
808 bool color_write_disable[4] = { false, false, false, false };
809 if (set_write_disables(irb, ctx->Color.ColorMask[buf], color_write_disable))
810 can_fast_clear = false;
811
812 if (irb->mt->aux_disable & INTEL_AUX_DISABLE_CCS ||
813 !brw_is_color_fast_clear_compatible(brw, irb->mt, &ctx->Color.ClearColor))
814 can_fast_clear = false;
815
816 const unsigned logical_layer = irb_logical_mt_layer(irb);
817 const enum intel_fast_clear_state fast_clear_state =
818 intel_miptree_get_fast_clear_state(irb->mt, irb->mt_level,
819 logical_layer);
820
821 /* Surface state can only record one fast clear color value. Therefore
822 * unless different levels/layers agree on the color it can be used to
823 * represent only single level/layer. Here it will be reserved for the
824 * first slice (level 0, layer 0).
825 */
826 if (irb->layer_count > 1 || irb->mt_level || irb->mt_layer)
827 can_fast_clear = false;
828
829 if (can_fast_clear) {
830 union gl_color_union override_color =
831 brw_meta_convert_fast_clear_color(brw, irb->mt,
832 &ctx->Color.ClearColor);
833
834 /* Record the clear color in the miptree so that it will be
835 * programmed in SURFACE_STATE by later rendering and resolve
836 * operations.
837 */
838 const bool color_updated = brw_meta_set_fast_clear_color(
839 brw, &irb->mt->gen9_fast_clear_color,
840 &override_color);
841
842 /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear
843 * is redundant and can be skipped.
844 */
845 if (!color_updated && fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
846 return true;
847
848 /* If the MCS buffer hasn't been allocated yet, we need to allocate
849 * it now.
850 */
851 if (!irb->mt->mcs_buf) {
852 assert(!intel_miptree_is_lossless_compressed(brw, irb->mt));
853 if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt, false)) {
854 /* MCS allocation failed--probably this will only happen in
855 * out-of-memory conditions. But in any case, try to recover
856 * by falling back to a non-blorp clear technique.
857 */
858 return false;
859 }
860 }
861 }
862
863 const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1;
864
865 /* We can't setup the blorp_surf until we've allocated the MCS above */
866 struct isl_surf isl_tmp[2];
867 struct blorp_surf surf;
868 unsigned level = irb->mt_level;
869 blorp_surf_for_miptree(brw, &surf, irb->mt, true,
870 (1 << ISL_AUX_USAGE_MCS) |
871 (1 << ISL_AUX_USAGE_CCS_E) |
872 (1 << ISL_AUX_USAGE_CCS_D),
873 &level, logical_layer, num_layers, isl_tmp);
874
875 if (can_fast_clear) {
876 DBG("%s (fast) to mt %p level %d layers %d+%d\n", __FUNCTION__,
877 irb->mt, irb->mt_level, irb->mt_layer, num_layers);
878
879 struct blorp_batch batch;
880 blorp_batch_init(&brw->blorp, &batch, brw, 0);
881 blorp_fast_clear(&batch, &surf,
882 (enum isl_format)brw->render_target_format[format],
883 level, logical_layer, num_layers,
884 x0, y0, x1, y1);
885 blorp_batch_finish(&batch);
886
887 /* Now that the fast clear has occurred, put the buffer in
888 * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing
889 * redundant clears.
890 */
891 intel_miptree_set_fast_clear_state(brw, irb->mt, irb->mt_level,
892 logical_layer, num_layers,
893 INTEL_FAST_CLEAR_STATE_CLEAR);
894 } else {
895 DBG("%s (slow) to mt %p level %d layer %d+%d\n", __FUNCTION__,
896 irb->mt, irb->mt_level, irb->mt_layer, num_layers);
897
898 union isl_color_value clear_color;
899 memcpy(clear_color.f32, ctx->Color.ClearColor.f, sizeof(float) * 4);
900
901 struct blorp_batch batch;
902 blorp_batch_init(&brw->blorp, &batch, brw, 0);
903 blorp_clear(&batch, &surf,
904 (enum isl_format)brw->render_target_format[format],
905 ISL_SWIZZLE_IDENTITY,
906 level, irb_logical_mt_layer(irb), num_layers,
907 x0, y0, x1, y1,
908 clear_color, color_write_disable);
909 blorp_batch_finish(&batch);
910 }
911
912 /*
913 * Ivybrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
914 *
915 * Any transition from any value in {Clear, Render, Resolve} to a
916 * different value in {Clear, Render, Resolve} requires end of pipe
917 * synchronization.
918 */
919 brw_emit_pipe_control_flush(brw,
920 PIPE_CONTROL_RENDER_TARGET_FLUSH |
921 PIPE_CONTROL_CS_STALL);
922
923 return true;
924 }
925
926 bool
927 brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb,
928 GLbitfield mask, bool partial_clear, bool encode_srgb)
929 {
930 for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
931 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
932 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
933
934 /* Only clear the buffers present in the provided mask */
935 if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0)
936 continue;
937
938 /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
939 * the framebuffer can be complete with some attachments missing. In
940 * this case the _ColorDrawBuffers pointer will be NULL.
941 */
942 if (rb == NULL)
943 continue;
944
945 if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear,
946 encode_srgb)) {
947 return false;
948 }
949
950 irb->need_downsample = true;
951 }
952
953 return true;
954 }
955
956 void
957 brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt,
958 unsigned level, unsigned layer)
959 {
960 DBG("%s to mt %p level %u layer %u\n", __FUNCTION__, mt, level, layer);
961
962 const mesa_format format = _mesa_get_srgb_format_linear(mt->format);
963
964 struct isl_surf isl_tmp[2];
965 struct blorp_surf surf;
966 blorp_surf_for_miptree(brw, &surf, mt, true,
967 (1 << ISL_AUX_USAGE_CCS_E) |
968 (1 << ISL_AUX_USAGE_CCS_D),
969 &level, layer, 1 /* num_layers */,
970 isl_tmp);
971
972 enum blorp_fast_clear_op resolve_op;
973 if (brw->gen >= 9) {
974 if (surf.aux_usage == ISL_AUX_USAGE_CCS_E)
975 resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
976 else
977 resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
978 } else {
979 assert(surf.aux_usage == ISL_AUX_USAGE_CCS_D);
980 /* Broadwell and earlier do not have a partial resolve */
981 resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
982 }
983
984 struct blorp_batch batch;
985 blorp_batch_init(&brw->blorp, &batch, brw, 0);
986 blorp_ccs_resolve(&batch, &surf, level, layer,
987 brw_blorp_to_isl_format(brw, format, true),
988 resolve_op);
989 blorp_batch_finish(&batch);
990
991 /*
992 * Ivybrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
993 *
994 * Any transition from any value in {Clear, Render, Resolve} to a
995 * different value in {Clear, Render, Resolve} requires end of pipe
996 * synchronization.
997 */
998 brw_emit_pipe_control_flush(brw,
999 PIPE_CONTROL_RENDER_TARGET_FLUSH |
1000 PIPE_CONTROL_CS_STALL);
1001 }
1002
1003 static void
1004 gen6_blorp_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
1005 unsigned int level, unsigned int layer, enum blorp_hiz_op op)
1006 {
1007 assert(intel_miptree_level_has_hiz(mt, level));
1008
1009 struct isl_surf isl_tmp[2];
1010 struct blorp_surf surf;
1011 blorp_surf_for_miptree(brw, &surf, mt, true, (1 << ISL_AUX_USAGE_HIZ),
1012 &level, layer, 1, isl_tmp);
1013
1014 struct blorp_batch batch;
1015 blorp_batch_init(&brw->blorp, &batch, brw, 0);
1016 blorp_gen6_hiz_op(&batch, &surf, level, layer, op);
1017 blorp_batch_finish(&batch);
1018 }
1019
1020 /**
1021 * Perform a HiZ or depth resolve operation.
1022 *
1023 * For an overview of HiZ ops, see the following sections of the Sandy Bridge
1024 * PRM, Volume 1, Part 2:
1025 * - 7.5.3.1 Depth Buffer Clear
1026 * - 7.5.3.2 Depth Buffer Resolve
1027 * - 7.5.3.3 Hierarchical Depth Buffer Resolve
1028 */
1029 void
1030 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
1031 unsigned int level, unsigned int layer, enum blorp_hiz_op op)
1032 {
1033 const char *opname = NULL;
1034
1035 switch (op) {
1036 case BLORP_HIZ_OP_DEPTH_RESOLVE:
1037 opname = "depth resolve";
1038 break;
1039 case BLORP_HIZ_OP_HIZ_RESOLVE:
1040 opname = "hiz ambiguate";
1041 break;
1042 case BLORP_HIZ_OP_DEPTH_CLEAR:
1043 opname = "depth clear";
1044 break;
1045 case BLORP_HIZ_OP_NONE:
1046 opname = "noop?";
1047 break;
1048 }
1049
1050 DBG("%s %s to mt %p level %d layer %d\n",
1051 __func__, opname, mt, level, layer);
1052
1053 if (brw->gen >= 8) {
1054 gen8_hiz_exec(brw, mt, level, layer, op);
1055 } else {
1056 gen6_blorp_hiz_exec(brw, mt, level, layer, op);
1057 }
1058 }