i965: Use unreachable() instead of unconditional assert().
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <errno.h>
25 #include "intel_batchbuffer.h"
26 #include "intel_fbo.h"
27
28 #include "brw_blorp.h"
29 #include "brw_defines.h"
30 #include "brw_state.h"
31 #include "gen6_blorp.h"
32 #include "gen7_blorp.h"
33
34 #define FILE_DEBUG_FLAG DEBUG_BLORP
35
36 brw_blorp_mip_info::brw_blorp_mip_info()
37 : mt(NULL),
38 level(0),
39 layer(0),
40 width(0),
41 height(0),
42 x_offset(0),
43 y_offset(0)
44 {
45 }
46
47 brw_blorp_surface_info::brw_blorp_surface_info()
48 : map_stencil_as_y_tiled(false),
49 num_samples(0)
50 {
51 }
52
53 void
54 brw_blorp_mip_info::set(struct intel_mipmap_tree *mt,
55 unsigned int level, unsigned int layer)
56 {
57 /* Layer is a physical layer, so if this is a 2D multisample array texture
58 * using INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, then it had better
59 * be a multiple of num_samples.
60 */
61 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
62 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
63 assert(layer % mt->num_samples == 0);
64 }
65
66 intel_miptree_check_level_layer(mt, level, layer);
67
68 this->mt = mt;
69 this->level = level;
70 this->layer = layer;
71 this->width = minify(mt->physical_width0, level - mt->first_level);
72 this->height = minify(mt->physical_height0, level - mt->first_level);
73
74 intel_miptree_get_image_offset(mt, level, layer, &x_offset, &y_offset);
75 }
76
77 void
78 brw_blorp_surface_info::set(struct brw_context *brw,
79 struct intel_mipmap_tree *mt,
80 unsigned int level, unsigned int layer,
81 bool is_render_target)
82 {
83 brw_blorp_mip_info::set(mt, level, layer);
84 this->num_samples = mt->num_samples;
85 this->array_spacing_lod0 = mt->array_spacing_lod0;
86 this->map_stencil_as_y_tiled = false;
87 this->msaa_layout = mt->msaa_layout;
88
89 switch (mt->format) {
90 case MESA_FORMAT_S_UINT8:
91 /* The miptree is a W-tiled stencil buffer. Surface states can't be set
92 * up for W tiling, so we'll need to use Y tiling and have the WM
93 * program swizzle the coordinates.
94 */
95 this->map_stencil_as_y_tiled = true;
96 this->brw_surfaceformat = BRW_SURFACEFORMAT_R8_UNORM;
97 break;
98 case MESA_FORMAT_Z24_UNORM_X8_UINT:
99 /* It would make sense to use BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS
100 * here, but unfortunately it isn't supported as a render target, which
101 * would prevent us from blitting to 24-bit depth.
102 *
103 * The miptree consists of 32 bits per pixel, arranged as 24-bit depth
104 * values interleaved with 8 "don't care" bits. Since depth values don't
105 * require any blending, it doesn't matter how we interpret the bit
106 * pattern as long as we copy the right amount of data, so just map it
107 * as 8-bit BGRA.
108 */
109 this->brw_surfaceformat = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
110 break;
111 case MESA_FORMAT_Z_FLOAT32:
112 this->brw_surfaceformat = BRW_SURFACEFORMAT_R32_FLOAT;
113 break;
114 case MESA_FORMAT_Z_UNORM16:
115 this->brw_surfaceformat = BRW_SURFACEFORMAT_R16_UNORM;
116 break;
117 default: {
118 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
119 if (is_render_target) {
120 assert(brw->format_supported_as_render_target[linear_format]);
121 this->brw_surfaceformat = brw->render_target_format[linear_format];
122 } else {
123 this->brw_surfaceformat = brw_format_for_mesa_format(linear_format);
124 }
125 break;
126 }
127 }
128 }
129
130
131 /**
132 * Split x_offset and y_offset into a base offset (in bytes) and a remaining
133 * x/y offset (in pixels). Note: we can't do this by calling
134 * intel_renderbuffer_tile_offsets(), because the offsets may have been
135 * adjusted to account for Y vs. W tiling differences. So we compute it
136 * directly from the adjusted offsets.
137 */
138 uint32_t
139 brw_blorp_surface_info::compute_tile_offsets(uint32_t *tile_x,
140 uint32_t *tile_y) const
141 {
142 uint32_t mask_x, mask_y;
143
144 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, map_stencil_as_y_tiled);
145
146 *tile_x = x_offset & mask_x;
147 *tile_y = y_offset & mask_y;
148
149 return intel_miptree_get_aligned_offset(mt, x_offset & ~mask_x,
150 y_offset & ~mask_y,
151 map_stencil_as_y_tiled);
152 }
153
154
155 brw_blorp_params::brw_blorp_params()
156 : x0(0),
157 y0(0),
158 x1(0),
159 y1(0),
160 depth_format(0),
161 hiz_op(GEN6_HIZ_OP_NONE),
162 fast_clear_op(GEN7_FAST_CLEAR_OP_NONE),
163 use_wm_prog(false)
164 {
165 color_write_disable[0] = false;
166 color_write_disable[1] = false;
167 color_write_disable[2] = false;
168 color_write_disable[3] = false;
169 }
170
171 extern "C" {
172 void
173 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
174 unsigned int level, unsigned int layer, gen6_hiz_op op)
175 {
176 const char *opname = NULL;
177
178 switch (op) {
179 case GEN6_HIZ_OP_DEPTH_RESOLVE:
180 opname = "depth resolve";
181 break;
182 case GEN6_HIZ_OP_HIZ_RESOLVE:
183 opname = "hiz ambiguate";
184 break;
185 case GEN6_HIZ_OP_DEPTH_CLEAR:
186 opname = "depth clear";
187 break;
188 case GEN6_HIZ_OP_NONE:
189 opname = "noop?";
190 break;
191 }
192
193 DBG("%s %s to mt %p level %d layer %d\n",
194 __FUNCTION__, opname, mt, level, layer);
195
196 if (brw->gen >= 8) {
197 gen8_hiz_exec(brw, mt, level, layer, op);
198 } else {
199 brw_hiz_op_params params(mt, level, layer, op);
200 brw_blorp_exec(brw, &params);
201 }
202 }
203
204 } /* extern "C" */
205
206 void
207 brw_blorp_exec(struct brw_context *brw, const brw_blorp_params *params)
208 {
209 struct gl_context *ctx = &brw->ctx;
210 uint32_t estimated_max_batch_usage = 1500;
211 bool check_aperture_failed_once = false;
212
213 /* Flush the sampler and render caches. We definitely need to flush the
214 * sampler cache so that we get updated contents from the render cache for
215 * the glBlitFramebuffer() source. Also, we are sometimes warned in the
216 * docs to flush the cache between reinterpretations of the same surface
217 * data with different formats, which blorp does for stencil and depth
218 * data.
219 */
220 intel_batchbuffer_emit_mi_flush(brw);
221
222 retry:
223 intel_batchbuffer_require_space(brw, estimated_max_batch_usage, RENDER_RING);
224 intel_batchbuffer_save_state(brw);
225 drm_intel_bo *saved_bo = brw->batch.bo;
226 uint32_t saved_used = brw->batch.used;
227 uint32_t saved_state_batch_offset = brw->batch.state_batch_offset;
228
229 switch (brw->gen) {
230 case 6:
231 gen6_blorp_exec(brw, params);
232 break;
233 case 7:
234 gen7_blorp_exec(brw, params);
235 break;
236 default:
237 /* BLORP is not supported before Gen6. */
238 unreachable("not reached");
239 }
240
241 /* Make sure we didn't wrap the batch unintentionally, and make sure we
242 * reserved enough space that a wrap will never happen.
243 */
244 assert(brw->batch.bo == saved_bo);
245 assert((brw->batch.used - saved_used) * 4 +
246 (saved_state_batch_offset - brw->batch.state_batch_offset) <
247 estimated_max_batch_usage);
248 /* Shut up compiler warnings on release build */
249 (void)saved_bo;
250 (void)saved_used;
251 (void)saved_state_batch_offset;
252
253 /* Check if the blorp op we just did would make our batch likely to fail to
254 * map all the BOs into the GPU at batch exec time later. If so, flush the
255 * batch and try again with nothing else in the batch.
256 */
257 if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
258 if (!check_aperture_failed_once) {
259 check_aperture_failed_once = true;
260 intel_batchbuffer_reset_to_saved(brw);
261 intel_batchbuffer_flush(brw);
262 goto retry;
263 } else {
264 int ret = intel_batchbuffer_flush(brw);
265 WARN_ONCE(ret == -ENOSPC,
266 "i965: blorp emit exceeded available aperture space\n");
267 }
268 }
269
270 if (unlikely(brw->always_flush_batch))
271 intel_batchbuffer_flush(brw);
272
273 /* We've smashed all state compared to what the normal 3D pipeline
274 * rendering tracks for GL.
275 */
276 brw->state.dirty.brw = ~0;
277 brw->state.dirty.cache = ~0;
278 brw->no_depth_or_stencil = false;
279 brw->ib.type = -1;
280
281 /* Flush the sampler cache so any texturing from the destination is
282 * coherent.
283 */
284 intel_batchbuffer_emit_mi_flush(brw);
285 }
286
287 brw_hiz_op_params::brw_hiz_op_params(struct intel_mipmap_tree *mt,
288 unsigned int level,
289 unsigned int layer,
290 gen6_hiz_op op)
291 {
292 this->hiz_op = op;
293
294 depth.set(mt, level, layer);
295
296 /* Align the rectangle primitive to 8x4 pixels.
297 *
298 * During fast depth clears, the emitted rectangle primitive must be
299 * aligned to 8x4 pixels. From the Ivybridge PRM, Vol 2 Part 1 Section
300 * 11.5.3.1 Depth Buffer Clear (and the matching section in the Sandybridge
301 * PRM):
302 * If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
303 * aligned to an 8x4 pixel block relative to the upper left corner
304 * of the depth buffer [...]
305 *
306 * For hiz resolves, the rectangle must also be 8x4 aligned. Item
307 * WaHizAmbiguate8x4Aligned from the Haswell workarounds page and the
308 * Ivybridge simulator require the alignment.
309 *
310 * To be safe, let's just align the rect for all hiz operations and all
311 * hardware generations.
312 *
313 * However, for some miptree slices of a Z24 texture, emitting an 8x4
314 * aligned rectangle that covers the slice may clobber adjacent slices if
315 * we strictly adhered to the texture alignments specified in the PRM. The
316 * Ivybridge PRM, Section "Alignment Unit Size", states that
317 * SURFACE_STATE.Surface_Horizontal_Alignment should be 4 for Z24 surfaces,
318 * not 8. But commit 1f112cc increased the alignment from 4 to 8, which
319 * prevents the clobbering.
320 */
321 depth.width = ALIGN(depth.width, 8);
322 depth.height = ALIGN(depth.height, 4);
323
324 x1 = depth.width;
325 y1 = depth.height;
326
327 assert(intel_miptree_level_has_hiz(mt, level));
328
329 switch (mt->format) {
330 case MESA_FORMAT_Z_UNORM16: depth_format = BRW_DEPTHFORMAT_D16_UNORM; break;
331 case MESA_FORMAT_Z_FLOAT32: depth_format = BRW_DEPTHFORMAT_D32_FLOAT; break;
332 case MESA_FORMAT_Z24_UNORM_X8_UINT: depth_format = BRW_DEPTHFORMAT_D24_UNORM_X8_UINT; break;
333 default: unreachable("not reached");
334 }
335 }
336
337 uint32_t
338 brw_hiz_op_params::get_wm_prog(struct brw_context *brw,
339 brw_blorp_prog_data **prog_data) const
340 {
341 return 0;
342 }