Merge branch 'master' of ../mesa into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <errno.h>
25 #include "intel_batchbuffer.h"
26 #include "intel_fbo.h"
27
28 #include "brw_blorp.h"
29 #include "brw_defines.h"
30 #include "brw_state.h"
31 #include "gen6_blorp.h"
32 #include "gen7_blorp.h"
33
34 #define FILE_DEBUG_FLAG DEBUG_BLORP
35
36 brw_blorp_mip_info::brw_blorp_mip_info()
37 : mt(NULL),
38 level(0),
39 layer(0),
40 width(0),
41 height(0),
42 x_offset(0),
43 y_offset(0)
44 {
45 }
46
47 brw_blorp_surface_info::brw_blorp_surface_info()
48 : map_stencil_as_y_tiled(false),
49 num_samples(0)
50 {
51 }
52
53 void
54 brw_blorp_mip_info::set(struct intel_mipmap_tree *mt,
55 unsigned int level, unsigned int layer)
56 {
57 /* Layer is a physical layer, so if this is a 2D multisample array texture
58 * using INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, then it had better
59 * be a multiple of num_samples.
60 */
61 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
62 mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
63 assert(layer % mt->num_samples == 0);
64 }
65
66 intel_miptree_check_level_layer(mt, level, layer);
67
68 this->mt = mt;
69 this->level = level;
70 this->layer = layer;
71 this->width = minify(mt->physical_width0, level - mt->first_level);
72 this->height = minify(mt->physical_height0, level - mt->first_level);
73
74 intel_miptree_get_image_offset(mt, level, layer, &x_offset, &y_offset);
75 }
76
77 void
78 brw_blorp_surface_info::set(struct brw_context *brw,
79 struct intel_mipmap_tree *mt,
80 unsigned int level, unsigned int layer,
81 mesa_format format, bool is_render_target)
82 {
83 brw_blorp_mip_info::set(mt, level, layer);
84 this->num_samples = mt->num_samples;
85 this->array_layout = mt->array_layout;
86 this->map_stencil_as_y_tiled = false;
87 this->msaa_layout = mt->msaa_layout;
88
89 if (format == MESA_FORMAT_NONE)
90 format = mt->format;
91
92 switch (format) {
93 case MESA_FORMAT_S_UINT8:
94 /* The miptree is a W-tiled stencil buffer. Surface states can't be set
95 * up for W tiling, so we'll need to use Y tiling and have the WM
96 * program swizzle the coordinates.
97 */
98 this->map_stencil_as_y_tiled = true;
99 this->brw_surfaceformat = BRW_SURFACEFORMAT_R8_UNORM;
100 break;
101 case MESA_FORMAT_Z24_UNORM_X8_UINT:
102 /* It would make sense to use BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS
103 * here, but unfortunately it isn't supported as a render target, which
104 * would prevent us from blitting to 24-bit depth.
105 *
106 * The miptree consists of 32 bits per pixel, arranged as 24-bit depth
107 * values interleaved with 8 "don't care" bits. Since depth values don't
108 * require any blending, it doesn't matter how we interpret the bit
109 * pattern as long as we copy the right amount of data, so just map it
110 * as 8-bit BGRA.
111 */
112 this->brw_surfaceformat = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
113 break;
114 case MESA_FORMAT_Z_FLOAT32:
115 this->brw_surfaceformat = BRW_SURFACEFORMAT_R32_FLOAT;
116 break;
117 case MESA_FORMAT_Z_UNORM16:
118 this->brw_surfaceformat = BRW_SURFACEFORMAT_R16_UNORM;
119 break;
120 default: {
121 mesa_format linear_format = _mesa_get_srgb_format_linear(format);
122 if (is_render_target) {
123 assert(brw->format_supported_as_render_target[linear_format]);
124 this->brw_surfaceformat = brw->render_target_format[linear_format];
125 } else {
126 this->brw_surfaceformat = brw_format_for_mesa_format(linear_format);
127 }
128 break;
129 }
130 }
131 }
132
133
134 /**
135 * Split x_offset and y_offset into a base offset (in bytes) and a remaining
136 * x/y offset (in pixels). Note: we can't do this by calling
137 * intel_renderbuffer_tile_offsets(), because the offsets may have been
138 * adjusted to account for Y vs. W tiling differences. So we compute it
139 * directly from the adjusted offsets.
140 */
141 uint32_t
142 brw_blorp_surface_info::compute_tile_offsets(uint32_t *tile_x,
143 uint32_t *tile_y) const
144 {
145 uint32_t mask_x, mask_y;
146
147 intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp,
148 map_stencil_as_y_tiled,
149 &mask_x, &mask_y);
150
151 *tile_x = x_offset & mask_x;
152 *tile_y = y_offset & mask_y;
153
154 return intel_miptree_get_aligned_offset(mt, x_offset & ~mask_x,
155 y_offset & ~mask_y,
156 map_stencil_as_y_tiled);
157 }
158
159
160 brw_blorp_params::brw_blorp_params(unsigned num_varyings,
161 unsigned num_draw_buffers,
162 unsigned num_layers)
163 : x0(0),
164 y0(0),
165 x1(0),
166 y1(0),
167 depth_format(0),
168 hiz_op(GEN6_HIZ_OP_NONE),
169 use_wm_prog(false),
170 num_varyings(num_varyings),
171 num_draw_buffers(num_draw_buffers),
172 num_layers(num_layers)
173 {
174 }
175
176 extern "C" {
177 void
178 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
179 unsigned int level, unsigned int layer, gen6_hiz_op op)
180 {
181 const char *opname = NULL;
182
183 switch (op) {
184 case GEN6_HIZ_OP_DEPTH_RESOLVE:
185 opname = "depth resolve";
186 break;
187 case GEN6_HIZ_OP_HIZ_RESOLVE:
188 opname = "hiz ambiguate";
189 break;
190 case GEN6_HIZ_OP_DEPTH_CLEAR:
191 opname = "depth clear";
192 break;
193 case GEN6_HIZ_OP_NONE:
194 opname = "noop?";
195 break;
196 }
197
198 DBG("%s %s to mt %p level %d layer %d\n",
199 __func__, opname, mt, level, layer);
200
201 if (brw->gen >= 8) {
202 gen8_hiz_exec(brw, mt, level, layer, op);
203 } else {
204 brw_hiz_op_params params(mt, level, layer, op);
205 brw_blorp_exec(brw, &params);
206 }
207 }
208
209 } /* extern "C" */
210
211 void
212 brw_blorp_exec(struct brw_context *brw, const brw_blorp_params *params)
213 {
214 struct gl_context *ctx = &brw->ctx;
215 uint32_t estimated_max_batch_usage = 1500;
216 bool check_aperture_failed_once = false;
217
218 /* Flush the sampler and render caches. We definitely need to flush the
219 * sampler cache so that we get updated contents from the render cache for
220 * the glBlitFramebuffer() source. Also, we are sometimes warned in the
221 * docs to flush the cache between reinterpretations of the same surface
222 * data with different formats, which blorp does for stencil and depth
223 * data.
224 */
225 brw_emit_mi_flush(brw);
226
227 retry:
228 intel_batchbuffer_require_space(brw, estimated_max_batch_usage, RENDER_RING);
229 intel_batchbuffer_save_state(brw);
230 drm_intel_bo *saved_bo = brw->batch.bo;
231 uint32_t saved_used = USED_BATCH(brw->batch);
232 uint32_t saved_state_batch_offset = brw->batch.state_batch_offset;
233
234 switch (brw->gen) {
235 case 6:
236 gen6_blorp_exec(brw, params);
237 break;
238 case 7:
239 gen7_blorp_exec(brw, params);
240 break;
241 default:
242 /* BLORP is not supported before Gen6. */
243 unreachable("not reached");
244 }
245
246 /* Make sure we didn't wrap the batch unintentionally, and make sure we
247 * reserved enough space that a wrap will never happen.
248 */
249 assert(brw->batch.bo == saved_bo);
250 assert((USED_BATCH(brw->batch) - saved_used) * 4 +
251 (saved_state_batch_offset - brw->batch.state_batch_offset) <
252 estimated_max_batch_usage);
253 /* Shut up compiler warnings on release build */
254 (void)saved_bo;
255 (void)saved_used;
256 (void)saved_state_batch_offset;
257
258 /* Check if the blorp op we just did would make our batch likely to fail to
259 * map all the BOs into the GPU at batch exec time later. If so, flush the
260 * batch and try again with nothing else in the batch.
261 */
262 if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
263 if (!check_aperture_failed_once) {
264 check_aperture_failed_once = true;
265 intel_batchbuffer_reset_to_saved(brw);
266 intel_batchbuffer_flush(brw);
267 goto retry;
268 } else {
269 int ret = intel_batchbuffer_flush(brw);
270 WARN_ONCE(ret == -ENOSPC,
271 "i965: blorp emit exceeded available aperture space\n");
272 }
273 }
274
275 if (unlikely(brw->always_flush_batch))
276 intel_batchbuffer_flush(brw);
277
278 /* We've smashed all state compared to what the normal 3D pipeline
279 * rendering tracks for GL.
280 */
281 brw->ctx.NewDriverState = ~0ull;
282 brw->no_depth_or_stencil = false;
283 brw->ib.type = -1;
284
285 /* Flush the sampler cache so any texturing from the destination is
286 * coherent.
287 */
288 brw_emit_mi_flush(brw);
289 }
290
291 brw_hiz_op_params::brw_hiz_op_params(struct intel_mipmap_tree *mt,
292 unsigned int level,
293 unsigned int layer,
294 gen6_hiz_op op)
295 {
296 this->hiz_op = op;
297
298 depth.set(mt, level, layer);
299
300 /* Align the rectangle primitive to 8x4 pixels.
301 *
302 * During fast depth clears, the emitted rectangle primitive must be
303 * aligned to 8x4 pixels. From the Ivybridge PRM, Vol 2 Part 1 Section
304 * 11.5.3.1 Depth Buffer Clear (and the matching section in the Sandybridge
305 * PRM):
306 * If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
307 * aligned to an 8x4 pixel block relative to the upper left corner
308 * of the depth buffer [...]
309 *
310 * For hiz resolves, the rectangle must also be 8x4 aligned. Item
311 * WaHizAmbiguate8x4Aligned from the Haswell workarounds page and the
312 * Ivybridge simulator require the alignment.
313 *
314 * To be safe, let's just align the rect for all hiz operations and all
315 * hardware generations.
316 *
317 * However, for some miptree slices of a Z24 texture, emitting an 8x4
318 * aligned rectangle that covers the slice may clobber adjacent slices if
319 * we strictly adhered to the texture alignments specified in the PRM. The
320 * Ivybridge PRM, Section "Alignment Unit Size", states that
321 * SURFACE_STATE.Surface_Horizontal_Alignment should be 4 for Z24 surfaces,
322 * not 8. But commit 1f112cc increased the alignment from 4 to 8, which
323 * prevents the clobbering.
324 */
325 depth.width = ALIGN(depth.width, 8);
326 depth.height = ALIGN(depth.height, 4);
327
328 x1 = depth.width;
329 y1 = depth.height;
330
331 assert(intel_miptree_level_has_hiz(mt, level));
332
333 switch (mt->format) {
334 case MESA_FORMAT_Z_UNORM16: depth_format = BRW_DEPTHFORMAT_D16_UNORM; break;
335 case MESA_FORMAT_Z_FLOAT32: depth_format = BRW_DEPTHFORMAT_D32_FLOAT; break;
336 case MESA_FORMAT_Z24_UNORM_X8_UINT: depth_format = BRW_DEPTHFORMAT_D24_UNORM_X8_UINT; break;
337 default: unreachable("not reached");
338 }
339 }
340
341 uint32_t
342 brw_hiz_op_params::get_wm_prog(struct brw_context *brw,
343 brw_blorp_prog_data **prog_data) const
344 {
345 return 0;
346 }