618949c72a89e229fd8c465d60c4a831fb3983de
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <errno.h>
25 #include "intel_batchbuffer.h"
26 #include "intel_fbo.h"
27
28 #include "brw_blorp.h"
29 #include "brw_state.h"
30
31 #define FILE_DEBUG_FLAG DEBUG_BLORP
32
33 brw_blorp_mip_info::brw_blorp_mip_info()
34 : mt(NULL),
35 level(0),
36 layer(0),
37 width(0),
38 height(0),
39 x_offset(0),
40 y_offset(0)
41 {
42 }
43
44 brw_blorp_surface_info::brw_blorp_surface_info()
45 : map_stencil_as_y_tiled(false),
46 num_samples(0),
47 swizzle(SWIZZLE_XYZW)
48 {
49 }
50
51 void
52 brw_blorp_mip_info::set(struct intel_mipmap_tree *mt,
53 unsigned int level, unsigned int layer)
54 {
55 /* Layer is a physical layer, so if this is a 2D multisample array texture
56 * using INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, then it had better
57 * be a multiple of num_samples.
58 */
59 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
60 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
61 assert(layer % mt->num_samples == 0);
62 }
63
64 intel_miptree_check_level_layer(mt, level, layer);
65
66 this->mt = mt;
67 this->level = level;
68 this->layer = layer;
69 this->width = minify(mt->physical_width0, level - mt->first_level);
70 this->height = minify(mt->physical_height0, level - mt->first_level);
71
72 intel_miptree_get_image_offset(mt, level, layer, &x_offset, &y_offset);
73 }
74
75 void
76 brw_blorp_surface_info::set(struct brw_context *brw,
77 struct intel_mipmap_tree *mt,
78 unsigned int level, unsigned int layer,
79 mesa_format format, bool is_render_target)
80 {
81 brw_blorp_mip_info::set(mt, level, layer);
82 this->num_samples = mt->num_samples;
83 this->array_layout = mt->array_layout;
84 this->map_stencil_as_y_tiled = false;
85 this->msaa_layout = mt->msaa_layout;
86
87 if (format == MESA_FORMAT_NONE)
88 format = mt->format;
89
90 switch (format) {
91 case MESA_FORMAT_S_UINT8:
92 /* The miptree is a W-tiled stencil buffer. Surface states can't be set
93 * up for W tiling, so we'll need to use Y tiling and have the WM
94 * program swizzle the coordinates.
95 */
96 this->map_stencil_as_y_tiled = true;
97 this->brw_surfaceformat = brw->gen >= 8 ? BRW_SURFACEFORMAT_R8_UINT :
98 BRW_SURFACEFORMAT_R8_UNORM;
99 break;
100 case MESA_FORMAT_Z24_UNORM_X8_UINT:
101 /* It would make sense to use BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS
102 * here, but unfortunately it isn't supported as a render target, which
103 * would prevent us from blitting to 24-bit depth.
104 *
105 * The miptree consists of 32 bits per pixel, arranged as 24-bit depth
106 * values interleaved with 8 "don't care" bits. Since depth values don't
107 * require any blending, it doesn't matter how we interpret the bit
108 * pattern as long as we copy the right amount of data, so just map it
109 * as 8-bit BGRA.
110 */
111 this->brw_surfaceformat = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
112 break;
113 case MESA_FORMAT_Z_FLOAT32:
114 this->brw_surfaceformat = BRW_SURFACEFORMAT_R32_FLOAT;
115 break;
116 case MESA_FORMAT_Z_UNORM16:
117 this->brw_surfaceformat = BRW_SURFACEFORMAT_R16_UNORM;
118 break;
119 default: {
120 if (is_render_target) {
121 assert(brw->format_supported_as_render_target[format]);
122 this->brw_surfaceformat = brw->render_target_format[format];
123 } else {
124 this->brw_surfaceformat = brw_format_for_mesa_format(format);
125 }
126 break;
127 }
128 }
129 }
130
131
132 /**
133 * Split x_offset and y_offset into a base offset (in bytes) and a remaining
134 * x/y offset (in pixels). Note: we can't do this by calling
135 * intel_renderbuffer_tile_offsets(), because the offsets may have been
136 * adjusted to account for Y vs. W tiling differences. So we compute it
137 * directly from the adjusted offsets.
138 */
139 uint32_t
140 brw_blorp_surface_info::compute_tile_offsets(uint32_t *tile_x,
141 uint32_t *tile_y) const
142 {
143 uint32_t mask_x, mask_y;
144
145 intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp,
146 map_stencil_as_y_tiled,
147 &mask_x, &mask_y);
148
149 *tile_x = x_offset & mask_x;
150 *tile_y = y_offset & mask_y;
151
152 return intel_miptree_get_aligned_offset(mt, x_offset & ~mask_x,
153 y_offset & ~mask_y,
154 map_stencil_as_y_tiled);
155 }
156
157
158 brw_blorp_params::brw_blorp_params(unsigned num_varyings,
159 unsigned num_draw_buffers,
160 unsigned num_layers)
161 : x0(0),
162 y0(0),
163 x1(0),
164 y1(0),
165 depth_format(0),
166 hiz_op(GEN6_HIZ_OP_NONE),
167 fast_clear_op(0),
168 use_wm_prog(false),
169 num_varyings(num_varyings),
170 num_draw_buffers(num_draw_buffers),
171 num_layers(num_layers)
172 {
173 color_write_disable[0] = false;
174 color_write_disable[1] = false;
175 color_write_disable[2] = false;
176 color_write_disable[3] = false;
177 }
178
179 extern "C" {
180 void
181 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
182 unsigned int level, unsigned int layer, gen6_hiz_op op)
183 {
184 const char *opname = NULL;
185
186 switch (op) {
187 case GEN6_HIZ_OP_DEPTH_RESOLVE:
188 opname = "depth resolve";
189 break;
190 case GEN6_HIZ_OP_HIZ_RESOLVE:
191 opname = "hiz ambiguate";
192 break;
193 case GEN6_HIZ_OP_DEPTH_CLEAR:
194 opname = "depth clear";
195 break;
196 case GEN6_HIZ_OP_NONE:
197 opname = "noop?";
198 break;
199 }
200
201 DBG("%s %s to mt %p level %d layer %d\n",
202 __func__, opname, mt, level, layer);
203
204 if (brw->gen >= 8) {
205 gen8_hiz_exec(brw, mt, level, layer, op);
206 } else {
207 brw_hiz_op_params params(mt, level, layer, op);
208 brw_blorp_exec(brw, &params);
209 }
210 }
211
212 } /* extern "C" */
213
214 void
215 brw_blorp_exec(struct brw_context *brw, const brw_blorp_params *params)
216 {
217 struct gl_context *ctx = &brw->ctx;
218 const uint32_t estimated_max_batch_usage = brw->gen >= 8 ? 1800 : 1500;
219 bool check_aperture_failed_once = false;
220
221 /* Flush the sampler and render caches. We definitely need to flush the
222 * sampler cache so that we get updated contents from the render cache for
223 * the glBlitFramebuffer() source. Also, we are sometimes warned in the
224 * docs to flush the cache between reinterpretations of the same surface
225 * data with different formats, which blorp does for stencil and depth
226 * data.
227 */
228 brw_emit_mi_flush(brw);
229
230 retry:
231 intel_batchbuffer_require_space(brw, estimated_max_batch_usage, RENDER_RING);
232 intel_batchbuffer_save_state(brw);
233 drm_intel_bo *saved_bo = brw->batch.bo;
234 uint32_t saved_used = USED_BATCH(brw->batch);
235 uint32_t saved_state_batch_offset = brw->batch.state_batch_offset;
236
237 switch (brw->gen) {
238 case 6:
239 gen6_blorp_exec(brw, params);
240 break;
241 case 7:
242 gen7_blorp_exec(brw, params);
243 break;
244 case 8:
245 case 9:
246 gen8_blorp_exec(brw, params);
247 break;
248 default:
249 /* BLORP is not supported before Gen6. */
250 unreachable("not reached");
251 }
252
253 /* Make sure we didn't wrap the batch unintentionally, and make sure we
254 * reserved enough space that a wrap will never happen.
255 */
256 assert(brw->batch.bo == saved_bo);
257 assert((USED_BATCH(brw->batch) - saved_used) * 4 +
258 (saved_state_batch_offset - brw->batch.state_batch_offset) <
259 estimated_max_batch_usage);
260 /* Shut up compiler warnings on release build */
261 (void)saved_bo;
262 (void)saved_used;
263 (void)saved_state_batch_offset;
264
265 /* Check if the blorp op we just did would make our batch likely to fail to
266 * map all the BOs into the GPU at batch exec time later. If so, flush the
267 * batch and try again with nothing else in the batch.
268 */
269 if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
270 if (!check_aperture_failed_once) {
271 check_aperture_failed_once = true;
272 intel_batchbuffer_reset_to_saved(brw);
273 intel_batchbuffer_flush(brw);
274 goto retry;
275 } else {
276 int ret = intel_batchbuffer_flush(brw);
277 WARN_ONCE(ret == -ENOSPC,
278 "i965: blorp emit exceeded available aperture space\n");
279 }
280 }
281
282 if (unlikely(brw->always_flush_batch))
283 intel_batchbuffer_flush(brw);
284
285 /* We've smashed all state compared to what the normal 3D pipeline
286 * rendering tracks for GL.
287 */
288 brw->ctx.NewDriverState = ~0ull;
289 brw->no_depth_or_stencil = false;
290 brw->ib.type = -1;
291
292 /* Flush the sampler cache so any texturing from the destination is
293 * coherent.
294 */
295 brw_emit_mi_flush(brw);
296 }
297
298 brw_hiz_op_params::brw_hiz_op_params(struct intel_mipmap_tree *mt,
299 unsigned int level,
300 unsigned int layer,
301 gen6_hiz_op op)
302 {
303 this->hiz_op = op;
304
305 depth.set(mt, level, layer);
306
307 /* Align the rectangle primitive to 8x4 pixels.
308 *
309 * During fast depth clears, the emitted rectangle primitive must be
310 * aligned to 8x4 pixels. From the Ivybridge PRM, Vol 2 Part 1 Section
311 * 11.5.3.1 Depth Buffer Clear (and the matching section in the Sandybridge
312 * PRM):
313 * If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
314 * aligned to an 8x4 pixel block relative to the upper left corner
315 * of the depth buffer [...]
316 *
317 * For hiz resolves, the rectangle must also be 8x4 aligned. Item
318 * WaHizAmbiguate8x4Aligned from the Haswell workarounds page and the
319 * Ivybridge simulator require the alignment.
320 *
321 * To be safe, let's just align the rect for all hiz operations and all
322 * hardware generations.
323 *
324 * However, for some miptree slices of a Z24 texture, emitting an 8x4
325 * aligned rectangle that covers the slice may clobber adjacent slices if
326 * we strictly adhered to the texture alignments specified in the PRM. The
327 * Ivybridge PRM, Section "Alignment Unit Size", states that
328 * SURFACE_STATE.Surface_Horizontal_Alignment should be 4 for Z24 surfaces,
329 * not 8. But commit 1f112cc increased the alignment from 4 to 8, which
330 * prevents the clobbering.
331 */
332 dst.num_samples = mt->num_samples;
333 if (dst.num_samples > 1) {
334 depth.width = ALIGN(mt->logical_width0, 8);
335 depth.height = ALIGN(mt->logical_height0, 4);
336 } else {
337 depth.width = ALIGN(depth.width, 8);
338 depth.height = ALIGN(depth.height, 4);
339 }
340
341 x1 = depth.width;
342 y1 = depth.height;
343
344 assert(intel_miptree_level_has_hiz(mt, level));
345
346 switch (mt->format) {
347 case MESA_FORMAT_Z_UNORM16: depth_format = BRW_DEPTHFORMAT_D16_UNORM; break;
348 case MESA_FORMAT_Z_FLOAT32: depth_format = BRW_DEPTHFORMAT_D32_FLOAT; break;
349 case MESA_FORMAT_Z24_UNORM_X8_UINT: depth_format = BRW_DEPTHFORMAT_D24_UNORM_X8_UINT; break;
350 default: unreachable("not reached");
351 }
352 }
353
354 uint32_t
355 brw_hiz_op_params::get_wm_prog(struct brw_context *brw,
356 brw_blorp_prog_data **prog_data) const
357 {
358 return 0;
359 }